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Abstract

Caspase-3 inhibitory activities of some 1,2- benzisothiazol-3-one derivatives were modeled 
by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression 
(SW-MLR) method. The built model was robust and predictive with correlation coefficient 
(R2) of 0.91 and 0.59 for training and test groups, respectively. The quality of the model was 
evaluated by leave-one out (LOO) cross validation (LOO correlation coefficient, ( Q2) of 0.80). 
The results indicate that the descriptors related to the electronegativity, the atomic masses, the 
atomic van der Waals volumes and R--CX--R Atom-centered fragments play a more significant 
role in caspase-3 inhibitory activity.
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Introduction

Apoptosis or programmed cell death is 
vital in eukaryotic organisms (1). However, 
dysregulation of this process can cause many 
diseases in human such as autoimmune disorders, 
stroke, neurodegenerative diseases and cancer 
(2).

Caspases (Cystein-dependent aspartyl 
proteases) have been identified as the key 
enzymes in initiation and execution of apoptosis 
(3). Two different groups of enzymes from 
caspase family are involved in apoptosis. The 
first group including caspase 2, 8, 9 and 10 are 
upstream regulators and activate caspases of 
second group (3, 6 and 7), which are the major 
effectors caspases in apoptosis (4).

Caspase-3, one of the dominant effectors 
caspases, is activated in almost every model of 

apoptosis with various signaling  pathways. Hence, 
inhibition of caspase-3 has become an attractive 
target in the treatment of neurodegenerative 
diseases including Alzheimer’s, Huntington’s and 
Parkinson’s diseases in which excessive neuronal 
apoptosis occurs (5-6).

Our strategy is to identify potent caspase-3 
enzyme inhibitors and study the quantitative 
relationship between their inhibitory activities 
and structures. The results of this study can 
provide useful chemical visions for designing 
new capase-3 inhibitors. Quantitative structure–
activity relationship (QSAR) studies play 
a critical role in the rational drug design. 
The main aim of QSAR study is to develop 
quantitative models to predict biological activity 
of compounds (7-8). Through the years different 
methods were used to build QSAR models 
capable of accurate prediction of biological 
activity of compounds (9-10). In this study, we 
employed the stepwise (SW) selection method 
for the variable selection in the multiple linear 
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regression (MLR) method. The aim of this study 
is to search for an efficient method to build an 
accurate quantitative relationship between the 
molecular structure and the caspase-3 inhibitory 
activity of some 1, 2-benzisothiazol-3-one 
derivatives. 

Methods 
Data set
A series of potent 1, 2-benzisothiazol-3-one 

derivatives (53 compounds) with experimental 
biological activities, which were reported 
by Liu et al. and Wu et al., was taken for the 
study (11-12). All the biological data expressed 
as IC50 were converted into pIC50 (-log IC50) 
values. The total set of molecules was randomly 
separated into a training set (43 compounds) 
for generating QSAR model and a test set (10 
compounds) for validating the quality of the 
model. The general chemical structures and 
biological activity values of all of the compounds 
are shown in Table 1.

Molecular descriptors and geometry 
opt imizat ion

The chemical structures of the molecules 
were built using the Hyperchem 8.0 software 
(version 8.0; Hyperchem, Alberta, Canada) 
(13). The pre-optimization was conducted 
using the molecular mechanics force field 
(MM+) procedure included in Hyperchem, 
and then semi-empirical method AM1 using 
the Polak–Ribiere algorithm was applied to 
optimize the molecules geometry. DRAGON 
software was used to calculate the descriptors 
among a total of 1200 molecular descriptors, 
belonging to different types of theoretical 
descriptors such as constitutional descriptors, 
topological descriptors, molecular walk counts, 
BCUT descriptors, Galves topological charge 
indices, 2D autocorrelations, charge descriptors, 
aromaticity indices, Randic molecular 
profiles, geometrical descriptors, 3D-MoRSE 
descriptors, WHIM descriptors, GETAWAY 
descriptors, empirical descriptors (14). The 
calculated descriptors were first analyzed for the 
existence of constant or near constant variables. 
The detected ones were then removed. Secondly, 
the descriptors correlation with each other and 
with the activity (pIC50) was of the molecules 

was examined and the collinear descriptors 
(i.e. correlation coefficient between descriptors 
is greater than 0.9) were detected. Among the 
collinear descriptors, the one exhibiting the 
highest correlation with the activity was retained 
and others were removed from the data matrix. 
And finally 363 descriptors were remained.

Results

For the selection of the most important 
descriptors, stepwise method-based MLR was 
used. According to the rule of thumb, at least five 
compounds should be included in the equation 
for every descriptor. To investigate the optimum 
number of descriptors to be used in the equation, 
a graph between numbers of descriptors against 
statistical parameters (R2 and Standard Error of 
Estimate (SEE)) was plotted (Figure 1). Figure 
1 shows that R2 increased with the increasing 
number of descriptors. However, the values of 
SEE decreased with the increasing number of 
descriptors. As can be seen, R2 and SEE remain 
almost parallel to the number of descriptors after 
nine parameters and higher order models. This 
shows that the most suitable models are nine 
parametric models.

The MLR analysis with a stepwise selection 
was carried out to relate the pIC50 to a nine set 
of descriptors. The SPSS software (version 
13.0; SPSS Inc., Chicago, IL, USA) (15) was 
employed for the MLR analysis). It is described 
by the following equation:

pIC50 = 4.30 (± 1.54)  –13.56 (± 1.46) P2v 
–19.68 (±8.10) R7e+  –8.86 (± 1.33) R2m+   
–12.71 (± 1.54) MATS1e –0.59 (± 0.10)   C-026 
+4.25 (± 0.59) Mor28m –0.32 (± 0.06) RDF125m 
+0.27 (± 0.05) RDF115m  +19.10 (± 8.62) G2e

 

The built model produced the good results for 
the training set and the test set (Table 1 and 2).

The obtained statistical parameter of the 
leave-one-out cross-validation test (Q2) on SW-
MLR model was 0.80, which indicates reliability 
of the proposed model. The plots of the predicted 
pIC50versus the experimental pIC50, obtained by 
the SW-MLR modeling, are demonstrated in 
Figure 2.
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Table 1. Chemical structures and the corresponding observed and predicted pIC50 values by SW-MLR method.

Compounds R
pIC50  

Obsd. pred Res.

1 H 4.33 4.38 -0.05

2a CH3- 4.37 3.91 0.46

3 CH3CH2- 4.04 4.24 -0.20

S
N

O

R

4a CH2=CHCH2- 4.64 4.60 0.04

5 6.27 6.1 0.17

6 H3C 6.33 6.18 0.15

7
H2
C 4.97 5.16 -0.19

8a
H2
CMeO 4.92 5.67 -0.75

9
H2
CF 4.87 5.23 -0.36

10
H2
C

H2
C 4.73 5.07 -0.34

11 7.12 6.75 0.37

12a
O

CH3

5.38 5.87 -0.49

13
O

H3C

5.93 6.04 -0.11

14 OH3C 4.97 5.19 -0.22

S
N

O

HN

O

R

15

Br

5.09 4.84 0.25

16

Br

5.02 5.04 -0.02

17 Br 5.51 5.54 -0.03

18

F

4.79 5.57 -0.78

19

F

6.36 6.59 -0.23
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20a F 6.23 5.79 0.44

21

NO2

5.01 4.91 0.10

 22
Cl

F3C

4.66 4.86 -0.20

23
H2
C 7.07 6.89 0.18

24 C
H

CH3
7.07 7.25 -0.18

25 H2
C

O
CH3

7.06 7.23 -0.17

26 H2
C

O
H3C

7.13 7.18 -0.05

27
H2
COH3C 7.40 7.31 0.09

28 H2
C

F

6.69 6.46 0.23

29 H2
C

F

6.62 5.63 0.99

30a
H2
CF 6.94 6.84 0.10

31a
H2
C

H2
C 7.51 6.22 1.29

32
N

7.42 7.69 -0.27

33
N

7.38 7.15 0.23

34

N
7.31 7.19 0.12

35
O

7.09 6.84 0.25

36
S

7.51 8.14 -0.63

37 7.31 7.05 0.26

Table 1. continue
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38a

N O
6.57 5.82 0.75

39a
N O 7.26 8.25 -0.99

40 N O 8.94 8.39 0.55

41 N N 4.87 4.76 0.11

42 N N 6.74 6.96 -0.22

43 N N 7.21 7.64 -0.43

44 N 7.01 7.25 -0.24

45
N

7.66 7.62 0.04

46 N O 7.25 7.40 -0.15

47

O

6.37 6.17 0.20

48 N O 6.11 5.93 0.18

49 N N 7.22 6.81 0.41

50 N O 5.90 6.35 -0.45

51a N 5.81 6.92 -1.11

52
N

6.30 6.29 0.01

53 N 6.14 5.48 0.66

        a test set

S
N

O
H
N

O

S R
O

O

Table 1. continue

S
N

O

O

H
N R

The selected variables of SW-MLR model 
are shown in Table 3, and the correlation matrix 
of these descriptors visualized is shown in 
Table 4. From Table 4, it could be seen that 
the correlation coefficient value of each pair 
descriptors was less than 0.65, which meant that 
the selected descriptors were independent.

Discussion 

QSAR results can provide useful chemical 
visions for designing new compounds. For 
this purpose, interpretation of the descriptors 
appeared in the resulting models was discussed 
below (16). The chemical meanings of selected 
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descriptors are also displayed in Table 5.
P2v is one of the WHIM descriptors which 

has appeared in the SW-MLR model. WHIM 
descriptors are molecular descriptors based on 
the projections of the atoms along principal 
axes. WHIM descriptors are built in such a way 
as to capture relevant molecular 3D information 
regarding molecular size, shape, and symmetry 
and atom distribution with respect to invariant 
reference frames. The property in this case is 
van der Waals volume. This descriptor has a 
significant negative effect on the inhibitory 

activity of analogs. G2e is another WHIM 
descriptor in this model that has a negative 
influence on PIC50. The negative sign suggests 
that the PIC50 value is inversely related to this 
descriptor.

From the nine selected descriptors, three 
of them belong to the 2D autocorrelation 
descriptors (R7e +, R2m + and MATS1e). In 2D 
autocorrelation descriptors, the molecule atoms 
represent a set of discrete points in space, and 
the atomic property and function are evaluated 
at those points. The symbol for each of the 

Results 

For the selection of the most important descriptors, stepwise method-based MLR was used. According 

to the rule of thumb, at least five compounds should be included in the equation for every descriptor. 

To investigate the optimum number of descriptors to be used in the equation, a graph between numbers 

of descriptors against statistical parameters (R2 and Standard Error of Estimate (SEE)) was plotted 

(Figure 1). Figure 1 shows that R2 increased with the increasing number of descriptors. However, the 

values of SEE decreased with the increasing number of descriptors. As can be seen, R2 and SEE remain 

almost parallel to the number of descriptors after nine parameters and higher order models. This shows 

that the most suitable models are nine parametric models.  

 
Figure 1. Influences of the number of descriptors on the R2 and SEE of the regression model. 
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autocorrelation descriptors is followed by two 
indices d and w; where d stands for the lag and 
w stands for the weight. The lag is defined as the 
topological distance d between pairs of atoms. 
The weight can be m (relative atomic mass), p 
(polarizability), e (Sanderson electronegativity) 
and v (Vander Waals volume). The physico-
chemical properties (weights) for R2m+, R7e+ 
and MATS1e are atomic mass and Sandersonn 
electronegativity, respectively. Figure 4 displays 
that these three descriptors have negative 
effects on caspase-3 inhibitory activity, which 
indicates that pIC50 is inversely related to atomic 
Sanderson electronegativities and atomic mass.

The seventh and eighth descriptors are 
RDF115m and RDF125m, which belong to 
the RDF descriptors. The RDF in these forms 
meets all the requirements for the 3D structure 
descriptors. It is independent of the atom 
number (i.e., the size of a molecule), it is unique 
regarding the 3D arrangement of the atoms, and 
it is invariant against the translation and rotation 
of the entire molecule. The RDF descriptors 

are based on the distance distribution in the 
molecule. The RDF of an ensemble of n atoms 
can be interpreted as the probability distribution 
of finding an atom in a spherical volume of radius 
R. RDF115m and RDF125m descriptors play a 
main role in analogs activities. RDF115m and 
RDF125m have positive and negative influence 
on PIC50, respectively.

Mor28m is one of the 3D-MoRSE descriptors. 
3D Molecule Representation of Structures based 
on Electron diffraction (3D MoRSE) descriptors 
is derived from infrared spectra simulation using 
a generalized scattering function. This descriptor 
was proposed as signal 22⁄weighted by atomic 
masses, which relates to masses of the molecules.

C-026 is one of the Molecular descriptors that 
are based on the counting of 120 atom-centered 
fragments. Atom-centered fragments are those 
defined by Ghose and Crippen (17-18). Each 
atom type is an atom in the molecule described 
by its neighboring atoms. Hydrogen and halogen 
atoms are classified by the hybridization and 
oxidation state of the carbon atom to which they 

Table 2. Statistical parameters of SW-MLR model.
Training set Test set F Q2LOO

SEE R2 R2

0.38 0.91 0.59 37.87 0.80

 

Figure 3. Standardized coefficients versus descriptor values in MLR. 

 

Table 5. Details of name of the descriptors were used in model construction. 

Descriptors Chemical meanings 

P2v 2nd component shape directional weighted by atomic van der Waals volumes 

R7e+ R maximal autocorrelation of lag 7/weighted by atomic Sanderson 

electronegativities 

 

R2m+ R maximal autocorrelation of lag 2/weighted by atomic masses 

MATS1e Moran autocorrelation lag 1 / weighted by atomic Sanderson electronegativities 

C-026 R--CX--R Atom-centred fragments 

Mor28m 3D-MoRSE - signal 28/weighted by atomic masses 

RDF125m Radial Distribution Function - 12.5/weighted by atomic masses 
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G2e 2st component symmetry directional WHIM index/weighted by atomic 

Sanderson electronegativities 
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No. P2v R7e+ R2m+ MATS1e C-026 Mor28m RDF125m RDF115m G2e

1 0.327 0 0.117 -0.025 0 0.314 0 0 0.204

2a 0.221 0.039 0.097 0.051 0 0.282 0 0 0.193

3 0.165 0.041 0.093 0.063 0 0.253 0 0 0.185

4a 0.14 0.037 0.086 0.064 0 0.237 0 0 0.183

5 0.137 0.022 0.056 0.063 0 0.472 0 0 0.177

6 0.108 0.024 0.057 0.07 0 0.447 0 0.109 0.172

7 0.116 0.041 0.076 0.07 0 0.357 0 0 0.172

8a 0.088 0.032 0.078 0.028 1 0.373 0.002 0.218 0.167

9 0.115 0.04 0.099 0.016 1 0.391 0 0 0.172

10 0.085 0.029 0.077 0.076 0 0.207 0.005 0.214 0.168

11 0.093 0.025 0.043 -0.027 1 0.356 0.019 0.219 0.171

12a 0.091 0.043 0.067 -0.043 2 0.4 0.009 0.112 0.165

13 0.115 0.029 0.075 -0.043 2 0.36 0.111 1.947 0.165

14 0.065 0.043 0.076 -0.043 2 0.264 2.48 1.621 0.165

15 0.119 0.036 0.236 -0.041 2 0.543 0.036 0.18 0.171

16 0.102 0.023 0.249 -0.041 2 0.472 0.454 1.155 0.171

17 0.079 0.025 0.217 -0.041 2 0.486 0.029 0.216 0.171

18 0.096 0.042 0.055 -0.039 2 0.304 0.041 0.108 0.171

19 0.094 0.025 0.064 -0.039 2 0.378 0.144 1.781 0.171

20a 0.092 0.025 0.058 -0.039 2 0.328 2.045 1.53 0.171

21 0.123 0.023 0.099 0.131 2 0.755 0.012 0.155 0.168

22 0.089 0.04 0.292 -0.043 2 0.512 1.066 2.776 0.167

23 0.085 0.036 0.059 -0.016 0 0.353 0.005 0.294 0.167

24 0.097 0.026 0.047 -0.007 0 0.461 0 0.12 0.163

25 0.106 0.026 0.044 -0.032 1 0.484 0.042 1.156 0.162

26 0.088 0.025 0.048 -0.032 1 0.46 0.062 0.529 0.162

27 0.082 0.027 0.06 -0.032 1 0.373 1.486 4.305 0.162

28 0.1 0.029 0.071 -0.03 1 0.393 0.007 0.227 0.167

29 0.09 0.048 0.101 -0.03 1 0.319 0.001 0.177 0.167

30a 0.102 0.032 0.103 -0.03 1 0.51 0.093 1.285 0.167

31a 0.15 0.028 0.054 -0.007 0 0.418 0 0 0.163

32 0.071 0.016 0.07 -0.039 0 0.417 0.733 0.149 0.168

33 0.091 0.027 0.087 -0.039 0 0.384 0.01 0.185 0.168

34 0.055 0.039 0.088 -0.026 0 0.35 1.315 1.262 0.18

35 0.1 0.035 0.083 -0.06 0 0.301 0 0.036 0.171

36 0.056 0.027 0.118 -0.024 0 0.479 0.933 3.508 0.167

37 0.069 0.019 0.074 0.001 0 0.408 2.171 1.298 0.174

38a 0.201 0.029 0.066 -0.032 1 0.603 0.012 0.166 0.156

39a 0.096 0.022 0.054 -0.032 1 0.605 1.923 5.238 0.156

40 0.055 0.02 0.062 -0.032 1 0.614 1.961 2.784 0.169

41 0.281 0.02 0.06 -0.011 1 0.629 0.022 0.2 0.153

42 0.121 0.02 0.054 -0.011 1 0.633 1.357 1.623 0.153

43 0.046 0.017 0.062 -0.011 1 0.595 2.807 2.718 0.153

44 0.051 0.019 0.062 -0.001 1 0.457 1.918 3.153 0.155

45 0.054 0.018 0.061 -0.021 1 0.479 2.746 3.903 0.16

46 0.108 0.017 0.055 -0.023 0 0.496 1.879 2.358 0.154

Table 3. The descriptor values were used in model construction.
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No. P2v R7e+ R2m+ MATS1e C-026 Mor28m RDF125m RDF115m G2e

1 0.327 0 0.117 -0.025 0 0.314 0 0 0.204

2a 0.221 0.039 0.097 0.051 0 0.282 0 0 0.193

3 0.165 0.041 0.093 0.063 0 0.253 0 0 0.185

4a 0.14 0.037 0.086 0.064 0 0.237 0 0 0.183

5 0.137 0.022 0.056 0.063 0 0.472 0 0 0.177

6 0.108 0.024 0.057 0.07 0 0.447 0 0.109 0.172

7 0.116 0.041 0.076 0.07 0 0.357 0 0 0.172

8a 0.088 0.032 0.078 0.028 1 0.373 0.002 0.218 0.167

9 0.115 0.04 0.099 0.016 1 0.391 0 0 0.172

10 0.085 0.029 0.077 0.076 0 0.207 0.005 0.214 0.168

11 0.093 0.025 0.043 -0.027 1 0.356 0.019 0.219 0.171

12a 0.091 0.043 0.067 -0.043 2 0.4 0.009 0.112 0.165

13 0.115 0.029 0.075 -0.043 2 0.36 0.111 1.947 0.165

14 0.065 0.043 0.076 -0.043 2 0.264 2.48 1.621 0.165

15 0.119 0.036 0.236 -0.041 2 0.543 0.036 0.18 0.171

16 0.102 0.023 0.249 -0.041 2 0.472 0.454 1.155 0.171

17 0.079 0.025 0.217 -0.041 2 0.486 0.029 0.216 0.171

18 0.096 0.042 0.055 -0.039 2 0.304 0.041 0.108 0.171

19 0.094 0.025 0.064 -0.039 2 0.378 0.144 1.781 0.171

20a 0.092 0.025 0.058 -0.039 2 0.328 2.045 1.53 0.171

21 0.123 0.023 0.099 0.131 2 0.755 0.012 0.155 0.168

22 0.089 0.04 0.292 -0.043 2 0.512 1.066 2.776 0.167

23 0.085 0.036 0.059 -0.016 0 0.353 0.005 0.294 0.167

24 0.097 0.026 0.047 -0.007 0 0.461 0 0.12 0.163

25 0.106 0.026 0.044 -0.032 1 0.484 0.042 1.156 0.162

26 0.088 0.025 0.048 -0.032 1 0.46 0.062 0.529 0.162

27 0.082 0.027 0.06 -0.032 1 0.373 1.486 4.305 0.162

28 0.1 0.029 0.071 -0.03 1 0.393 0.007 0.227 0.167

29 0.09 0.048 0.101 -0.03 1 0.319 0.001 0.177 0.167

30a 0.102 0.032 0.103 -0.03 1 0.51 0.093 1.285 0.167

31a 0.15 0.028 0.054 -0.007 0 0.418 0 0 0.163

32 0.071 0.016 0.07 -0.039 0 0.417 0.733 0.149 0.168

33 0.091 0.027 0.087 -0.039 0 0.384 0.01 0.185 0.168

34 0.055 0.039 0.088 -0.026 0 0.35 1.315 1.262 0.18

35 0.1 0.035 0.083 -0.06 0 0.301 0 0.036 0.171

36 0.056 0.027 0.118 -0.024 0 0.479 0.933 3.508 0.167

37 0.069 0.019 0.074 0.001 0 0.408 2.171 1.298 0.174

38a 0.201 0.029 0.066 -0.032 1 0.603 0.012 0.166 0.156

39a 0.096 0.022 0.054 -0.032 1 0.605 1.923 5.238 0.156

40 0.055 0.02 0.062 -0.032 1 0.614 1.961 2.784 0.169

41 0.281 0.02 0.06 -0.011 1 0.629 0.022 0.2 0.153

42 0.121 0.02 0.054 -0.011 1 0.633 1.357 1.623 0.153

43 0.046 0.017 0.062 -0.011 1 0.595 2.807 2.718 0.153

44 0.051 0.019 0.062 -0.001 1 0.457 1.918 3.153 0.155

45 0.054 0.018 0.061 -0.021 1 0.479 2.746 3.903 0.16

46 0.108 0.017 0.055 -0.023 0 0.496 1.879 2.358 0.154

Table 3. The descriptor values were used in model construction.
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Table 5. Details of name of the descriptors were used in model construction.
Descriptors Chemical meanings

P2v 2nd component shape directional weighted by atomic van der 
Waals volumes

R7e+ R maximal autocorrelation of lag 7/weighted by atomic Sanderson 
electronegativities

R2m+ R maximal autocorrelation of lag 2/weighted by atomic masses

MATS1e Moran autocorrelation lag 1 / weighted by atomic Sanderson 
electronegativities

C-026 R--CX--R Atom-centred fragments

Mor28m 3D-MoRSE - signal 28/weighted by atomic masses

RDF125m Radial Distribution Function - 12.5/weighted by atomic masses

RDF115m Radial Distribution Function- 11.5/weighted by atomic masses

G2e 2st component symmetry directional WHIM index/weighted by 
atomic Sanderson electronegativities

Table 4. Correlation coefficient matrix of the selected descriptors by SW-MLR.
P2v R7e+ R2m+ MATS1e C-026 Mor28m RDF125m RDF115m G2e

P2v 1 -0.13 0.03 0.15 -0.22 -0.05 -0.40 -0.40 0.44

R7e+ 1 0.20 0.04 0.09 -0.36 -0.39 -0.33 0.20

R2m+ 1 -0.14 0.35 0.09 -0.15 -0.05 0.24

MATS1e 1 -0.26 0.06 -0.08 -0.12 0.21

C-026 1 0.31 0.21 0.26 -0.31

Mor28m 1 0.35 0.20 -0.41

RDF125m 1 0.65 -0.41

RDF115m 1 -0.50

G2e 1

47 0.083 0.015 0.046 -0.015 1 0.546 5.444 1.837 0.157

48 0.054 0.021 0.099 0.03 2 0.62 3.1 2.297 0.154

49 0.067 0.024 0.08 0.055 2 0.69 3.857 6.299 0.161

50 0.108 0.021 0.075 -0.023 1 0.556 3.959 2.302 0.165

51a 0.08 0.021 0.073 0.006 1 0.328 1.961 6.449 0.153

52 0.09 0.021 0.071 -0.013 1 0.175 1.141 4.81 0.157

53 0.102 0.023 0.079 -0.017 1 0.16 0.675 2.242 0.158
 a test set

Table 3. continue

are bonded. Carbon atoms are classified by their 
hybridization state and depending on whether 
their neighbors are carbon or heteroatoms. C-026 
is defined as R--CX--R Atom-centered fragments 
which R represents any group linked through 
carbon; X represents any electronegative atom 
(O, N, S, P, Se, halogens) and -- represents an 
aromatic bond as in benzene. C-026 has negative 
effect on pIC50. 

In summary, it is concluded that atomic 
masses, atomic Sanderson electronegativities, 
atomic van der Waals volumes and atom-
centered fragments play the main roles in the 
caspase-3 inhibitory activity of the compounds. 
Figure 3 shows that R7e  +, MATS1e and G2e 
mean effects have negative and positive signs, 
respectively. The R7e +, MATS1e mean effects 
values are higher than that of G2e, which 
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indicates that pIC50 is inversely related to atomic 
Sanderson electronegativities. It is also obvious 
that atomic masses mean effect on pIC50 is 
positive, because Mor28m, RDF115m mean 
effects values are higher than that of R2m + and 
RDF125m.

Conclusion

In this study, SW-MLR was used to develop 
linear QSAR model for prediction of caspase-3 
inhibitory activity of 1,2-  benzisothiazol-3-
one derivatives. The built model displayed 
good correlations between the structure and 
activity of the studied compounds. The model 
was validated using LOO cross-validation and 
external test set. The built model has a good self-
and external-predictive power. Based on QSAR 
model results, electronegativity, the atomic 
masses, the atomic van der Waals volumes and 
R--CX--R Atom-centered fragments were found 
to be important factors controlling the caspase-3 
inhibitory activity.
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