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Abstract

In this study, a new series of 5-substituted 1-benzyl-2-(methylsulfonyl)-1-H-imidazole 
with atypical structure-activity relationship was designed, synthesized, and biological 
evaluated as selective cyclooxygenase-2 inhibitors. Docking studies revealed that although 
the pharmacophoric substitute of the compound 5b, methylsulfonyl group, has been directly 
attached to the central ring, it is in the same direction of the sulfonamide group of Celecoxib, 
a known selective cyclooxygenase-2 inhibitor. Therefore effective hydrogen binding with 
Arg513 is established. Also, additional hydrogen binding could form between NH of 
anilino moiety of the 5b and Arg120. All of the compounds had selective inhibitory activity 
against cyclooxygenase-2 in micromolar concentrations comparable with the reference, 
Celecoxibe. Finally, compound 5b with the selectivity index 115 and IC50 of 0.71 µM against 
cyclooxygenase-2 was the most potent one.
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Introduction

Cyclooxygenase (COX) is an endogenous 
enzyme that plays a central role in biosynthesis 
of the important biological mediators, 
prostaglandins, from Arachidonic acid (1). 
The two most known isoforms of COX (COX-
1 and COX-2) share about 60% amino acid 
sequence but are encoded by different genes 
and have different biological roles (2, 3). 
The constitutive form, COX-1, is expressed 
in normal physiologic condition to maintain 
homeostasis, gastric, renal blood flow, and 
platelet aggregation while the inducible form, 
COX-2, is expressed in pain and inflammatory 

conditions (4-6). Classic nonsteroidal anti-
inflammatory drugs (NSAIDs) block both 
COX-1 and COX-2 non selectively and more 
tightly to COX-1 (7, 8) leading to the lack of the 
prostaglandins with normal physiological roles 
specially in long term use and consequently have 
several certain renal (9), gastrointestinal (10) 
and cardiovascular side effects (4, 11 and 12). 
These side effects prompted the development 
of selective COX-2 inhibitors with comparable 
efficacy and improved gastrointestinal safety 
(13, 14). The involvement of COX-2 in cancer 
development and neurodegenerative disease 
was previously evidenced. Therefore, selective 
COX-2 inhibitors are promising in the treatment 
of malignant and neurodegenerative disorders, 
such as adenocarcinoma, Alzheimer’s, and 
Parkinson’s disease (15-19). However, the 
cardiovascular risks such as myocardial infraction 



and thrombosis related to selective inhibition of 
COX-2 due to the depression of the biosynthesis 
of atheroprotective prostaglandin (PGI2) and 
not the pro-aggregatory and vasoconstrictor 
mediator thromboxane A2 derived from COX-1 
(20) leaded to a withdrawal of Rofecoxib and 
Valdecoxib from the market (21, 22). Thus, 
the challenge persists to explore and evaluate 
selective COX-2 inhibitors with a mild tendency 
to COX-1 in order to reduce the cardiovascular 
side effects and enhance the safety profile along 
with addressing the unmet medical needs (22, 
23). The majority of selective COX-2 inhibitors 
are diarylheterocycles with vicinal substitution 
attached to a mainly mono or bicyclic central ring 
(24-26). According to extent structure activity 
relationship (SAR) studies, the optimum COX-2 
selectivity will be provided with a SO2NH2 
or a SO2Me substituent at the para position of 
one of the phenyl rings (27-29). In continuance 
of our previous studies on five member 
heterocycle rings (30-37), in this study, a new 
structure-activity relationship is presented with 
an imidazole cycle as the central heterocyclic 
ring and unlike classic COX-2 inhibitors the 
pharmacophore of methylsulfonyl is attached to 
the central core (Figure 1). 

The docking study and biological evaluation 
were performed to clear the orientation of the 
synthesized compounds in the COX-2 active 
site and inhibitory activity of all compounds 
respectively.

Experimental

Molecular Modeling Studies
Docking simulation was performed to predict 

interaction of compounds (5a–f) with COX-2 
binding site. The high resolution crystal structure 
of COX with Celecoxib as a cognate ligand was 
retrieved from RCSB Protein Data Bank (PDB 
code: 6COX). The structures of the compounds 
were investigated using the Lamarckian genetic 
algorithm search method implemented in 
AutoDock 4.0 software. The receptor was kept 
rigid and ligands were allowed to be flexible. 
Polar hydrogens and Kollman united atom 
partial charges were added to the individual 
protein atoms. The HyperChem 8 software was 
used for energy minimization of each structure 
under MM+ method and AutoDockTools 4.0 
version 1.5.6rc3 for conversion of file formats to 
pdbqt. A docking grid box was built with 40, 40, 
and 40 points in 24.4370, 22.8660, and 48.5210 
directions and the number of generations and 
maximum number of energy evaluations was set 
to 100 and 2,700,000, respectively. The docking 
results were clustered with a root mean square 
deviation (RMSD) of 0.5 Å and evaluated by 
Pymol software (38-40).

Chemistry 
All the chemicals and solvents were 

purchased from Merck or Aldrich Company 
and were used without further purification. Thin 

Figure 1. Chemical structures of the designed compounds compared with Celecoxibe, a known COX-2 inhibitor.
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layer chromatography (TLC) was performed 
on commercially available Merck precoated 
plates (silica gel 60 F254, 0.25 mm). Melting 
points were obtained using the Electrothermal 
9100 apparatus and are uncorrected. Infrared 
spectra were acquired on a Perkin Elmer 843 
spectrometer. A Bruker FT-400 MHz instrument 
(Bruker Biosciences, USA) was applied to obtain 
1HNMR spectra; DMSO-d6 was used as solvents. 
LC Mass spectra and elemental analysis were 
achieved by HPLC Agilent system and Costech 
(Italy) elemental analyzer respectively.

(1-benzyl-2-mercapto-1H-imidazol-5-yl)
methanol (1)

Potassium thiocyanate (5.44 g, 55.79 mmol) 
, dihydroxyacetone (3.67 g, 40.74 mmol) and 
benzylamine (4 mL, 37.33 mmol) were refluxed 
at 55 °C for 18 h in 136 mL of water and glacial 
acetic acid (7/93). The mixture was alkalinized 
with NaOH 10% and extracted with chloroform. 
The resulting precipitates were formed after acidifying of 
the aqueous phase with hydrochloric acid and recrystallized 
from ethanol 96% to give 6.66 g (54.1%) of 1. mp: 127 
°C; IR: (KBr) ν (cm-1) 2739-3200 (O-H). 1HNMR 
(DMSO, 400 MHz) δppm: 4.14 (s, 2H, CH2OH), 
5.29 (s, 1H, OH), 5.32 (s, 2H, benzyl), 6.87 (s, 
1H, imidazole), 7.22 (d, J = 7.2 Hz, 2H, H2, 
H6-benzyl), 7.26 (t, J = 7.2 Hz, 1H, H4-benzyl), 
7.32 (t, J = 7.2 Hz, 2H, H3, H5-benzyl), 12.04 (s, 
1H, SH). LC-MS [M+1]+: m/z 221, [M+23]+: 
m/z 243, [M+39]+: m/z 259. Anal. Calcd for 
C11H12N2OS: C, 59.97; H, 5.49; N, 12.72. Found: 
C, 59.85; H, 5.51; N, 12.75. 

(1-benzyl-2-(methylthio)-1H-imidazol-5-yl)
methanol (2)

A solution of 1.1 g (5 mmol) intermediate 1 
and 1.1 mL (5 mmol) sodium iodide in presence 
of 10 mL of NaOH 10% in ethanol was stirred at 
room temperature for one hour. The solvent was 
evaporated and the remnant was acidified and 
extracted with chloroform. The Aqueous phase 
was alkalinized with NaOH 10% to participate 0.81 
g (69%) of 2. mp: 106 °C; IR: (KBr) ν (cm-1) 2850-
3200 (O-H). 1HNMR (DMSO,400 MHz) δppm: 
2.44 (s, 3H, SCH3), 4.33 (s, 2H, CH2OH), 5.21 
(s, 3H, OH, 2H benzyl), 6.93 (s, 1H, imidazole), 
7.07 (d, J = 7.2 Hz, 2H, H2, H6-benzyl), 7.26 (t, 
J = 7.2 Hz, 1H, H4-benzyl), 7.34 (t, J = 7.2 Hz, 

2H, H3, H5-benzyl). LC-MS [M+1]+: m/z 235, 
[M+23]+: m/z 257. Anal. Calcd for C12H14N2OS: 
C, 61.51; H, 6.02; N, 11.96. Found: C, 61.75; H, 
5.96; N, 11.93.

(1-benzyl-2-(methylsulfonyl)-1H-imidazol-5-
yl)methanol (3)

Compound 2 (1 g, 4.3 mmol) in THF was 
added to a solution of Oxon (6.22 g, 51.3 
mmol) in water. The mixture was stirred at room 
temperature overnight and after evaporating 
THF, 0.62 g (54.1%) of compound 3 was 
participated. mp: 127 °C; IR: (KBr) ν (cm-1) 2848-3538 
(O-H), 1144, 1327 (SO2). 

1HNMR (DMSO,400 
MHz) δppm: 3.28 (s, 3H, SO2CH3), 4.35 (s, 2H, 
CH2OH), 5.47 (s, 1H, OH), 5.62 (s, 2H, benzyl), 
7.10 (d, J = 7.2 Hz, 2H, H2, H6-benzyl), 7.30 (m, 
2H, imidazole, H4-benzyl), 7.36 (t, J = 7.2 Hz, 
2H, H3, H5-benzyl). LC-MS [M+1]+: m/z 267, 
[M+23]+: m/z 289. Anal. Calcd for C12H14N2O3S: 
C, 54.12; H, 5.30; N, 10.52. Found: C, 53.96; H, 
5.34; N, 10.60.

1-benzyl-5-(chloromethyl)-2-(methylsulfonyl)-
1H-imidazole (4)

Compound 3 (400 mg, 1.5 mmol) was 
refluxed in 2 mL (16.8 mmol) of thionyl chloride 
for 4 h. After evaporating thionyl chloride, 0.21 
g of compound 4 (57%) was obtained. mp: 127 
°C; IR: (KBr) ν (cm-1) 1154, 1347 (SO2). 

1HNMR 
(DMSO,400 MHz) δppm: 3.33 (s, 3H, SO2CH3), 
4.78 (s, 2H, CH2OH), 5.66 (s, 2H, benzyl), 7.10 
(d, J = 7.2 Hz, 2H, H2, H6-benzyl), 7.31 (t, J 
= 7.2 Hz, 1H, H4-benzyl,), 7.34 (t, J = 7.2 Hz, 
2H, H3, H5-benzyl), 7.40 (s, 1H, imidazole). 
LC-MS [M+1]+: m/z 285, [M+23]+: m/z 307. 
Anal. Calcd for C12H13ClN2O2S: C, 50.61; H, 
4.60; N, 9.84. Found: C, 50.74; H, 4.56; N, 9.79.

General procedure for the synthesis of the 
compounds 5a-5e

A solution of compound 4 (1.5 mmol) and 
proper amine (1.5 mmol) in 5 mL ACN, in 
presence of catalytic amount of potassium iodide 
and potassium carbonate was reflux overnight. 
The solvent was evaporated and the residue was 
purified with column chromatography to give final 
products 5a-5e.

N-((1-benzyl-2-(methylsulfonyl)-1H-imidazol-
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5-yl)methyl)benzamine (5a)
Yield: 65%, mp: 114-115°C; IR: (KBr) ν (cm-1): 3317 

(N-H), 1127, 1308 (SO2). 
1HNMR (DMSO,400 

MHz) δppm: 3.32 (s, 3H, SO2CH3), 4.11 (d, J = 
5.6 Hz, 2H, CH2-NH), 5.66 (s, 2H, benzyl), 6.10 
(t, J = 5.6 Hz, 1H, NH), 6.50 (d, J = 7.2 Hz, 2H, H2, 
H6-phenyl), 6.56 (t, J = 7.2 Hz, 1H, H4-phenyl), 
7.04 (t, J = 7.2 Hz, 2H, H3, H5-phenyl), 7.11 (m, 
3H, imidazole, H2, H6-benzyl), 7.22 (t, J = 7.2 
Hz, 1H, H4-benzyl), 7.40 (t, J = 7.2 Hz, 2H, H3, 
H5-benzyl). LC-MS [M+1]+: m/z 342, [M+23]+: 
m/z 364. Anal. Calcd for C18H19N3O2S: C, 63.32; 
H, 5.61; N, 12.31. Found: C, 64.00; H, 5.56; N, 
12.25.

N-((1-benzyl-2-(methylsul fonyl)-1H-
imidazol-5-yl)methyl)-4-methoxybenzamine (5b) 

Yield: 10%, mp: 152 °C; IR: (KBr) ν (cm-1): 3250 
(N-H), 1150, 1360 (SO2), 

1HNMR (DMSO, 400 
MHz) δppm: 3.27 (s, 3H, SO2CH3), 3.76 (s, 
3H, OCH3), 4.10 (s, 2H, CH2-NH), 5.70 (s, 2H, 
benzyl), 6.50 (d, J = 8.8 Hz, 2H, H2, H6-phenyl), 
6.78 (d, J = 8.8 Hz, 2H, H3, H5-phenyl), 7.12 
(dd, J = 8.0 Hz, 1.6 Hz, 2H, H2, H6-benzyl), 
7.14 (s, 1H, imidazole), 7.36 (m, 3H, H3, H4, 
H5-benzyl). LC-MS [M+1]+: m/z 372, [M+23]+: 
m/z 410. Anal. Calcd for C19H21N3O3S: C, 61.44; 
H, 5.70; N, 11.31. Found: C, 61.52; H, 5.72; N, 
11.23.

N-((1-benzyl-2-(methylsul fonyl)-1H-
imidazol-5-yl)methyl)-4-bromobenzamine (5c) 

Yield: 16%, mp: 155 °C; IR: (KBr) ν (cm-1): 3288 
(N-H), 1136, 1329 (SO2). 

1HNMR (DMSO,400 
MHz) δppm: 3.32 (s, 3H, SO2CH3), 4.10 (d, 
J = 6 Hz, 2H, CH2-NH), 5.64 (s, 2H, benzyl), 
6.37 (t, J = 6 Hz, 1H, NH), 6.43 (d, J = 8.8 Hz, 
2H, H2, H6-phenyl), 7.10 (m, 3H, imidazole, 
H2, H6-benzyl), 7.17 (d, J = 8.8 Hz, 2H, H3, 
H5-phenyl), 7.32 (t, J = 7.2 Hz, 1H, H4-benzyl), 
7.38 (t, J = 7.2 Hz, 2H, H3, H5-benzyl). LC-MS 
[M+1]+: m/z 420, [M+3]+: m/z 423, [M+23]+: 
m/z 442, [M+25]+: m/z 444. Anal. Calcd for 
C18H18BrN3O2S: C, 51.43; H, 4.32; N, 10.00. 
Found: C, 51.48; H, 4.30; N, 9.76.

N-((1-benzyl-2-(methylsulfonyl)-1H-imidazol-
5-yl)methyl)-4-nitrobenzamine (5d)

Yield: 10%, mp: 177 °C; IR: (KBr) ν (cm-1): 3310 
(N-H), 1110-1308 (SO2), 1324-1528 (NO2).

 

1HNMR (DMSO,400 MHz) δppm: 3.32 (s, 3H, 
SO2CH3), 4.30 (d, J = 6 Hz, 2H, CH2-NH,), 
5.65 (s, 2H, benzyl), 6.56 (d, J = 8.8 Hz, 2H, 
H2, H6-phenyl), 7.07 (d, J = 7.2 Hz, 2H, H2, 
H6-benzyl), 7.17 (s, 1H, imidazole), 7.31 (t, J 
= 7.2 Hz, 1H, H4-benzyl), 7.36 (t, J = 7.2 Hz, 
2H, H3, H5-benzyl), 7.66 (t, J = 6 Hz, 1H, NH), 
7.96 (d J =8.8 Hz, 2H, H3, H5-phenyl). LC-MS 
[M+23]+: m/z 409. Anal. Calcd for C18H18N4O4S: 
C, 55.95; H, 4.70; N, 14.50. Found: C, 55.91; H, 
4.74; N, 14.43.

N-((1-benzyl-2-(methylsulfonyl)-1H-imidazol-
5-yl)methyl)-4-chlorobenzamine (5e) 

Yield: 25%, mp: 142 °C; IR: (KBr) ν (cm-1): 3298 
(N-H), 1140, 1333 (SO2). 

1HNMR (DMSO,400 
MHz) δppm: 3.32 (s, 3H, SO2CH3), 4.10 (d, 
J = 6 Hz, 2H, CH2-NH), 5.64 (s, 2H, benzyl), 
6.32 (t, J = 6 Hz, 1H, NH), 6.47 (d, J = 8.8 Hz, 
2H, H2, H6-phenyl), 7.06 (d, J = 8.8 Hz, 2H, 
H3, H5-phenyl), 7.10 (m, 3H, imidazole, H2, 
H6-phenyl), 7.32 (t, J = 7.2 Hz, 1H, H4-benzyl), 
7.38 (t, J = 7.2 Hz, 2H, H3,H5-benzyl). LC-MS 
[M+23]+: m/z 398, [M+25]+: m/z 400. Anal. 
Calcd for C18H18ClN3O2S: C, 57.52; H, 4.83; N, 
11.18. Found: C, 57.80; H, 4.79; N, 11.11.

In-vitro biological activity
The inhibitory activity of the synthesized 

compounds was evaluated against COX-1 and 
COX-2 enzymes with Cayman colorimetric-
based human cyclooxygenase assay kit (item 
number 701050). The enzyme was incubated 
with inhibitors for 2 min in 0.1 M Bis-Tris/HCl 
buffer (pH 8.0) at 25 °C. Arachidonic acid and 
Celecoxib were used as substrate and reference 
drug respectively. All test samples were dissolved 
in DMSO and absorbance was read at 590 nm. 
The IC50 amounts of the novel compounds were 
analyzed using nonlinear regression with Dos-
response inhibition parameter by the activity 
base software package (Program Prism, Graph 
Pad, SanDiego, CA).

Results and Discussion

Molecular Modeling Studies
To predict interaction of compounds (5a–e 

with COX-2 binding site docking stimulation was 
performed. The orientation of the most potent 
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inhibitor 5b, N-((1-benzyl-2-(methylsulfonyl)-
1H-imidazol-5-yl)methyl)-4-methoxyaniline, 
along with Celecoxib in the active site of the 
COX-2 enzyme examined by a flexible docking 
experiment using AutoDock 4.0 software was 
observed in Figure 2. The pharmacophoric 
methylsulfonyl and sulfonamide groups of the 
5b and Celecoxib were in the same direction 
for hydrogen binding with Arg513 and also the 
phenyl ring of the 5b may bind in a lipophilic 

pocket formed by Trp387, Tyr385, and Val349 
of the active site. Additional hydrogen binding 
could form between NH of anilino moiety of the 
5b and Arg120. Isobutyl moiety of Leu359 may 
form hydrophobic interaction with methyl group 
of methoxy substituent of the 5b.

Chemistry
The designed compounds were synthesized 

according to Scheme 1. Benzylamine was 
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reacted with potassium thiocyanate and 
dihydroxyacetone in acetic acid/water to give 
imidazole ring. Methyl sulfonyl moiety was 
afforded after S-methylation and oxidation of 
the thiol group. Treatment of the compound 3 with 

thionyl chloride followed by reaction with proper amine 
gave final products (5a-5e).

In-vitro Biological activity
As shown in Table 1, all of the designed 

Table 1. Inhibitory activity of the imidazole derivatives against COX-1 and COX-2 enzymes.

COX-2 S.I.b
IC50 (µM)

StructureCompound
COX-1aCOX-2a 

27873.2
NH

N
N

S O
O

5a

115820.71
NH

H3CO

N
N

S O
O

5b

28782.8
NH

Br

N
N

S O
O

5c

26783
NH

O2N

N
N

S O
O

5d

381383.6
NH

Cl

N
N

S O
O

5e

209460.22

S O
O

NH2

NN

F3C

Celecoxib

aThe concentration of test compound produce 50% inhibition of COX-2, COX-1 enzyme, the result is the mean of two value obtained 
by assay of enzyme kits obtained from (Cayman colorimetric-based human cyclooxygenase assay kit Chemicals kit with item number 
701050).  bThe in-vitro COX-2 selectivity index (COX-1/COX-2).
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compounds have acceptable COX-2 inhibitory 
activity with IC50 values in the range of 0.7-3.6 
µM, while IC50 values of COX-1 inhibition were 
78-138µM. The rank order for the contribution 
of substituents to the COX-2 inhibitory activity 
of the synthesized compounds is: OCH3 > Br > 
NO2 > H > Cl. Results reveal that the compound 
bearing methoxy (5b), shows the best inhibitory 
activity and selectivity against COX-2 with IC50 
of 0.71 µM and selectivity index of 115 due to 
additional hydrophobic interaction of methoxy 
with Leu359. The electron withdrawing 
substitutes and Hydrogen at the para position of 
anilino ring, despite selectivity to COX-2, show 
no considerable priority with each other.

Conclusion

New imidazole-based compounds as non-
classical selective cyclooxygenase-2 inhibitors 
were investigated by attaching the suitable 
pharmacophore directly to the central cyclic ring. 
The docking study shows the compounds fitted 
in the COX-2 catalytic pocket and interacted well 
with the active site residues. The synthesized 
compounds had comparable inhibitory activity 
to Celecoxib. Compound 5b was found to be 
the most potent inhibitor with IC50 of 0.71 µM 
and selectivity index of 115 in targeting COX-2 
enzyme. Finally, these structures seem to be 
valuable leading scaffold to design and develop 
novel selective COX-2 inhibitors.
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