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Abstract

Methamphetamine (Meth) is recognized as one of the most important new distributed 
abused drug that causes severe damage to the different parts of the brain, especially 
hippocampus. Previous studies have demonstrated that Meth can induce apoptosis and cell 
death in the brain. In this study, we evaluated the long-term effects of Meth abuse in the 
CA1 region of postmortem hippocampus. Postmortem molecular and histological analysis 
was performed for five non-addicted subjects and five Meth addicted ones. Iba-1 (microglia) 
and glial fibrillary acidic protein, GFAP (astrocytes) expression were assayed by western 
blotting and immunohistochemistry (IHC) methods. Histopathological assessment was done 
with stereological counts of hippocampal cells stained with hematoxylin and eosin (H and E). 
Tunel staining was used to detect DNA damage in human brains. In addition, protein-protein 
interaction analysis network was investigated. Western blotting and immunohistochemistry 
assay showed overexpression of GFAP and Iba-1 protein in the CA1 hippocampal region 
of Meth users’ brain. Stereological analysis in the CA1 region revealed increased neuron 
degeneration. Furthermore, significant apoptosis and cell death were confirmed by Tunel assay 
in the hippocampus. The prominent role of TLR4, IL1B, CASP1, and NLRP3 in the molecular 
mechanism of Meth was highlighted via PPI network analysis. Chronic Meth use can induce 
GFAP and Iba-1 upregulation and neuronal apoptosis in the CA1 region of the postmortem 
hippocampus.
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Introduction

Methamphetamine (Meth) is a new recreational 

drug. Based on the USA Food and Drug 
Administration, approximately 38 million people 
are reported as having an addiction to Meth and/or 
its related derivatives. Unexpectedly, Meth is the 
most commonly used substance after Cannabis 
(1). It is known as the sympathomimetic drug 
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that has been reported to cause several physical 
and psychological side effects such as un Normal 
able repetitive movements, sweating, pupil 
dilation, and severe behavioral reactions (2). It 
also causes behavioral consequences including 
sensitization, Meth discriminative stimulus 
effects, and hyper motor activity by inducing 
neuroinflammation. Based on several studies, 
behavioral effects may be caused by the role 
of Meth in regulating the level of 3′-5′-cyclic 
adenosine monophosphate (cAMP). It could be 
responsible for the behavioral effects of Meth 
such as hyper motor activity. Meth has also a 
role in mediating inhibition of phosphodiesterase 
(PDE), the enzyme that is responsible for cAMP 
degradation (3). Meth severely damages different 
regions of the brain (4). Its chronic use may lead 
to neurodegeneration of cortex, hippocampus and 
midbrain areas (5).   Severe symptoms of Meth 
abuse can be due to hippocampal-dependent 
memory changes (6). Several experimental 
studies have demonstrated that astrocytes and 
microglia are stimulated in rodents which were 
treated by a toxic Meth regime (7-9). Meth 
exposure is associated with microglial activation 
and along with that, it induces secretion of 
proinflammatory cytokines and ultimately 
causes drug induced-behavioral changes which 
could be attenuated by modulation of activated 
glial cells (10). Previous studies have revealed 
astrocyte activation in Meth-induced toxicity 
(11, 12). Some researchers showed Meth-induced 
toxicity was related to dramatic elevation in the 
levels of GFAP which was more prominent in 
the striatum and interestingly this sub-region 
is more vulnerable to the toxic effects of Meth. 
The loss of dopamine-transporter binding 
sites and the immune reactivity of tyrosine-
hydroxylase are the most in the striatum (13). 
Based on astrogliosis analysis among Meth-
treated animals, it is evident that the astroglial 
response reaches its peak within 2 days after 
administration and remains high for at least 
7 days (14). Furthermore, a correlation was 
observed between the Meth-induced activation 
of astrocytes and toxicity (15). In fact, after 
Meth treatment, astrocyte can actively respond 
in a short period of time and this response can 
be relatively prolonged. Since astrocytes have 
phenotypic changes capability and dynamic 

response potential, they can play an important 
role in the neuropathological consequences of 
CNS injuries (16). The Meth-induced microglial 
responses, for instance, expresses calcium 
binding adaptor protein (Iba-1) that may be 
responsible for the neuropathological alterations 
secondary to neurotoxic effects of Meth 

(17). Extensive research evidence indicates 
that attenuation of microglial activation can 
decrease Meth- induced behavioral changes 
(18-20). For instance, Ibudilast (3-isobutyryl-
2-isopropylpyrazolo [1,5- a] pyridine) is a non-
selective PDE inhibitor and anti-inflammatory 
glial cell modulator that can attenuate Meth-
induced locomotor activity and its sensitization 
in mice (21). As well, treatment with minocycline 
hydrochloride (other anti-inflammatory drugs) 
significantly reduces microglial activation 
caused by Meth and attenuates Meth-induced 
behavioral deficits (22, 23). The purpose of this 
study is to explore whether chronic Meth use 
can induce GFAP and Iba-1 upregulation and 
neuronal apoptosis in the CA1 region of the 
postmortem hippocampus.

Experimental

The brains of meth user and non-meth user 
cadavers were obtained from the Iranian Medical 
Jurisprudence organization for post mortem 
examination (Tehran, Iran). We collected and 
preserved the human brains in a way that is in 
accordance with the Declaration of Helsinki. All 
protocols were approved by the Ethics Committee 
of Shahid Beheshti University of Medical 
Sciences (IR.SBMU.RETECH.REC.1396.542). 
The analysis was done on 14 chronic male Meth 
users (aged 39 ± 1.9 years) who died of a drug 
overdose with the average consumption duration 
of more than 5 years (The duration could affect 
the amount of damage of the hippocampus). 
The Normal groups consisted of 12 male adults 
without a history of Meth use (aged 38 ± 2 
years). Normal and Meth subjects matched in 
terms of age and post mortem delay (duration of 
autolysis). None of the Meth users had a history 
of mental illness or neurodegenerative disorders. 
Moreover, none of them was HIV positive. Body 
mass index analysis (kg/m2) was done for all of 
the samples. 
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The urine Kit detection for Meth was used 
for the samples (Identify Diagnostics 5). The 
Meth urine test will be positive only if the urine 
sample contains Meth (Figure 1).

Sampling and tissue preparation 
After obtaining the brain donation consent 

from the families of the donors, freshly isolated 
brain tissues of 14 documented Meth users and 
11 Normal cadavers were transported to the lab 
kept in Ringer Lactate solution. The samples 

were weighed just after removing blood clots 
and necrotic tissue. Then, the CA1 region of 
the hippocampus was exposed and removed 
from the brain (Figure 2). Afterward, the tissue 
samples were fixed in 4% Paraformaldehyde 
for 1 week in order to prepare the samples for 
Hematoxylin and Eosin staining (H and E), 
Tunel assay and immunohistochemistry. The 
CA1 region was placed into paraffin blocks and 
microtome was used to cut it in its longitudinal 
axis into several 5 and 25 μm thick sections. The 
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Figure 1. Kit detection for Meth in the human urine sample. The band is prepared for 

detecting Meth in human urine. This assessment is a type of qualitative test and thus, it 

delivers a "Negative" or "Positive" consequence. 
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tissue samples were fixed in 4% Paraformaldehyde for 1 week in order to prepare 

the samples for Hematoxylin and Eosin staining (H and E), Tunel assay and 

immunohistochemistry. The CA1 region was placed into paraffin blocks and 

microtome was used to cut it in its longitudinal axis into several 5 and 25 μm 

thick sections. The slides were stained using H&E, Nissl and Golgi techniques. 

 

Figure 2. Brain dissection and isolation of hippocampus in Normal and Meth groups. 

 

Semi Quantitation of GFAP and Iba1 protein expression analysis (Western 

blotting) 

Proteins expressions of GFAP, Iba-1, and GAPDH in the CA1 region of the 

hippocampus were analyzed by using western blotting assay. The tissues were 

washed two times with PBS at first and then were squished and mixed with buffer 

Figure 2. Brain dissection and isolation of hippocampus in Normal and Meth groups.
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slides were stained using H&E, Nissl and Golgi 
techniques.

Semi Quantitation of GFAP and Iba1 protein 
expression analysis (Western blotting)

Proteins expressions of GFAP, Iba-1, and 
GAPDH in the CA1 region of the hippocampus 
were analyzed by using western blotting assay. 
The tissues were washed two times with PBS 
at first and then were squished and mixed 
with buffer and centrifuged for 15 min. The 
proteins were separated by electrophoresis using 
sodium dodecyl sulfate-polyacrylamide gel 
(SDS-PAGE). Afterward, they were moved to 
polyvinylidene difluoride (PVDF) and finally, 
they were examined with primary antibodies 
including rabbit polyclonal anti-GFAP (1:200), 
and human polyclonal anti-Iba1 (1:200). 
The secondary antibodies conjugated with 
horseradish peroxidase (HRP) (Cell Signaling 
Technology, USA). For internal Normalling, 
the GAPDH generation signal was used (24). 
Finally, Western Blot data were quantified by 
using ImageJ Software.

Immunohistochemistry 
The brains were post-fixed (1 Week) with 4% 

paraformaldehyde and then transferred to 30% 
sucrose (Sigma-Aldrich, Germany) solution 
until reaching equilibration. Afterward, the 
hippocampus segments were sectioned (8 μm in 
thickness) and stored at -20 °C in a cryoprotectant 
buffer containing 25% ethylene, 25% glycerin, 
and 0.05 M phosphate buffer (all from Sigma-
Aldrich, Germany). The slices were incubated 
by human monoclonal anti-GFAP and anti-Iba1 
(Abcam, USA) antibodies and diluted to 1:100 
overnight in the primary reaction. Subsequently, 
this process was followed by a similar washing 
with PBS, and 1-hour incubation with goat anti-
mouse FITC-conjugated secondary antibody 
(ab6785, Abcam, USA) at a 1:100 dilution in the 
second reaction. The tissue sections were washed 
with PBS, and the nuclei were counterstained by 
using DAPI (25).

Stereological study
The length of dendrite Estimation
To estimate the length, a vertical section was 

considered. A grid was superimposed on the 

microscopic images of the hippocampus. Using 
a microscope (Nikon E-200) connected to a 
computer, the dendrite lengths were measured 
by the following Equation:

where Q is the cell bodies of the neurons, 
I is the total number of intersections, and M is 
magnification (26).

Estimating the volume of the hippocampus
Using the stereological software, a grid of 

points was superimposed on the images. The 
Cavalieri method was used as an estimator of 
the hippocampus volume. The volume of the 
hippocampus was measured by the following 
Equation:

Where ƩP is the total point hitting the 
hippocampus. a/p is the area associated with 
point and t is the distance between the sample 
section (26).

 
Neurons and glial cells number Estimation
A counting frame grid was superimposed 

on the microscopic images. Then, a microcator 
was attached to the stage of the microscope to 
measure the z-axis in the tissue. The number of 
neurons and glial cells was determined by the 
optical dissector technique using the subsequent 
Equation (27):

In this Equation, ΣQ-” is the number of 
cell counted, “ΣP” is the total number of the 
microscopic fields, a/f is the area per frame, “h” 
is the height of the director, “t” is the real section 
thickness, and BA was the block advance of the 
microtome. 

The total number of the neurons was 
estimated by multiplying the numerical density 
(Nv) by the V (total).
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In this Equation, ΣQ-” is the number of cell counted, “ΣP” is the total number of 

the microscopic fields, a/f is the area per frame, “h” is the height of the director, 

“t” is the real section thickness, and BA was the block advance of the microtome. 

The total number of the neurons was estimated by multiplying the numerical 

density (Nv) by the V (total). 

 

 

Tunel assay 

Tunel assay was performed by using in-situ Cell Death Detection kit 

(fluorescence, Roche, CH). The CA1 region of the hippocampus was fixed, 

placed within paraffin, and mounted on glass slides. Then, the paraffin was 



Postmortem Study of Molecular and Histological Changes in the Hippocampus

2071

Tunel assay
Tunel assay was performed by using in-situ 

Cell Death Detection kit (fluorescence, Roche, 
CH). The CA1 region of the hippocampus was 
fixed, placed within paraffin, and mounted on 
glass slides. 

Then, the paraffin was removed by using 
Xylene and then rehydrated in a piecemeal 
series of ethanol. After washing it with water, 
the Tunel staining was performed and the Tunel 
protocols were applied. The results of Meth and 
Normal groups were evaluated by using ImageJ 
software.

Protein network
The genes were separately and both together 

accompanied by 50 relevant genes proceeded 
via protein query of STRING database. The 
PPI network was constructed by Cystoscope 
software version 3.6.0. Confidence = 0.4 and the 
undirected links were considered.

Statistical analysis 
The statistical analysis was done using 

IBM SPSS software. The significance level 
was analyzed using the analysis of variances 
(ANOVA). 

Moreover, for another statistical comparison 
of multiple means in the groups, One-
way ANOVA and Tukey’s post hoc test was 
performed. 

Results

Body mass index decreased in Meth users
The body mass index (BMI) is an indicator 

of weight status, and it is calculated by dividing 
weight in kilograms relative to the square of 
height in meter. There could be a potential 
association between Meth exposure and BMI. 
In our study, the BMI analysis demonstrated that 
there is a change in the BMI of Meth users and 
normal groups (Figure 3). Based on the results, 
a decrease in the BMI index is evident in the 
Meth groups comparing to the Normal groups 
(P < 0.05).

GFAP and Iba-1 protein levels are elevated 
in the CA1 hippocampal region in Meth users

The protein expression of Iba-1 and GFAP 
in the CA1 region of the hippocampal brain 
samples are shown in Figure 4 in the normal and 
Meth groups. Iba-1 and GFAP expression level 
increased by 2-fold in the CA1 hippocampal 
region of the Meth addicted brains in comparison 
with the Normal groups. Western Blot data is 
quantified by using ImageJ Software (P < 0.05).

Immunohistochemical of GFAP and Iba-1 
increased in the hippocampal region in Meth 
users

The CA1 region of the hippocampus in both 
Meth and Normal groups was investigated by 

and normal groups (Figure 3). Based on the results, a decrease in the BMI index 

is evident in the Meth groups comparing to the Normal groups (P < 0.05). 

 
Figure 3. BMI in Meth and Normal groups. The results showed that a significant decrease in the BMI 
of Meth groups compare to Normal groups. *: (P < 0.05). 
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Meth users 

The protein expression of Iba-1 and GFAP in the CA1 region of the hippocampal 

brain samples are shown in Figure 4 in the normal and Meth groups. Iba-1 and 

GFAP expression level increased by 2-fold in the CA1 hippocampal region of the 

Meth addicted brains in comparison with the Normal groups. Western Blot data 

is quantified by using ImageJ Software (P < 0.05). 
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using anti- GFAP and Iba-1 antibodies in order 
to detect the presence of these proteins in the 
re-filled areas (Figures 5 and 6). 

As shown in the figures, the expression 
of these protein markers was elevated in the 

CA1 hippocampal region of the Meth groups 
compared to the Normal groups (P < 0.05).

The nuclei were stained using DAPI. The 
apoptotic cells were Tunel positive and were 
merged with positive reaction cells (Figure 7). 
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Figure 4. Western blotting analysis of GFAP and Iba1 proteins in the CA1 region of the hippocampus in Meth and Normal groups. GFAP 
and Iba-1 protein levels are increased in the CA1 hippocampal region in Meth groups comparing to the Normal groups (*P < 0.05).
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Figure 4. Western blotting analysis of GFAP and Iba1 proteins in the CA1 region of the hippocampus 
in Meth and Normal groups. GFAP and Iba-1 protein levels are increased in the CA1 hippocampal 
region in Meth groups comparing to the Normal groups (*P < 0.05). 
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Figure 5. The expression of GFAP in Meth and Normal groups are shown in the upper row (Meth 
groups) and lower row (Normal groups). (A and D) nuclei stained by DAPI (Blue). (B and E) primary 
antibody to GFAP (Green). (C and F) merge. GFAP protein level increased in the CA1 region of the 
hippocampus in the Meth groups compared to Normal groups (*P < 0.05).  
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Figure 6. Expression of Iba-1 in Meth and Normal groups, upper row (Meth groups) lower row 
(Normal groups) (A and D) nuclei stained by DAPI (Blue). (B and E) primary antibody to Iba-
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Figure 6. Expression of Iba-1 in Meth and Normal groups, upper row (Meth groups) lower row (Normal groups) (A and D) nuclei 
stained by DAPI (Blue). (B and E) primary antibody to Iba-1(Green), (C and F) merge. Iba-1protein levels increased in the Meth groups 
compared to Normal groups (*P < 0.05).
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Figure 7. Tunel Assay in Meth and Normal groups, upper row (Meth groups) lower row (Normal 
groups). P < 0.05. The apoptosis increased in the CA1 region of the hippocampus in the Meth groups 
compared to the Normal. (A and D) nuclei stained by DAPI (Blue). (B and E) apoptotic cells (Green). 
(C and F) merge. The arrow shows the apoptotic cells. 
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The results of the Tunel test demonstrated that 
the average of Tunel positive cells count (103 
mm2) was 50 % in the Meth groups and 15 % in 
the Normal groups.

The volume of hippocumos and the number of 
neuron reduced and the number of the glial cells 
increased in the hippocampus in Meth users

The number estimation (stereological 
analysis) was done by H and E staining. The 
results indicated that the density of the cells is 
significantly different between the Meth and 
Normal groups. The number of the cells in the 

Meth groups was significantly less than that in 
the Normal groups. 

The total volume of the hippocampus was 
significantly decreased in the Meth groups in 
comparison with the Normal groups (P < 0.001). 
The total number of neurons in Meth groups 
decreased and the total number of glial cells 
increase in Meth groups in comparison with the 
Normal groups (P < 0.001). 

The total length of dendrites was also 
decreased in the Meth groups in comparison 
with the Normal groups (P < 0.001); (Figures 
8-11).
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Meth up regulated GFAP and Iba1 and four 
important nodes in the constructed network

Among 50 requested additional neighbor 
genes, only 12 ones were found and added to 
AIF1 and GFAP (Figure 12). 

Based on the degree value, TLR4, IL1B, 
CASP1, and NLRP3 are the four important 
nodes in the constructed network. As it is 
depicted in Figure 12, ITGAM is the potent 
mediate between GFAP and AIF1.
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Discussion

Postmortem molecular and histological 
analyses demonstrated that chronic Meth 
usage had an adverse effect on the Blood-
Brain Barrier (BBB) and CA1 hippocampal 
region. Astrocytes are the dominant glial cells 
that outnumber the neurons in the CNS and 
have been identified as a vital element in the 
function of blood-brain-barrier (BBB) (28). In 
several studies, alterations of BBB have been 
investigated before and after exposure to Meth 
(29-31). Following the exposure to Meth, the 
BBB function is modified due to the changes 
in astrocyte reactivity which ultimately lead to 
the diminished protection against any further 
toxicities, oxidative stress through glutathione 
production (32, 33) ammonia toxicity (34), and 
also to the regulation of inflammatory responses 
(35-37). 

With regards to the changes in the CA1 
region, one of these adverse effects of Meth 
is the elevation of GFAP and Iba-1 proteins 
expression in the CA1 region of Meth users’ 
hippocampus. The increased GFAP expression 
in the hippocampus of the chronic Meth users 
suggests that the hippocampus is susceptible to 
the disruptions in the blood-brain barrier which 
results in cytotoxic edema. Previous findings 
have demonstrated that the gene expression of 

GFAP remains significantly elevated after 32 
days of exposure to a Meth neurotoxic regimen 
(9). We showed that chronic Meth use induces 
significant activation of the astrocytes. According 
to the data obtained from the experimental studies 
of Meth-induced toxicity, intense microglial and 
astrocyte activation have been observed (14, 34 
and 38). In fact, these changes in the activation 
of astrocytes and microglia can clearly reflect 
a neurodegenerative response to Meth. GFAP 
immunohistochemistry is a widely used method 
for assessment of astrocyte reactivity and 
reactive astrocytosis following several CNS 
pathologies (39, 40). According to another study, 
the neurotoxic dosage of Meth induces a sharp 
increase in GFAP in the subgranular zone of the 
Dentate gyrus which is expressed in the process 
of neurodegeneration (41). 

As mentioned above, Meth-induced toxicity 
is also related to the activation of microglia in 
several different areas of the affected brain (42, 
43). Activated microglia have been detected in 
the brains of animals and humans who were 
exposed to Meth (44-47). Thomas et al. have 
demonstrated that after treating animals with 
a neurotoxic Meth regimen, leaving them to 
recover for 7 days, and then exposing them with 
another neurotoxic regimen of Meth, they had 
no other significant microglial activation (48). 
Microglia is the primary antigen-presenting 

Figure 12. A network including AIF1, Iba1, GFAP and 12 relevant genes are constructed. 
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cells in the CNS and they can migrate to the site 
of injury after changing their morphology, and 
start secreting their specific proinflammatory 
cytokines or some other factors that may trigger 
and develop inflammation in the brain tissue 
(49-51). By activation of microglia, several 
cytokines, ROS and RNS have been expressed 
subsequently which may be implicated in 
increasing neurotoxicity. Actually, activated 
astrocytes and/or microglia may induce 
releasing of cytokine and disruption in the 
recovery of function which follows the Meth-
induced toxicity. Reactivated microgliosis 
is a specific marker for severe damage to 
dopamine terminals after a neurotoxic Meth 
regimen. However, a critical question remains 
unanswered concerning the exact role of reactive 
microgliosis in contributing or mirroring Meth-
induced neurotoxicity (9). Based on the previous 
data, we can conclude that in comparison with 
astrocytes, the activation of microglia has a 
greater association with the acute toxic effects 
of Meth (52). We cannot eliminate the potential 
character of persistent astrocyte activation in 
promoting resistance to acute Meth-induced 
neurotoxicity. On the other hand, it has been 
proved that astrocytes have a crucial role in 
the normal functioning of the brain, such as 
neurotransmission. Changes in their function 
have been detected in several diseases of the 
central nervous system. Our histological and 
stereological results showed that glial and 
neuronal alternations occur in Meth users’ 
hippocampus. Our result revealed an increase 
in the neuron shrinkage and pyknotic changes 
in the CA1 region and a decrease in the total 
volume of the hippocampus of the Meth groups. 
A total number of the neuron and glial cells 
and the total length of dendrites in Meth groups 
also decreased in comparison with the Normal 
groups. These results confirm the toxic effects 
of Meth on the CA1 hippocampal tissue, which 
has not been reported for human specimens. 
Understanding the precise role of neuroglial 
cells in Meth-induced toxicity is a crucial step 
in identifying key factors that contribute to or 
mitigate Meth-induced damage. Glia cells could 
be targeted for the treatment of Meth addiction 
based on several studies. For instance, in a 
postmortem study by Arezomandan et al. it has 

been indicated that glial activation could be 
implicated in the maintenance and reinstatement 
of Meth-seeking behaviors. It clarified the role 
of glial cells in these processes particularly in the 
maintenance and reinstatement of Meth-induced 
conditioned place preference (CPP) in rats (53). 
Inflammation and gliosis have a prominent role 
in Meth users. The GFAP plays a critical role 
in astrogliosis in neurodegeneration and on the 
other hand Iba1 is critical in neuroinflammation. 
By investigating the four crucial genes in the 
protein network of GFAP and Iba1, It is evident 
that they are completely correlated with each 
other and involved in the immune system and 
apoptosis as well (54). A new feature of the 
molecular mechanism of the effects of the 
Meth in CA1 hippocampus is explored by 
this investigation. The critical role of ITGAM 
(highlighted as intramembranous protein) which 
mediate these processes with the query genes is 
significant (55).

Conclusion
 
Chronic Meth uses probably induce GFAP 

and Iba-1 upregulation and neuronal apoptosis in 
the CA1 region of the postmortem hippocampus.
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