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Abstract

Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn 
wound infections. Different studies have shown that entrapment of plant-derived compounds 
into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the 
bioactive extract from the known plant Silybum marianum L. The objective of this study was 
to evaluate efficacy of silymarin in free and nanoliposomal forms against isolated methicillin-
resistant Staphylococcus aureus (MRSA) strain. Silymarin-loaded nanoliposomes were 
prepared by extrusion method. The minimum inhibitory concentrations (MICs) of silymarin 
in free and nanoliposomal forms against MRSA were determined by broth dilution method. 
The killing rate of free and nanoliposomal forms of silymarin were analyzed. Ultimately, in-
vivo therapeutic efficacy of nanoliposomes in burned mice infected by isolated MRSA was 
examined. The MICs of free and nanoliposomal forms of silymarin against isolated strain were 
500 and 125 mg/L, respectively. The killing rate of silymarin-loaded nanoliposomes was higher 
than those of free silymarin. Topically treatment by silymarin in free and nanoliposomal forms 
resulted in almost 20 and 100% survival rates, respectively. The results suggest that silymarin-
loaded nanoliposomes may provide a basis for future treatment of MRSA infections.
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Introduction

Staphylococcus aureus is an opportunistic 
bacterial pathogen causing skin infections in 
hospitals, especially burn units (1). Since S. 
aureus can rapidly disseminated from the burn 
wound sites into organs via the blood stream 
the clinical outcome in these patients can lead to 
sepsis which is often fatal (2). The major problem 
associated with Staphylococcus infection is 
resistant to penicillin, methicillin or other 
conventional antibiotics (1). Therefore, there is 

the compelling need to develop novel agents and 
possible strategies to overcome this resistance 
(3). Silymarin, a flavonolignan from ‹milk thistle› 
(Silybum marianum) plant is composed mainly of 
six lignans including silychristin (SC), silydianin 
(SD), silybin A(SBA), silybin B (SBB), isosilybin 
A (ISBA), and isosilybin B (ISBB) and, possesses 
a range of biological and medical properties, 
including antioxidant, anti-cancer, anti-obesity, 
antiviral and antibacterial activities (4-6).

 Liposomes are spherical and colloidal vesicles 
can be used as a vehicle to drug delivery (7). These 
vehicles are composed of natural phospholipids, 
and may also contain other lipids such as cholesterol 
(8-11). It seems, liposome-entrapped antibiotics 
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under N2 flow and vacuum at 30 ˚C. The dried 
lipids were dispersed by agitation in silymarin 
solution and sonicated at 4 ˚C in ultrasonic 
bath (Braun-sonic 2000, Burlingame, USA). At 
finally, silymarin-loaded nanoliposomes were 
obtained by extruding of respective suspension 
using a polycarbonate membrane filter 100 nm-
sized pores for 12 times and then for separation 
of excess free silymarin and larger lipid 
aggregation by ultracentrifugation (100000 g for 
30 min). Control nanoliposomes were prepared 
similarly, but PBS (pH 7.4) was used instead of 
the silymarin solution.

Determination of encapsulation efficacy
The content of silymarin in prepared 

nanoliposomes was determined by HPLC as 
previously described (17), following dissolution 
in 0.1% Triton X-100. To determination of 
silymarin, the 20 µL of nanoliposomal lysate 
was injected into the HPLC column. In the 
HPLC analysis, a C18 column (4 mm × 150 mm, 
5 µm, Waters Co., Milford, USA) was used. 
The mobile phase was phosphoric acid (85%): 
methanol: water (0.5:46:64, v:v) at a flow rate 
of 1 mL/min. The detection was done at 288 nm. 
Each analysis cycle required 20 min. Silymarin 
corresponds to the sum of peak areas of SC, 
SD, SBA, SBB, ISBA and ISBA concentrations. 
Then, the encapsulation efficiency defined                         
as % encapsulation = (CI/CT) × 100, where CI – 
silymarin in nanoliposome, CT – total silymarin 
in the nanoliposome preparation, was used in 
calculation.

Particle size, zeta-potential and polydispersity 
index determination

Mean particle size, polydispersity index and 
zeta-potential of nanoliposomes was evaluated 
by Malvern zetasizer (Malvern instrument, 
Worcestershire, UK) apparatus, as described 
previously (18).

Antimicrobial susceptibility testing
The MICs of free and silymarin-loaded 

nanoliposomes for isolated MRSA strain were 

by increasing of bacterial membrane penetration, 
could reduce bacterial resistance (12, 13). Later 
studies demonstrated that encapsulation of plant-
derived compound into liposomes markedly alters 
their pharmacokinetics, increasing half-lives and 
effectiveness (14, 15). Some of these derived such 
as epi-gallocatechin gallate (EGCG) and cyanidin 
have more antibacterial efficacy in liposomal 
form (12, 13). These efficacies, according to 
the literature, is related to type of plant-derived 
compound and interaction between their and 
liposomal membrane lipids and therefore have 
a major impact on therapeutic success (14, 15). 
The anti-MRSA effectiveness of silymarin-loaded 
nanoliposomes yet was not studied. The objective 
of this study was to prepare the silymarin-loaded 
nanoliposomes and evaluate its in-vitro and in-
vivo antibacterial activity against isolated MRSA 
strain. 

Experimental

Materials
Chemicals purchased from Sigma-Aldrich 

Chemical Company (St. Louis, USA) were 
silymarin, cholesterol and egg lecithin. Mueller-
Hinton broth, dioxane, soybean casein digest 
agar (SCDA), chloroform, methanol was 
purchased from Merck (Darmstadt, Germany).

Microorganism
MRSA strain was isolated from clinical 

samples at Golestan Hospital (Ahvaz, Iran) 
and identified by using the reported method 
including tube coagulase test, slide coagulase 
test, latex agglutination test, Dnase and heat-
stable nuclease tests, commercial biochemical 
tests, antimicrobial susceptibility test and PCR 
amplification and sequencing tests for some genes 
such as mecA (3, 16). This strain was inoculated 
onto blood agar plates and then incubated at 37 
˚C for 24 h and used for experimentation.

Preparation of nanoliposomes
Silymarin-loaded nanoliposomes were 

prepared using the method described previously 
(13). Briefly, the egg lecithin and cholesterol at the 
appropriate molar ratio (Table 1) were dissolved 
in chloroform and dried to a lipid film with a 
rotary evaporator (Brinkman, Toronto, Canada) 

Lipids Molar ratio of lipids (µmol/mL)

Egg lecithin:Cholestrol 6:1

Table 1. Lipid composition of silymarin-loaded nanoliposomes.
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determined by the broth dilution technique 
as recommended by Clinical and Laboratory 
Standards Institute (CLSI) (19). Bacterial cell 
suspensions (~ 5×105 cells/mL) were diluted in 
Mueller-Hinton broth and dispensed (100 μL) 
into a microtiter tray containing serial two-fold 
dilutions of silymarin and then incubated for 24 h 
at 37 ºC. The MIC was the lowest concentration 
of silymarin in free and nanoliposomal form that 
prevented visible bacterial growth and expressed 
in µg/mL. 

Time-kill studies
Time kill studies were preformed according 

to the method described previously (20). Briefly, 
100 µL of MRSA suspension were resuspended 
in 10 mL of Mueller-Hinton broth and then 
incubated overnight at 37 °C, and adjusted to 
match the 0.5 McFarland turbidity. Subsequently, 
100 µL of this standardized inoculums were 
added to separate culture tubes containing 1 
mL of Mueller-Hinton broth with 1 mL free and 
nanoliposomal silymarin solutions at 1, 2 and 4 
times the MIC and then incubated at 37 °C. The 
colony counts were performed at 0, 2, 4, 6, 8, 12 
and 18 h and data were expressed as log colony 
forming unit per milliliter (CFU/mL).

In-vivo study
In-vivo therapeutic efficacy of silymarin-

loaded nanoliposomes was tested by a described 
method (21), with some modification. In brief, 
forty male BALB/c mice (20-22 g) obtained 
from the National Institute of Pasture, Iran. 
Mice were handled according with the national 
guidelines of the laboratory animal and housed 
in separate cages and received water and food 
ad libitum (22). Animal care and protocols were 
performed and approved by the Institutional 
Animals Ethics Committee of Borujerd Branch, 
Islamic Azad University (Number: 202). After 
anesthetized with ketamine-xylazine mixture 
(150 mg/Kg, given intramuscularly), the mice 
back’s were shaved and a brass bar (10×10×100 
mm) was heated in boiling water for 18 min and 
then applied on the shaved back of the mice for 
50 seconds to burn induction. Then, 50 μL of 
the bacterial inoculums (containing 1×109 CFU 
of total bacteria) was applied subcutaneously 
into the burned sites on the animal᾽s back. The 

burned mice were divided into 4 groups. 
Prior to the treatment starting, the gel 

forms of the silymarin-loaded nanoliposomes, 
free silymarin, empty nanoliposomes and 
physiological saline were prepared according to 
the previously described method (23).

 All groups were treated topically as 
follows: Group 1 received silymarin-loaded 
nanoliposomes gel (150 mg/Kg/12h); groups 
2 received free silymarin gel (150 mg/Kg/12); 
group 3 received empty nanoliposomes gel (150 
mg/Kg/12h), and group 4 received physiological 
saline gel (1 mL/Kg/12h); for 12 days starting 
from the 4rd day post infection. Three days after 
the last dose the surviving mice were anesthetized 
and sacrificed by cervical dislocation. Then, the 
skin, liver and spleen of animals were removed 
under sterile conditions and homogenized for 5 
min in PBS (pH 7.4, 2 mL/g). The homogenates 
were then serially diluted and plated for growth 
in SCDA. At finally, the inoculated plates were 
incubated at 35 ºC for 24 h and the colony 
forming unit (CFU) was counted.

Data analysis
 All data were expressed as means ± SD. 

Statistical comparisons of killing rate study were 
performed by paired Student’s t-test, and p-value 
of less than 0.05 was considered significant. The 
data of survival rates were determined using 
ANOVA test.

Results and Discussion 

Recently, the use of plant-derived 
compounds to eliminate of MRSA has been 
widely investigated (24, 25). However, the main 
problems associated with application of some of 
these components are low water solubility and 
low bioavailability (12, 24). To overcome of 
these problems, the investigators were focused 
on entrapment of plant-derived compounds in 
drug carriers such as liposomes (13). Silymarin 
is a mixture of flavonolignans from the medical 
plant Silybum marianum (17).

In this report, we evaluated the potential of 
incorporation of silymarin into nanoliposomes. 
Table 2 shows the zeta-potential, mean particle 
size, and polydispersity index of empty 
and silymarin-loaded nanoliposomes. Size 
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homogeneity of empty and loaded nanoliposomes 
suggested that silymarin was entrapped into lipid 
bilayer, according to the previous studies (12, 
15). Zeta-potential of nanoparticles revealed 
that prepared silymarin-loaded nanoliposomes 
have appropriate stability in aqueous dispersion 
(26). The results showed that silymarin can be 
encapsulated into nanoliposomes with high 
entrapment efficacy (83.00% ±0.17). According 
to the previous studies, this phenomenon was 
probably due to the positive interaction between 
liposomal membrane lipids and loaded drugs 
that could be increase the encapsulation efficiacy 
of prepared liposomes (10, 11). It has been 
shown that EGCG with negative charge has high 
encapsulation efficacy in cationic liposomes 
(13). Therefore, it seems the weak forces such as 
the various known types of weak links between 
silymarin and liposomal lipids are effective 
factors in silymarin encapsulation.

The MIC values of silymarin in either free 
or nanoliposomal form for isolated MRSA were 
shown in Table 3. The MIC of silymarin-loaded 
nanoliposomes was lower than those of free form, 
respectively. Our results suggest that entrapped 
of silymarin in nanoliposomal form enhanced 
the anti-MRSA activity of its compared to free 

silymarin. The data from this study is according 
to previous report, indicating the encapsulated of 
oleic acid (a fatty acid found naturally in many 
plant) in liposomes could eliminate MRSA 
as well (25). Several hypotheses, including 
non-sensitivity of plant-derived compounds to 
bacterial enzymes and increased penetration of 
nanoliposomes into bacteria cells may explain 
the effectiveness of these formulations (25, 27).

The killing curves of silymarin in free and 
encapsulated form at 1, 2 and 4 times the MICs 
were shown in Figure 2. In all conditions, 
silymarin-loaded nanoliposomes were more 
effective on reduced bacterial counts compared 
to free silymarin (Figure 2). At once of MIC 
only silymarin encapsulated in nanoliposomes 
could eliminate of MRSA after 18 h (Figure 
2a). At twice of MIC, the encapsulated and 
free silymarin could eradicate the bacteria after 
8 and 18 h, respectively (Figure 2b). At four 
times of MIC, silymarin-loaded nanoliposomes 
could eliminate the bacteria after 4 h (Figure 
2c). Our data are accordance with previous 
study, which reported that significantly higher 
killing rates of MRSA with liposomal EGCG 
or oleic acid were occurred (13, 25). So, we 
hypothesized that interaction between the outer 

Figure 1. Chromatogram of silymarin analysis.

Formulations Mean particle size±SD  (nm)
(n=10)      

Zeta-potential±SD  (mV)
(n=10)    

 Polydispersity index±SD
(n=10)    

Empty nanoliposomes 93.20 ±0.11 -1.70±0.52 0.31±0.07

Silymarin-loaded nanoliposomes 95.50 ±0.25 -1.40 ±0.31 0.31±0.02

Table 2. Particle size, zeta-potential and polydispersity index of empty and silymarin-loaded nanoliposomes.
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Minimum inhibitory concentration (mg/L)

Drugs  Free silymarin Silymarin-loaded nanoliposomes

Microorganism Isolated MRSA strain 500 125

Table 3. In-vitro antimicrobial activities of free and nanoliposomal forms of silymarin against isolated MRSA.

Figure 2. Killing curves for isolated strain S. aureus was exposed to various concentrations (a=1×MIC, b=2×MIC and c=4×MIC) 
of silymarin in free and nanoliposomal forms. *Significant difference between killing rate of empty nanoliposomes versus free and 
silymarin-loaded nanoliposomes (p<0.01), **Significant difference between killing rate of silymarin-loaded nanoliposomes versus free 
silymarin (p<0.05), ***Significant difference between killing rate of silymarin-loaded nanoliposomes versus free silymarin (p<0.01), 
+Significant difference between killing rate of free silymarin and empty nanoliposomes (p<0.05). ++Significant difference between 
killing rate of free silymarin and empty nanoliposomes (p<0.01).
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silymarin-loaded nanoliposomes indicated that 
this formulation has strong protective functions 
against MRSA and would be a good choice for 
treatment of patients with MRSA infections.
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