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Abstract

Quantitative structure-activity relationship (QSAR) analysis has been carried out with 
a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed 
by chemometrics methods. Bi-dimensional images were used to calculate some pixels and 
multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT 
analogues by means of multivariate calibration, such as principal component regression (PCR) 
and partial least squares (PLS). In this paper, we investigated the effect of pixel selection by 
application of genetic algorithms (GAs) for the PLS model. GAs is very useful in the variable 
selection in modelling and calibration because of the strong effect of the relationship between 
presence/absence of variables in a calibration model and the prediction ability of the model 
itself. The subset of pixels, which resulted in the low prediction error, was selected by genetic 
algorithms. The resulted GA-PLS model had a high statistical quality (RMSEP = 0.0423 and 
R2 = 0.9412) in comparison with PCR (RMSEP = 0.4559, R2 = 0.7929) and PLS (RMSEP 
= 0.3275 and R2 = 0.0.8427) for predicting the activity of the compounds. Because of high 
correlation between values of predicted and experimental activities, MIA-QSAR proved to be 
a highly predictive approach.
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Introduction

Acquired immunodeficiency syndrome 
(AIDS) is a disease of the human immune 
system caused by infection with human 
immunodeficiency virus (HIV). AIDS was 
first recognized in 1981 and its cause—HIV 
infection—was identified in the early part of the 
decade. The World Health Organization (WHO), 
in its reports, has said that AIDS has killed 
more than 25 million people since 1981, which 

is the most destructive among all pandemics in 
history. There were approximately 36.7 million 
people living with HIV at the end of 2015.

These alarming numbers have actuated the 
scientific community to search for therapies in 
the treatment of HIV-positive patients, and the 
development of novel and potent inhibitors for 
the treatment of HIV-1 infection has become 
the primary focus in this field. Researchers 
have investigated various ligands. Biologists, 
chemists, and researchers, in general, are 
continuously looking for new entities having high 
potency against the HIV virus. Such ligands may 
be properly developed using computer-assisted 
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methods, known as in-silico QSAR (quantitative 
structure-activity relationship) procedures, 
which may be classified as ligand- and receptor-

based approaches (1): 1-[2-Hydroxyethoxy) 
methyl]-6-(phenylthio)-thymines (HEPT), 
as shown on Table 1. HEPT forms the non-

Table 1. Chemical structures with the observed values of the anti-HIV activity for the HEPT derivatives (log (1/C50)).

No. R1 R2 R3 X Obs. log (1/C50)

1 2-Me Me CH2OCH2CH2OH O 4.15

2 2-NO2 Me CH2OCH2CH2OH O 3.85

3 2-OMe Me CH2OCH2CH2OH O 4.72

4 3-Me Me CH2OCH2CH2OH O 5.59

5 3-Et Me CH2OCH2CH2OH O 5.57

6 3-t-Bu Me CH2OCH2CH2OH O 4.92

7 3-CF3 Me CH2OCH2CH2OH O 4.35

8 3-F Me CH2OCH2CH2OH O 5.48

9 3-Cl Me CH2OCH2CH2OH O 4.89

10 3-Br Me CH2OCH2CH2OH O 5.24

11* 3-I Me CH2OCH2CH2OH O 5.00

12 3-NO2 Me CH2OCH2CH2OH O 4.47

13 3-OH Me CH2OCH2CH2OH O 4.09

14 3-OMe Me CH2OCH2CH2OH O 4.66

15 3,5-Me2 Me CH2OCH2CH2OH O 6.59

16 3,5-Cl2 Me CH2OCH2CH2OH O 5.89

17 3,5-Me2 Me CH2OCH2CH2OH S 6.66

18* 3-COOMe Me CH2OCH2CH2OH O 5.10

19 3-COMe Me CH2OCH2CH2OH O 5.14

20 3-CN Me CH2OCH2CH2OH O 5.00

21* H CH2CH=CH2 CH2OCH2CH2OH O 5.60

22 H Et CH2OCH2CH2OH S 6.96

23* H Pr CH2OCH2CH2OH S 5.00

24 H i-Pr CH2OCH2CH2OH S 7.23

25 3,5-Me2 Et CH2OCH2CH2OH S 8.11

26* 3,5-Me2 i-Pr CH2OCH2CH2OH S 8.30

27 3,5-Cl2 Et CH2OCH2CH2OH S 7.37

28 H Et CH2OCH2CH2OH O 6.92
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result in imperfections, i.e. common structural parts along with the congeneric series may 

not be exactly congruent and, therefore, spurious variances are inserted in the calibration 

step, reducing the model’s reliability and accuracy. Therefore, feature selection can 

minimize such effects by eliminating undesirable descriptors as well as those collinear 

ones (26). 

 
Experimental  
Data set 

The chemical structures of the HEPT are shown in Table 1. The RT inhibition data 

are reported according to Reference 27.  
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No. R1 R2 R3 X Obs. log (1/C50)

29 H Pr CH2OCH2CH2OH O 5.47

30 H i-Pr CH2OCH2CH2OH O 7.20

31 3,5-Me2 Et CH2OCH2CH2OH O 7.89

32 3,5-Me2 i-Pr CH2OCH2CH2OH O 8.57

33* 3,5-Cl2 Et CH2OCH2CH2OH O 7.85

34 4-Me Me CH2OCH2CH2OH O 3.66

35 H Me CH2OCH2CH2OH O 5.15

36 H Me CH2OCH2CH2OH S 6.01

37 H I CH2OCH2CH2OH O 5.44

38 H CH=CH2 CH2OCH2CH2OH O 5.69

39 H CH=CHPh CH2OCH2CH2OH O 5.22

40* H CH2Ph CH2OCH2CH2OH O 4.37

41 H CH=CPh2 CH2OCH2CH2OH O 6.07

42 H Me CH2OCH2CH2OMe O 5.06

43 H Me CH2OCH2CH2OAc O 5.17

44 H Me CH2OCH2CH2OCOPh O 5.12

45 H Me CH2OCH2Me O 6.48

46 H Me CH2OCH2CH2Cl O 5.82

47 H Me CH2OCH2CH2N3 O 5.24

48 H Me CH2OCH2CH2F O 5.96

49 H Me CH2OCH2CH2Me O 5.48

50 H Me CH2OCH2Ph O 7.06

51 H Et CH2OCH2Me O 7.72

52 H Et CH2OCH2Me S 7.58

53* 3,5-Me2 Et CH2OCH2Me O 8.24

54 3,5-Me2 Et CH2OCH2Me S 8.30

55 H Et CH2OCH2Ph O 8.23

56 3,5-Me2 Et CH2OCH2Ph O 8.55

57 H Et CH2OCH2Ph S 8.09

58 3,5-Me2 Et CH2OCH2Ph S 8.14

59 H i-Pr CH2OCH2Me O 7.99

60 H i-Pr CH2OCH2Ph O 8.51

61 H i-Pr CH2OCH2Me S 7.89

62 H i-Pr CH2OCH2Ph S 8.14

63* H Me CH2OMe O 5.68

64 H Me CH2OBu O 5.33

65 H Me Et O 5.66

Table 1. Continued.
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No. R1 R2 R3 X Obs. log (1/C50)

66 H Me Bu O 5.92

67 3,5-Cl2 Et CH2OCH2Me S 7.89

68* H Et CH2O-i-Pr S 6.66

69 H Et CH2O-c-Hex S 5.79

70 H Et CH2OCHz-c-Hex S 6.45

71* H Et CH2OCH2C6H4(4-Me) S 7.11

72 H Et CH2OCH2C6H4(4-Cl) S 7.92

73 H Et CH2OCH2CH2Ph S 7.04

74* 3,5-Cl2 Et CH2OCH2Me O 8.13

75 H Et CH2O-i-Pr O 6.47

76 H Et CH2O-c-Hex O 5.40

77 H Et CH2OCH2-c-Hex O 6.35

78 H Et CH2OCH2CH2Ph O 7.02

79 H c-Pr CH2OCH2Me S 7.02

80 H c-Pr CH2OCH2Me O 7.00

81* H Me CH2OCH2CH2OC5H11-n O 4.46

82 2-Cl Me CH2OCH2CH2OH O 3.89

83 3-CH2OH Me CH2OCH2CH2OH O 3.53

84 4-F Me CH2OCH2CH2OH O 3.60

85 4-Cl Me CH2OCH2CH2OH O 3.60

86 4-NO2 Me CH2OCH2CH2OH O 3.72

87 4-CN Me CH2OCH2CH2OH O 3.60

88 4-OH Me CH2OCH2CH2OH O 3.56

89 4-OMe Me CH2OCH2CH2OH O 3.60

90 4-COMe Me CH2OCH2CH2OH O 3.96

91 4-COOH Me CH2OCH2CH2OH O 3.45

92 3-CONH2 Me CH2OCH2CH2OH O 3.51

93 H COOMe CH2OCH2CH2OH O 5.18

94 H CONHPh CH2OCH2CH2OH O 4.74

95 H SPh CH2OCH2CH2OH O 4.68

96* H CCH CH2OCH2CH2OH O 4.74

97 H CCPh CH2OCH2CH2OH O 5.47

98 3-NH2 Me CH2OCH2CH2OH O 3.60

99 H COCHMe2 CH2OCH2CH2OH O 4.92

100 H COPh CH2OCH2CH2OH O 4.89

101 H CCMe CH2OCH2CH2OH O 4.72

102 H F CH2OCH2CH2OH O 4.00

Table 1. Continued.
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No. R1 R2 R3 X Obs. log (1/C50)

103 H Cl CH2OCH2CH2OH O 4.52

104 H Br CH2OCH2CH2OH O 4.70

105* H Me CH2OCH2CH2OCH2Ph O 4.70

106* H Me H O 3.60

107 H Me Me O 3.82
*Test set.

Table 1. Continued.

nucleoside RT inhibitors (NNRTI) series do not 
target an active site of polymerase, but rather the 
enzyme allosteric site. The interactions of these 
compounds with reverse transcriptase (RT) have 
been thoroughly investigated and the crystal 
structures of several ligand-enzyme complexes 
have been determined (2, 3).

Today, researchers use computational 
techniques to estimate the activity of designed 
molecules in order to accelerate the synthesis of 
new effective drugs prior to the synthesis of drugs. 
Quantitative structure-activity relationships 
(QSARs) are mathematical relationships 
linking chemical structure and pharmacological 
activity in a quantitative manner for a series of 
compounds. It is considered a major method of 
chemical research all over the world nowadays, 
and is frequently used in agricultural, biological, 
environmental, medicinal, and physical organic 
studies. Several investigations have been 
carried out in order to improve on this subject 
(4–10). Mathematical models have been used 
to correlate chemical structure with biological 
activities/properties. QSAR has great potential 
for modelling and designing novel compounds 
with robust properties by being able to forecast 
physicochemical properties as a  function of 
structural features. 

The main purpose of QSAR studies is to 
instate an empirical rule or function relating 
to the descriptors of compounds under the 
investigation of activities or properties. This rule 
of function is then utilized to predict the same 
activities of the compounds not involved in the 
training set from their descriptors. The activity 
that can be predicted with satisfactory accuracy 

depends on a great extent on the performance 
of the applied multivariate data analysis 
method, which has provided the property being 
predicted, and is related to the descriptors (11). 
Model development in QSAR studies comprises 
different critical steps, such as: 1) Molecular 
Structures, 2) Molecular Descriptors, 3) Data 
Pre-processing, 4) Multivariate Analysis, and 5) 
Statistical Evaluation. Among the investigation 
of QSAR, one of the most important factors 
affecting the quality of the model is a method to 
build the model.

The traditional approach to QSAR relies 
heavily on multiple linear regressions (MLR). 
MLR analysis fails to give accurate results in 
the presence of collinear variables, or when 
the number of descriptors is large compared 
with the number of molecules, whereas by 
orthogonalization of the variables into low 
dimensional space, the factor analysis-based 
methods—such as principal component 
regression (PCR) and partial least square (PLS)—
can overcome the drawbacks encountered for 
MLR (12). 

The theory of PCR and PLS, and its 
application in QSAR, are reported by several 
of the workers (13–18). Since it is not possible 
to know a priori which molecular properties 
are most relevant to the problem at hand. PLS, 
like other modelling methods, is often used in 
conjunction with optimization techniques for 
feature selection (19). One of the best methods 
for variable selection is genetic algorithms 
(GAs) (20–24). Genetic algorithms is a 
stochastic method for optimization based on the 
evolution process of living beings in which 
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simplicity and effectiveness have been applied 
to the various types of optimization problems 
in many scientific fields (25). Accordingly, the 
combination of Quantitative Structure Activity 
Relationship (QSAR) and multivariate image 
analysis techniques, which are briefly called 
MIA-QSAR, is used to estimate the activity 
of various drugs. Sarkhosh et al. used genetic 
algorithms for the variable selection in the MIA-
QSAR (11).

The present paper is focused on the application 
of 2D images, which are the proper structures of 
the compounds that can be drawn with aid of any 
appropriate program, as descriptors in QSAR. 
These images (2D chemical structures) have 
shown excellent correlation with bioactivities, 
and are supposed to codify chemical properties 
like size of substituents, chains, branches, and 
chiral centres. However, as far as we are aware, 
the MIAQSAR/QSPR process involves manual 
structural drawing and alignment, which can 
result in imperfections, i.e. common structural 
parts along with the congeneric series may not 
be exactly congruent and, therefore, spurious 
variances are inserted in the calibration step, 
reducing the model’s reliability and accuracy. 
Therefore, feature selection can minimize such 
effects by eliminating undesirable descriptors as 
well as those collinear ones (26).

Experimental 

Data set
The chemical structures of the HEPT are 

shown in Table 1. The RT inhibition data are 
reported according to Reference 27.

Multivariate image analysis
MIA structures are 2D images that can 

be drawn with the help of some chemical 
Structure-drawing software. Accordingly, the 
107 molecules that constitute the dataset were 
modelled using the ChemSketch program, 
and each file was saved as bitmaps in the 
Paint application of Microsoft Windows in a 
workspace of 370 × 340 pixel size (example of 
how chemical structures were drawn is given 
in Figure 1). In our dataset, the pixel located at 
the 193 × 132 coordinate (common to the whole 
series) was used as reference in the alignment 
step. Each 2D image was read and converted 
into binaries (double array in MATLAB), where 
black pixels are 0 and white pixels (where there is 
no chemical structure drawn) are 765, according 
to RGB colour composition. Each image of 
dimension 370 × 340 pixels was unfolded to 
a 1 × 125,800 row and then the 107 images 
were grouped to form a 107 × 125,800 matrix. 
Many columns do not have variance, because 
they correspond either to blank workspace or 
congruent structures and, therefore, they can 
be removed. This process gave a matrix of 
107 × 9866 size and all completely similar 
descriptors for all molecules are deleted and 
finally the number of descriptors is reduced to 
1254 then all pixel data are mean-centred. To 
build and validate the QSAR model, the study 
dataset is divided into a training set and a test 
set. The probability of overfitting of the model 
increases by selection of a series of similar 
molecules in the training set. To ensure that 
training and test sets cover the whole area of the 
dataset, it is divided into the parts of training 
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Where yi,pred is the predicted activity using a different model, yi,obs is the observed value 

of the activity, and n is the number of compounds in the prediction set. 

 

 
 

Figure 1. 2D images and unfolding step of the 107 chemical structures to give the X-

matrix. The arrow in structure indicates the coordinate of a pixel in common among the 

whole series of compounds, used in the 2D alignment step. 

 

Genetic algorithm 

A genetic algorithm is a stochastic optimization method that has been inspired by 

evolutionary principles. GAs has five basic steps:  

1) An initial population of chromosomes is created. Each individual of the population, 

defined by a chromosome of binary values, represents a subset of the descriptors. The 

number of the genes in each chromosome was equal to the number of the descriptors. The 

population of the first generation was selected randomly. A gene was given the value of 

one, if its corresponding descriptor was included in the subset; otherwise, it was given the 

value of zero. The number of the genes with the value of one was kept relatively low to 

have a small subset of descriptors (29).  

2) The fitness of each chromosome in the population is evaluated by the predictivity of 

the model derived from the binary bit string. The n selected descriptors in each 

chromosome were evaluated by fitness function of the PLS, based on the following 

equation: 

������� � �CUMPRESS� � �  

 

where CUMPRESS and m are the cumulative predictive sum of square error and the 

number of compounds in the dataset respectively (30). 

Figure 1. 2D images and unfolding step of the 107 chemical structures to give the X-matrix. The arrow in structure indicates the 
coordinate of a pixel in common among the whole series of compounds, used in the 2D alignment step.
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and prediction sets, according to the Kennard-
Stones algorithm. Kennard-Stones programs 
were written in MATLAB in accordance with 
the algorithm (28). The training set includes 
91 compounds and the prediction set includes 
16 compounds. The Kennard-Stones algorithm 
is known as one of the best ways of building 
training and prediction sets, and has been used 
in many QSAR studies.

Also, for the evaluation of the predictive 
ability of a different model, the root mean 
square error of prediction (RMSEP) and relative 
standard error of prediction (RSEP) can be used:

Where yi,pred is the predicted activity using a 
different model, yi,obs is the observed value of the 
activity, and n is the number of compounds in 
the prediction set.

Genetic algorithm
A genetic algorithm is a stochastic 

optimization method that has been inspired by 
evolutionary principles. GAs has five basic 
steps: 

1) An initial population  of chromosomes 
is created.  Each individual of the population, 
defined by a chromosome of binary values, 
represents a subset of the descriptors. The 
number of the genes in each chromosome was 
equal to the number of the descriptors. The 
population of the first generation was selected 
randomly. A gene was given the value of one, if 
its corresponding descriptor was included in the 
subset; otherwise, it was given the value of zero. 
The number of the genes with the value of one 
was kept relatively low to have a small subset of 
descriptors (29). 

2) The fitness of each chromosome in the 
population is evaluated by the predictivity of the 
model derived from the binary bit string. The n 
selected descriptors in each chromosome were 
evaluated by fitness function of the PLS, based 

on the following equation:

where CUMPRESS and m are the cumulative 
predictive sum of square error and the number of 
compounds in the dataset respectively (30).

3) The population of chromosomes in the 
next generation is reproduced. The chromosome 
with the highest fitness is chosen as the best 
chromosome. 

4) The next step is a crossover such that each 
parent contributes a random selection of half of 
its descriptors and the offspring is  constructed 
by combining these two halves of genetic code. 

5) Create next generation by combining 
and mutating the reproductive population and 
the new population.  The best chromosome in 
the reproductive population is kept from the 
mutation process. Loop the steps 3–5 until a 
required termination criterion is satisfied.

The final model obtained is further refined 
by removing descriptors that do not significantly 
affect predictive accuracy. The cross-validation 
technique was used for evaluating the descriptors 
selected by GAs in each step.

Default values of the GAs program-as written 
by Leardi-were applied to most of the adjustable 
parameters of GAs, as listed in Table 2. The 
MATLAB 7.13 software was used to run the 
GA-PLS method, developed by Leardi (31). All 
descriptors by mean-centring before performing 
the GA-PLS were performed.

Results and Discussion

Principal component analysis of the data set
Principal Component Analysis is a variable 

reduction procedure. Principal Components 
(PCs) are able to detect internal relations between 
characteristics of a set of objects, thus enabling 
a drastic reduction of the dimensionality of the 
original raw data. This reduction is achieved by 
transforming the original matrix to a new one, 
whose set of variables-termed PCs-appear to 
be orthogonal to each other (uncorrelated) and 
ordered so that the first few, with descending 
importance, retains most of the variance content 
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from the total set of original variables (32).
Accordingly, PC1 is defined in the direction 

of maximum variation of the whole dataset. 
PC2 is the direction that describes the maximum 
variance in the orthogonal subspace to PC1. 
The PCA was performed with the calculated 
structure descriptors for the whole dataset to 
detect the homogeneities in the dataset, and also 
to show the spatial location of the samples to 
assist the separation of the data in the training 
and test sets. The PCA results showed that three 
principal components (PC1, PC2, and PC3) 
described 94.53% of the overall variables, as 
follows: PC1 = 46.24%, PC2 = 31.59% and PC3 
= 16.76%. Most of the variance is accounted for 
in the 3 first PCs. Their score plot is a reliable 
presentation of the spatial distribution of the 
points in the dataset. As can be seen in Figure 2, 
there is no clear clustering between compounds. 
The data separation is very important in the 
development of reliable and robust QSAR 
models. The quality of the prediction depends 
on the dataset used to develop the model. For 
regression analysis, the dataset was separated 
into two groups, a training set (91 data) and 
a prediction set (16 data), according to the 
Kennard-Stones algorithm. As shown in Figure 
2, the distribution of the compounds in each 
subset seems to be relatively well-balanced over 
the space of the principal components.

PCR and PLS modeling
The general purpose of the linear regression 

method is to quantify the relationship between 

several independent or predictor variables 
and a dependent variable. PLS is a linear 
modelling technique where the information in 
the descriptor matrix X is projected onto a 
small number of underlying (‘latent’) variables 
called PLS components or latent variables. 
The matrix Y is simultaneously used for the 
estimation of the ‘latent’ variables in X, which 
will be the most relevant for the Y variables 
prediction. Independent or predictor variables 
could cause pixel changes in descriptors of 
image of molecules, their principal components 
or latent variables. In multivariate calibration, 
such as PCR and PLS models, a predictive 
model can be obtained by selecting the optimum 
number of components using a cross-validation 
technique. In the cross-validation technique, one 
or more samples in the dataset are omitted, and 
the rederived PLS model is used to predict the 
biological activity of the omitted samples. This 
process is repeated until the biological activity 
of all samples in the dataset has been predicted 
once. The number of principal factors (nLV) of 
PLS is an important parameter in the modelling. 
The parameter is determined on the basis of 
assessing root mean square error of calibration 
(RMSEC) and root mean square error of cross 
validation (RMSECV). The number of PLS 
factors included in the model was chosen in 
accordance with the lowest RMSECV. As shown 
in Figure 3, the RMSECV is minimized when 
the value of LVs is 7 and 5, and thus, the 
optimum LVs for the training set of PCR and 
PLS methods were respectively chosen to be 7 

Table 2. Parameters of the genetic algorithms.

Parameter* Value

Population size 30 chromosomes

Response cross-validated% explained variance

Maximum number of variables selected in the same chromosome 30

Probability of mutation 1%

Number of runs 100

Window size for smoothing 3
*On average, five variables per chromosome in the original population and backward elimination after every 100th evaluation and at 
the end.
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Figure 2. Principal components analysis of the 2D image descriptors for the data set, (a) 

PC2 versus PC1, (b) PC3 versus PC1 and (c) PC3 versus PC2. 
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and 5. Prior to the PCR and PLS analysis, the 
dataset was mean-centred.

GA-PLS modeling
In the multivariate imaging analysis, the 

number of dependent variables is very large, 
so data reduction is very necessary. To find 
the more convenient set of descriptors in PLS 
modelling, genetic algorithms were used. The 
hybrid method that integrates GA as a powerful 
optimization tool and PLS as a robust statistical 

tool are applied to variable selection and 
modelling. After the running of GAs for pixel 
variables, the selected pixel descriptors were 
used for the running of PLS. When GA-PLS was 
used, the number of latent variables reduced to 3 
(Figure 3). In each feature selection method, the 
variables remaining after the exclusion of non-
significant parameters were cross-correlated in 
order to select the most relevant parameters 
concerning the following criteria: 1) p <0.05; 2) 
having the highest correlation with experimental 
data; and 3) having the lowest correlation with 
each other (33). The range of selected pixel 
descriptors is shown in Figure 4. According to 
the descriptors selected by genetic algorithms, it 
was found that the maximum structural effects 
are in a, b, c, and d regions (Figure 4). It seems 
that regions b, c, d—due to having the different 
functional groups—have a greater impact on the 
anti-HIV activity. This is because substituting O 
or S instead of X in the region a does not have 
a large impact on response. Selected areas in all 
the molecules are not identical in structure.

Model validation and prediction of anti-HIV 
activity

In Table 3, the predicted values of activity 
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Table 3. Observation and calculation values of activity using PCR, PLS and GA-PLS models.

Number of 
compounds 
(Table 1)

Observation 
activity

PCR PLS GA-PLS

Predicted Error (%) Predicted Error (%) Predicted Error (%)

11 5.00 5.23 4.60 5.19 3.80 5.06 1.20

18 5.10 5.36 5.09 5.29 3.72 5.12 0.39

21 5.60 5.03 -10.17 5.11 -8.75 5.54 -1.07

23 5.00 4.23 -15.40 4.39 -12.20 4.96 -0.80

26 8.30 8.68 4.57 8.51 2.53 8.33 0.36

33 7.85 8.06 2.67 7.94 1.14 7.81 0.51

40 4.37 4.01 -8.23 4.16 -4.80 4.32 -1.14

53 8.24 8.75 6.19 8.34 1.21 8.26 0.24

63 5.68 5.93 4.40 5.88 3.52 5.72 0.70

68 6.66 6.86 3.00 6.84 2.70 6.81 2.25

71 7.11 6.56 -7.73 6.72 -5.48 7.14 0.42

74 8.13 8.69 6.88 8.57 5.41 8.09 -0.49
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obtained by the PCR, PLS and GA-PLS 
methods and the per cent relative errors of 
prediction are presented. The data observed and 
predicted activity for GA-PLS are distributed 
about a straight line with the corresponding 
slope and intercept equal to 0.9987 and 0.0085 
respectively, which are nearly close to the perfect 
values: one and zero, correspondingly. The 
relative errors of prediction are between -1.14% 
and 2.25%. This was obtained by using the 
GA-PLS method, which shows the high-quality 
predictive capability of the developing QSAR 
model. The data presented in Table 3 indicate 
that the GA-PLS model has good statistical 
quality with low prediction errors, while the 
GA-PLS model uses fewer latent variables. 

Table 3 also shows RMSEP and RSEP to 

predict the activity of anti-HIV activity. Other 
statistical parameters have been to evaluate the 
suitability of the models developed for predicting 
the activity of the studied compounds, and this 
includes cross validation coefficient (Q2 and R2). 
An inspection of the results of the table reveals 
higher R2 and Q2 values and lower RMSCEV 
and RMSEP for the GA-PLS method compared 
with their counterparts. These results showed 
GA-PLS is significantly better than that of the 
other models. These parameters are listed in 
Table 4, and show good statistical qualities. 

The results were summarized and compared 
to the other models obtained by some works on 
the same set of HEPT derivatives in Table 5. 
These results suggest the MIA-QSAR method 
is a useful tool, as promising as the most refined 

Number of 
compounds 
(Table 1)

Observation 
activity

PCR PLS GA-PLS

Predicted Error (%) Predicted Error (%) Predicted Error (%)

81 4.46 4.86 8.97 4.79 7.40 4.51 1.12

96 4.74 4.12 -13.08 4.27 -9.91 4.69 -1.05

105 4.70 4.06 -13.62 4.34 -7.66 4.74 0.85

106 3.60 3.91 8.61 3.82 6.11 3.63 0.83

LVs 7 5 3

RMSCEV 1.5642 1.4771 0.5621

RMSEP 0.4559 0.3275 0.0423

RSEP (%) 7.5390 5.3665 0.6941

Table 3. Observation and calculation values of activity using PCR, PLS and GA-PLS models.

Table 4. Comparison of the statistical parameters by different QSAR models for the prediction of the activity.

Methods Data set R2 Q2*

PCR
Training 0.7929 0.7812

Test 0.7822 0.7346

PLS
Training 0.8427 0.8109

Test 0.8126 0.8033

GA-PLS
Training 0.9412 0.9371

Test 0.9208 0.9124
*Q2 coefficient for the model validation by leave-one-out.
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widely applied 2D methodologies, to correlate 
real pIC50 with pIC50 provided by descriptors 
from modelled structures for this series of anti-
HIV compounds. Also, this comparative table 
makes it clear that MIA is at least as predictive 
as these 2D refined methodologies, being, 
therefore, a much less expensive alternative to 
propose new HETP derivatives, since MIA-
QSAR showed a Q2 superior to all models 
available in the literature for this series of 
compounds.

Molecular design
As an application of the proposed method, 

we investigated GA-PLS model to predict the 
anti-HIV activity of five new HETP compounds 
on which biological tests were not performed 
yet. 

Table 6 shows the chemical structure of 
five new HETP compounds and their activity 
calculated by this proposed method. According 
to GA-PLS model, we have found the new 
HEPT 5 molecules (Table 6).

Table 5. Comparison between some works on the same set of HEPT derivatives.

Model R2 Q2 NF* Reference

MLR 0.900 0.745 9
(34)

PLS 0.889 0.860 9

MLR 0.815 0.783 5
(35)

MLR 0.811 0.778 6

NN 0.919 0.779 6
(36)

MLR 0.856 0.814 4

NN 0.850 0.878 4
(37)

SVM 0.874 0.867 4

PCR 0.793 0.781 7

This workPLS 0.842 0.812 5

GA-PLS 0.941 0.937 3
*Number of factor (Latent variables).

Table 6. Chemical structures with the observed values of the anti-HIV activity for the HEPT derivatives.

No. R1 R2 R3 X Obs.

1 H Me CH2OCH2Ph O 4.67

2 3,5-Me2 Me CH2OCH2Ph S 3.44

3 3,5-Cl2 Me CH2OCH2CH2OH O 5.56

4 H Et CH2OCH2CH2OH S 3.89

5 3,5-Cl2 Me CH2OCH2Ph S 6.02
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Conclusion

In the present study, the multivariate image 
analysis descriptors used in quantitative 
structure-activity relationships are direct 
representations of chemical structures as they 
are simply numerical decodifications of pixels 
forming the 2D chemical images. This method 
allows the application of free drawing software 
and well known multivariate regression 
algorithms, such as PLS. In addition, it does 
not require conformational screening and 3D 
alignment, but only a 2D alignment step, which 
is simpler and faster than the current three-
dimensional procedures. The combination of 
PLS analyses and genetic algorithms (GA-PLS) 
is used to develop a regression technique, the 
hybrid approach that integrates GA as a powerful 
optimization tool and PLS as a robust statistical 
method. These are applied to variable selection 
and modelling. A comparison of the results 
obtained by GA-PLS and the other regression 
methods utilized indicates higher accuracy of 
this method in describing anti-HIV activity of 
the HETP derivatives. The MIA descriptors can 
be used to make useful predictions, which is 
exceedingly useful for those who are designing 
and synthesizing more new active species. 
Moreover, the MIA-QSAR technique provides 
chemical information since, depending on the 
way in which substituent groups are drawn, they 
can encode steric effects. The QSAR model 
developed in this study can provide a useful 
tool to predict the activity of new compounds 
and also to design new compounds with high 
activity.
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