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Abstract

Streptokinase is a potent fibrinolytic agent which is widely used in treatment of deep vein 
thrombosis (DVT), pulmonary embolism (PE) and acute myocardial infarction (MI). Major 
limitation of this enzyme is its short biological half-life in the blood stream. Our previous 
report showed that complexing streptokinase with chitosan could be a solution to overcome this 
limitation. The aim of this research was to establish an artificial neural networks (ANNs) model 
for identifying main factors influencing the loading efficiency of streptokinase, as an essential 
parameter determining efficacy of the enzyme. Three variables, namely, chitosan concentration, 
buffer pH and enzyme concentration were considered as input values and the loading efficiency 
was used as output. Subsequently, the experimental data were modeled and the model was 
validated against a set of unseen data. The developed model indicated chitosan concentration as 
probably the most important factor, having reverse effect on the loading efficiency. 
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Introduction

Immobilization of enzymes have been 
performed by different methods which are 
generally classified into two categories: 
immobilizations using weak interactions 
between support and enzyme (e.g. electrostatic 
interactions) and those that are based on binding of 
enzymes to a support by means of covalent bonds 
(1, 2). Several advantages have been reported for 
using weak interactions over covalent bindings. 

First, this technique is inexpensive and involves 
a mild and simple process. In addition, no pre-
treatment on enzyme or support is generally 
required, and consequently, the conformation 
of the protein is not strongly influenced by the 
process. Finally, the mentioned strategy avoids 
the use of reagents causing possible toxicities 
and other undesirable effects (1). 

Reviewing the literature shows that when 
using complexation between oppositely charged 
macromolecules, loading efficiency of the 
enzyme depends on many different factors. Xu 
and Du (3) produced various formulations of 
chitosan/TPP nanoparticles to deliver bovine 
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interactions in preparing streptokinase-loaded 
chitosan nanoparticles. 

In this study, hypothesizing that the half-life 
of the enzyme greatly depends on its loading 
efficiency (14, 15), parameters that potentially 
affect the loading efficiency of streptokinase 
on the chitosan have been investigated using 
artificial neural networks (ANNs). ANNs are 
usually used to model complex relationships 
between inputs and outputs or to find patterns 
in data, where standard statistical analyses 
often fail to work (16, 17), as commonly 
observed in nanotechnology experiments (18). 
In this work, from different variables affecting 
the streptokinase loading efficiency, three 
parameters, namely, chitosan concentration, 
buffer pH and enzyme concentration were 
picked to be analyzed and model their effects 
on the loading efficiency of streptokinase using 
ANNs.

Experimental

Materials and methods
Pure recombinant streptokinase was supplied 

by Pasteur institute of Iran (Tehran, Iran), 
chitosan (average molecular weight ~ 500kDa, 
DD~93%) was purchased from Easter Holding 
Group (China) and acetate buffer solution was 
obtained from Merck chemicals co. (Germany).

Preparation of streptokinase-loaded chitosan 
nanoparticles

27 samples having different chitosan and 
streptokinase concentrations (i.e. 0.1 to 1 mg/
mL and 0.1 to 0.4 mg/mL, respectively) were 
prepared in acetate buffer with pH values 
between 4.83 and 6.30, as detailed in Tables 1 
and 2. The method of preparation comprised 
of dropwise addition of streptokinase to 
the chitosan solution, followed by a 60 min 
stirring at 4 ˚C. The nanosuspension was 
then centrifuged 12000×g for 40 min at 4 ºC. 
Afterwards, the collected supernatant was 
utilized for calculating the enzyme entrapment 
efficiency by Bradford protein assay technique 
(13). The data were then employed to evaluate 
the impact of the variables on the loading 
efficiency of enzyme with regards to the model 
obtained from ANNs.

serum albumin (BSA). They examined the 
effects of factors such as molecular weight 
and deacetylation degree of chitosan, as well 
as concentration of chitosan and BSA. The 
first two factors showed a direct relation with 
encapsulation efficiency of BSA, while an 
increase in concentration of chitosan or BSA led 
to a decrease in loading efficiency. The increase in 
concentration of ammonium glycyrrhizinate and 
chitosan was shown to decrease the encapsulation 
efficiency (4). Zhang et al. (5) used water soluble 
chitosan/TPP nanoparticles as carrier for BSA 
and reported that the encapsulation efficiency 
decreased from 95 to 40% by increasing the BSA 
concentration from 0.1 to 2.0 mg/mL. Similarly, 
loading efficiency was reported to decrease from 
about 60% to 30% when BSA concentration 
increased in an alginate coated BSA-loaded 
chitosan system (6). This trend is however to 
some extent contradictory in the literature and 
does not appear to be generalisable. For instance, 
the encapsulation efficiency in a BSA-loaded 
chitosan-TPP system, increased from 38.7% to 
72.5% with an increase in BSA concentration 
from 0.25 to 1.5 mg/mL (7). A similar finding 
has been reported by Zhang et al. (8) where BSA 
was loaded into the chitosan nanoparticles. 

To summarize the above mentioned works, 
no one appears to be comprehensive; rather, in 
general, they have employed one-factor-at-a-
time approaches. This approach is commonly 
associated with difficulties such as incorrect 
estimates in the effects of independent factors, 
incomplete coverage of factor space as well as 
lack of systematic assessments for interactions 
between independent/dependent factors (9).

Streptokinase is highly immunogenic, thus, 
rapidly cleared from the plasma, ending-up in 
short biological half-life. To overcome this, 
various carriers such as polymers and liposomes 
have been used for encapsulating streptokinase in 
therapeutic applications (10-12). In our previous 
report, β-hemolytic extracellular enzyme 
streptokinase was loaded on chitosan and an 
improved biological half-life was obtained 
for the loaded enzyme (13). The streptokinase 
incorporated in chitosan nanoparticles was 
shown to remain stable in the body with a 
prolonged in-vivo half-life compared to naked 
enzyme, indicating the potential of electrostatic 
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Chitosan Concentration
(mg/mL) pH Enzyme Concentration

(mg/mL)
Loading Scale

(%) Predicted (%) Error (%)

0.50 5.73 0.10 33 27.9 -5.1
1.00 5.85 0.20 21 21.6 0.6

0.75 5.97 0.40 19 19.0 0.0

1.00 6.30 0.20 11 12.6 1.6

0.30 4.83 0.20 34 31.9 -2.1

0.65 5.22 0.10 27 38.2 11.2

0.33 5.30 0.10 48 44.9 -3.1

0.20 5.57 0.10 49 43.2 -5.8

0.16 5.65 0.10 45 47.6 2.6

0.25 5.80 0.10 25 33.1 8.1

0.20 5.90 0.10 59 53.9 -5.1

0.18 6.00 0.20 70 69.6 -0.4

0.45 5.10 0.10 49 38.1 -10.9

0.15 4.90 0.10 29 36.9 7.9

0.50 4.97 0.20 37 32.9 -4.1

0.10 4.90 0.30 43 43.9 0.9

0.70 5.10 0.20 35 33.5 -1.5

0.43 4.85 0.25 21 30.5 9.5

0.50 4.90 0.30 36 30.9 -5.1

0.31 5.22 0.20 52 43.9 -8.1*
0.85 6.20 0.10 15 13.2 -1.8*

Table 1. The training and tests data sets used in ANNs modelling.

* The last 2 data show the test data.

Chitosan Concentration
(Mg/mL) pH Enzyme Concentration

(Mg/mL)
Loading Scale

(%) Predicted (%) Error (%)

0.38 5.40 0.1 50 44.2 -5.8
1.00 6.12 0.3 14 13.4 -0.6

0.25 5.45 0.1 33 44.8 11.8

0.78 5.92 0.2 18 17.3 -0.7

0.75 4.88 0.1 25 27.6 2.6
0.50 5.46 0.1 42 42.3 0.3

Table 2. The validation (unseen) data sets used in ANNs modelling.

Artificial neural networks studies
Relations between inputs and the output were 

modelled using INForm v4.02 (Intelligensys, 
UK), as a commercial ANNs software. As 
mentioned above, three factors, namely, chitosan 
concentration (mg/mL), enzyme concentration 
(mg/mL) and buffer pH were considered as input 
variables and the output variable was loading 
efficiency of streptokinase (%). The network was 
trained using the data listed in Table 1 and the 

training parameters listed in Table 3. Subsequent 
to training procedure, the developed model was 
validated against the set of unseen data listed 
in Table 2. Afterwards, the response surfaces, 
generated from the model, were employed to 
obtain understanding about the rules governing 
the relations between the inputs and the output, 
as detailed previously (19, 20). As discussed 
above, the data were split into three sets: the 
training data set train the network and achieve 
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the relations between the inputs/output variables, 
the test data to prevent overtraining (see Table 1) 
and the unseen (validation) data to evaluate the 
predictability of the obtained model (see Table 
2). Further details of the modelling procedure 
have been given previously (21).

Results and Discussion

The design of proper nanocarriers for drug 
delivery purposes is a major area of research in 
nanomedicine. The most common carriers for 
drug delivery include polymeric ones where 
drugs are loaded onto biodegradable, non-toxic 
polymer-based supports. Our work consisted 
of loading streptokinase as an important and 
efficient fibrinolytic agent onto chitosan, a non-
toxic, biodegradable and economically ideal 
polymer through electrostatic interactions. 
ANNs were then used to optimize our previously 
proposed nano-system containing streptokinase 
(13). ANNs are based on a working brain with 
interconnection and arrangement of neurons 
in different layers to create networks, where 
learning results in network function (22). 
Compared with classic modeling techniques 
such as response surface methodology (RSM), 
ANNs have shown promising in terms of their 
estimation and prediction capabilities (23, 24). 
Additionally, ANNs have been proved to be able 
in dealing with nonlinear relations which are 
commonly observed in nano-based products, 
where statistical approaches normally fail to 
work, a second reason for using ANNs in this 
study (18).

The results showed a coefficient of 
determination (R2) of 0.85 for unseen data which 
represents a desirable predictive ANNs model. 
This model was then used to study the influence 
of the three different input variables on the 
streptokinase loading efficiency. To understand 

the effects of different factors on the output in 
an ANNs model, use of sensitivity analysis is the 
first choice someone can make. In this study, to 
investigate the relationships between inputs and 
output we used response surfaces, as detailed 
previously (21, 25). To summarize the method, 
this strategy examines the influence of two 
variables on the output through 3D graphs (i.e. 
response surfaces) generated by the software 
while the other variable(s) is fixed at low, 
medium and high values. 

To do so, we first examined the influence 
of chitosan concentration and pH on the level 
of streptokinase loading while the enzyme 
concentration is fixed at low, mid-range and high 
values. The results are shown in Figure 1. As can 
be seen, when chitosan concentration is medium 
or high (i.e. >~0.4 mg/mL), by increasing 
the chitosan concentration, a peak in loading 
efficiency is observed which represent optimum 
value of pH (~ 5.1). Stirring oppositely charged 
polyelectrolytes in a solution causes their self-
assembly due to the creation of strong but 
reversible electrostatic interactions. Many factors 
have been reported to affect the formation and 
stability of the polyelectrolyte complexes. Some 
examples include charge density and distribution 
on the polyelectrolytes, concentration and mixing 
ratio of the polymers, mixing order, molecular 
weight of the agents as well as the temperature 
and pH of the interaction environment (26-28). It 
is believed that cationic and anionic interaction 
sites are the main cause of streptokinase loading 
onto the chitosan. Therefore, at pH values 
between the isoelectric pH values of chitosan 
(i.e. ~6.0) and streptokinase (i.e. 4.7), the amino 
groups of chitosan are protonated and interact 
favorably with negatively charged carboxyl 
groups of streptokinase (2, 14, 29). Accordingly, 
at an optimum pH value (i.e. ~ 5.1, in this 
work), the most efficient interactions may be 

Network structure
No. of hidden layers 1

No. of nodes in hidden layer 3

Backpropagation type Incremental

Transfer function
Output Tanh

Hidden layer Symmetric Sigmoid

Table 3. The training parameters set with INForm v4.02.
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observed. Similarly, Alsarra et al. showed that 
when using electrostatic interactions between 
chitosan and TPP solution, pH and the ionic 
nature are of great importance in determining 
the loading efficiency. They also indicated that 
an optimum pH value is required to maximize 
the loading efficiency because of a proper ratio 
of the cationic and anionic interaction sites (14).

When chitosan concentration is low, 
the relation between pH value and loading 
efficiency follows a different pattern. Details 
show that herein, increase in pH would result in 
an increase in the loading efficiency. Apparently, 
the effect of streptokinase concentration on 
the loading efficiency masks the effect of pH, 
thus, variation in value of pH will not markedly 
affect the loading efficiency when the chitosan 
concentration is low (<~0.3 mg/mL). The reason 
for this finding (i.e. direct relation between pH 
value and loading efficiency) is complicated and 
not precisely clear. However, it may be explained 
as follows.

In the present work, as previously stated, 
since the preparation of nanoparticles was 
based on electrostatic interactions without any 
linker molecule, Polymer/enzyme charge ratio 
would be an important factor in the formation 
of nanoparticles. Streptokinase has a negative 
net charge when the solution pH is greater 
than 4.7. The protonated amino groups on 
the chitosan interact electrostatically with the 
negatively charged groups on the streptokinase. 
It is reasonable to assume that the alteration of 

Enzyme concentration (mg/mL)

High (0.35) Medium (0.25) Low (0.15)

Figure 1. 3D Plots of loading efficiency predicted by the ANNs model fixed at low, medium and high concentrations of the enzyme.

ionizable state of the streptokinase promotes 
its interaction with amino groups of chitosan 
and leads to the high loading efficiency when 
pH value goes up while chitosan concentration 
is fixed at a low value. For instance Gan and 
Wang (7) used prepared BSA-loaded chitosan-
TPP nanoparticles. They found that increase 
in mass ratio of chitosan to polyanion (TPP) 
leads to decrease in protein loading efficiency. 
This supports the idea that a smaller chitosan 
to TPP mass ratio is ideally appropriate to 
the protein loading during the formation of 
nanoparticles. One probable explanation is that 
a rise in the enzyme concentration will result 
in an intensified total negative charge carried 
by the long streptokinase molecules which 
consequently promotes electrostatic interactions 
between amino groups of chitosan and negatively 
charged streptokinase. Undoubtedly, further 
investigations are required for more in-depth 
clarifications about the underlying mechanism(s) 
and the conformational state of the chitosan/
protein molecules present in the nanoparticles.

On the other hand, from the details, the increase 
in the chitosan level, in general, has a reverse 
and profound effect on the loading efficiency. 
As a matter of fact, the raise in environment 
viscosity with more chitosan level could be a 
main reason to the reduction of entrapment. This 
trend has already been reported (4, 30). It is also 
clear that the effect of chitosan concentration 
is pH dependent: while at low pH values, this 
effect is not considerable, when moving towards 
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higher pH values, a substantial influence may be 
observed on the loading efficiency.

Figure 2 shows the effect of chitosan and 
enzyme concentration when the pH is fixed 
at low, medium and high values. It is obvious 
that in general, the decrease in the chitosan 
concentration leads to a considerable increase in 
the loading efficiency. As previously stated, the 
decrease in the concentration of the polymer in 
solution is major contributor to the decrease in 
solution viscosity. Less viscous chitosan solution 
results in more polymer chain mobility and less 
entanglement (20) which probably causes more 
efficient interactions between oppositely charged 
molecules. Additionally, from the Figure 2, the 
enzyme concentration does not appear to impose 
important influences on the loading efficiency.

The graphs in Figure 3 show the influence of 
enzyme concentration and pH effect on loading 
efficiency when chitosan concentration was 

fixed at low, medium and high concentrations. 
The results confirm the above findings:

•	 The increase in chitosan concentration in 
general results in decrease in loading efficiency.

•	 in respect to loading efficiency, there 
is an optimum pH (~ 5.1) when chitosan 
concentration is high or medium (i.e. > ~0.4 mg/
mL)

•	 The increase in pH results in increase in 
loading efficiency when chitosan concentration 
is low.

•	 The change in enzyme concentration 
does not make considerable variations in the 
loading efficiency.

Conclusion

In this study, we used ANNs to produce 
a model for examining the effect of chitosan 
concentration (mg/mL), buffer pH and 

Buffer pH

High (6.06) Medium (5.57) Low (5.08)

Figure 2. 3D Plots of loading efficiency predicted by the ANNs model fixed at low, medium and high values of the buffer pH.

Chitosan concentration (mg/ml)

High (0.85) Medium (0.55) Low (0.25)

Figure 3. 3D Plots of loading efficiency predicted by the ANNs model fixed at low, medium and high levels of the buffer pH.
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enzyme concentration (mg/mL) on the loading 
efficiency (%) of streptokinase and formation 
of streptokinase-loaded chitosan nanoparticles. 
The 3D graphs used in this study showed that 
all the three factors evaluated have some effect 
on the enzyme loading efficiency. The level 
of enzyme did not appear to be dominant. On 
the contrary, high values of chitosan generally 
lead to a decrease in loading efficiency and in 
this case, pH could play an important role in 
the streptokinase loading efficiency, showing 
an optimum value ~5.1 for obtaining maximum 
efficiency. When the chitosan concentration 
reaches its minimum values, the loading 
efficiency is highest particularly when the pH is 
high too. 
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