Phytochemical Analysis and Biological Activity of *Salvia compressa* Vent

Firoozeh Noorbakhsh¹, Somayeh Zare¹, Omidreza Firuzi¹, Amirhossein Sakhteman², Jima N. Chandran³, Bernd Schneider³ and Amir Reza Jassbi ⁴, *

¹Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
²Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
³Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
⁴Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran

Corresponding author: Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran. Email: jassbiar@sums.ac.ir

Received 2022 April 25; Revised 2022 August 01; Accepted 2022 August 11.

Abstract

Background: *Salvia* extracts have various biological activities and are rich sources of bioactive metabolites.

Objectives: We identified five phytochemicals from *S. compressa* extract and assessed their biological properties.

Methods: The plant’s shoots were extracted using dichloromethane, and the constituents were isolated using column chromatography. High-resolution NMR spectroscopy characterized the chemical structures of the compounds (1 - 5). The cytotoxic effect of the extract was examined against MCF-7 cells by MTT reduction assay, while cisplatin was tested as a reference cytotoxic compound. The antibacterial activity was assessed using nutrient broth micro-dilution (NBMD), and chloramphenicol was used as the positive control.

Results: Citrostadienol (1), β-sitosterol (2), two glyceride esters of linolenic, linoleic, and palmitic acids (3, 4), and geraniol (5) were isolated from *S. compressa* for the first time. The extract showed activity against MCF-7 breast cancer cells and reduced cell viability to 68.2 ± 13.1% compared to the control drug at the concentration of 50 µg/mL, while it was not active against seven test bacteria.

Conclusions: The anti-complementary activity of the isolated steroids suggests *S. compressa* for future anti-inflammatory research.

Keywords: *Salvia compressa* Vent, Cytotoxic Activity, Steroids, Geraniol

1. Background

 Salvia L. is one of the most important genera of *Lamiaceae*, known for its medicinal activity (1). The *Salvia* genus consists of 64 species in the Iranian flora, of which 17 are endemic (2, 3). Many studies have suggested different biological activities for sage extracts and their pure metabolites, including antiprotozoal, antifungal, antibacterial, insecticidal, and anticancer (1, 4, 5). Terpenoids and phenolics are major phytochemicals isolated from *Salvia* species (1). A literature survey showed a study on exudate flavonoids of *S. compressa*. The surface exudate of *S. compressa* was predominated in polar caffeic acid derivatives and contained trace amounts of apigenin and quercetin-3-methyl ether (6). Researchers have used GC and GC-MS analyses to determine the constituents of *S. compressa* essential oils collected from different localities of Iran, showing constituents mainly monoterprenoids, such as geraniol, nerol, bornol, and α-pinene, and sesquiterpenoids, such as β-caryophyllene, caryophyllene oxide, germacrene D, and bi-cyclogermacrene (7-10).

2. Objectives

Here, we report the isolation and structure elucidation of sterols and glycerides from the CH₂Cl₂ shoot extract of *S. compressa*. In addition, we determined the cytotoxic activity of the extract against MCF-7 using MTT assay and antibacterial effect against four Gram-negative bacteria and three Gram-positive bacteria using nutrient broth micro-dilution (NBMD) antibacterial bioassay.

3. Methods

1D-NMR experiments including 1H NMR (500 MHz) and APT 13C NMR (125 MHz) and 2D-NMR experiments including 1H-1H COSY, HSQC, HMBC, and NOESY were recorded were recorded on a Bruker Avance III HD 500 NMR instrument (Karlsruhe, Germany). Chromatographic
techniques were applied to separate compounds, including open columns chromatography using silica gel 60 (0.063 - 0.200 mm), flash column chromatography (FCC) using silica gel 60 (0.040 - 0.063 mm), and thin layer chromatography (TLC) using pre-coated silica gel 60 F254 plates (Merck, Darmstadt, Germany). The solvents were obtained from Merck (Darmstadt, Germany). A human breast adenocarcinoma (MCF-7) cell line was obtained from the Iranian Biological Resource Center, Tehran, Iran. RPMI 1640, Phosphate-buffered Saline (PBS), and fetal bovine serum (FBS) were acquired from the Iranian Biological Resource Center, Tehran, Iran. RPMI 1640, Phosphate-buffered Saline (PBS), and fetal bovine serum (FBS) were acquired from EBEWE Pharma (Un-

3.1. Plant Materials

Salvia compressa Vent. was collected in April 2017 from Fasa, Fars province, Iran (N 29° 34'; E 53° 37'; 1,444 m altitude). The plant material was identified by Mr. Mehdi Zare. Voucher specimen number PC-98-3:8-19-2 is kept at the Herbarium of medicinal and natural products chemistry research center (MNCRC), Shiraz university of medical sciences, Shiraz, Iran (2).

3.2. Extraction and Isolation

Dried shoots of *S. compressa* (100 g) were extracted by maceration at room temperature for 48 h with CH2Cl2 (2 × each 1 L). The crude extract (3.4 g) was vacuumed-dried at 40°C. The residue was subjected to column chromatography (50 × 5 cm) on silica gel 60. The elution was performed by applying a linear gradient from 100% n-hexane up to 100% CH2Cl2, followed by MeOH to yield 32 fractions. The similar fractions Fr.18 to Fr.21 were mixed (368 mg) and subjected to silica gel FCC using the mobile phase of diethyl ether ((C2H5)2O): n-hexane (10:90) with increasing polarity to 100% (C2H5)2O, to yield 28 fractions. Fr.18-6 was pure compound 3 (11 mg). Fr.18-24 to 18-26 were mixed and further purified by reversed-phase semi-preparative HPLC using 100% methanol at λ of 210 nm and a 4 mL/min flow rate to yield Fr.18-25 to 27 as compound 2 (2.1 mg). Fr.22 to Fr.24 were pooled and loaded on 5% AgNO3-silica gel impregnated FCC (20 × 2 cm). The column was eluted using (C2H5)2O in n-hexane (50:50) with a solvent gradient to 100% (C2H5)2O, which yielded 15 fractions: Fr.22-1 to Fr.22-15. Compound 5 (0.7 mg) was purified from Fr.22-10 of the above-mentioned column.

3.3. Spectral Data

3.3.1. Compound 1

1H-NMR (500 MHz, CDCl3) δ 5.18 (dd, J = 6.4, 2.0 Hz, H-7), 5.11 (q, J = 6.5 Hz, H-28), 3.12 (brt, J = 10.5 Hz, H-3), 2.83 (sept, J = 7.0 Hz, H-25), 1.59 (m, overlapped, Me-29), 1.00 (d, J = 6.3 Hz, Me-30), 0.98 (d, J = 7.0 Hz, Me-27), 0.97 (d, J = 7.0 Hz, Me-26), 0.95 (d, J = 6.5 Hz, Me-21) 0.83 (s, Me-19), 0.54 (s, Me-18).

13C-NMR (125 MHz, CDCl3) δ 145.9 (C-24), 139.3 (C-8), 117.6 (C-7), 116.6 (C-28), 76.4 (C-3), 56.1 (C-17), 55.4 (C-14), 49.8 (C-9), 46.8 (C-5), 43.5 (C-13), 40.4 (C-4), 39.7 (C-12), 37.1 (C-11), 36.7 (C-20), 36.0 (C-22), 35.0 (C-10), 31.1 (C-2), 28.7 (C-25), 28.1 (C-16), 28.1 (C-23), 26.8 (C-6), 23.1 (C-15), 21.5 (C-11), 21.3 (C-27), 21.2 (C-26), 19.1 (C-21), 15.3 (C-30), 14.3 (C-19), 12.9 (C-29), 12.0 (C-18) (11).

3.3.2. Compound 2

1H-NMR (500 MHz, CDCl3) δ 5.35 (d, J = 5.1 Hz, H-6), 3.52 (dddd, J = 11.0, 10.4, 4.6, 4.6 Hz, H-3), 1.00 (s, Me-19), 0.92 (d, J = 6.6 Hz, Me-21), 0.84 (d, J = 7.5 Hz, Me-29), 0.84 (d, J = 6.8 Hz, Me-27), 0.81 (d, J = 6.8 Hz, Me-26), 0.67 (s, Me-18).

13C-NMR (125 MHz, CDCl3) δ 37.4 (C-4), 31.8 (C-2), 71.9 (C-3), 42.4 (C-4), 140.9 (C-5), 121.9 (C-6), 32.0 (C-7), 32.0 (C-8), 50.2 (C-9), 36.6 (C-10), 21.2 (C-11), 39.9 (C-12), 42.4 (C-13), 56.2 (C-14), 24.4 (C-15), 28.4 (C-16), 56.9 (C-17), 12.0 (C-18), 19.5 (C-19), 36.3 (C-20), 18.9 (C-21), 34.1 (C-22), 26.1 (C-23), 45.9 (C-24), 29.1 (C-25), 20.0 (C-26), 19.2 (C-27), 23.2 (C-28), 12.1 (C-29) (12).

3.3.3. Compound 3

1H-NMR (500 MHz, CDCl3) δ 5.30 – 5.44 (m, 10H, olefinic), 5.27 (tt, J = 6.0,4.3 Hz, H-2), 4.30 (dd, J = 11.9,4.3 Hz, H-1a, H-3a), 4.15 (dd, J = 11.9, 6.0 Hz, H-1b, H-3b), 2.81 (ddd, J = 7.1, 5.5 Hz, 4H, double allylic), 2.77 (t, J = 6.7 Hz, 2H, double allylic), 2.31 (m, 6H, H-2’,H-2”, H-4”), 2.06 (m, 8H, allylic), 1.98 (m, 2H), 1.62 (m, 6H, H-3’, H-3”, H-3’”), 0.97 (t, J = 7.5 Hz, methyl), 0.88 (t, J = 7.0 Hz, methyl), 0.87 (t, J = 7.0 Hz, methyl) (13, 14).

13C-NMR (125 MHz, CDCl3) δ 173.4, 173.4, 172.9 (C-1’, C-3’), 132.1, 130.3, 130.1, 129.8, 128.4, 128.3, 128.2, 128.0, 127.9, 127.2 (olefinic), 69.0 (C-2’), 62.2 × 2 (C-1 and C-3), 34.3, 34.2, 34.1 (C-2’-2”,2’”, 3”), 32.0, 32.0 (C-14’, C16”), 31.6, 29.9, 29.8 × 4, 29.7 × 3, 29.6 × 2, 29.5 × 3, 29.4, 29.3 × 2, 29.2 × 4 (envelope methylene), 27.3 × 3 (allylic), 25.8, 25.7, 25.6 (double allylic), 25.0, 25.0, 24.9 (C-3’, 3”, 3’”), 22.8, 22.7 (C-15’, 17”), 20.7 (C-17”, allylic), 14.4, 14.3, 14.2 (terminal methyls) (13, 15, 16).

3.3.4. Compound 4

1H-NMR (500 MHz, CDCl3) δ 5.43–5.30 (m, 6H, olefinic), 5.26 (quintet, J = 5.5 Hz, H-2 of triglyceride), 4.29 (dd, J =

3.3.5. Compound 5

13C-NMR (125 MHz, CDCl$_3$) δ 173.4, 173.0, 172.9, 132.1, 130.4, 130.2, 129.8, 128.4, 128.2, 128.0, 127.9, 127.2 (olefinic carbons), 69.0 (C-2), 65.2 (C-1/C-3, 1,3-diglyceride), 62.2 (C-1/C-3, triglyceride), 34.3 \times 3 (C-2’, 2”, 2’”), 32.1, 32.0 (C14’, C16”), 31.7, 29.9, 29.8 \times 4, 29.7 \times 3, 29.6, 29.5 \times 3, 29.3 \times 4, 29.2 \times 2 (envelope methylene), 27.3 \times 3 (allylic), 25.8, 25.8, 25.7 (double allylic), 25.0, 25.0, 24.9 (C-3’, 3”, 3’”), 22.8, 22.8, 22.7 (C-15’, 17”), 20.7 (C-17”, allylic), 14.3, 14.2, 14.2 (terminal methyls) (13, 15, 16).

3.3.5. Compound 5

1H-NMR (500 MHz, CDCl$_3$) δ 5.42 (tq, $J = 7.0,1.4$ Hz, H-2), 5.09 (tq, $J = 7.0,1.4$ Hz, H-6), 4.16 (d, $J = 7.0$ Hz, H-1), 2.10 (m, H-5), 2.03 (dd, $J = 9.5,6.5$ Hz, H-4), 1.68 (s, Me-9, Me-10), 1.61 (s, Me-8) (17).

3.4. Cytotoxicity Assay

The cytotoxic effect of the extract was examined against cancer cells by MTT reduction assay. The MCF-7 cells were grown in complete media, consisting of RPMI1640 medium, FBS (10%v/v), antibiotics penicillin 100 units/mL, and streptomycin 100 μg/mL. The cells were cultured in humidified air containing 5% CO$_2$ at 37°C in monolayer cultures. A 96-well test plate was used for seeding cells at a 30,000 cells/mL density, followed by incubation overnight. Afterward, the extract diluted in a growth medium was added to wells in triplicate at 3-4 different concentrations in the range of 10 to 100 μg/mL. The extract was dissolved in dimethyl sulfoxide (DMSO) and further diluted in the growth medium. The maximum DMSO concentration in the test plates was kept below 0.5%. After 72 h of incubation, the content of each well was removed, and 0.5 mg/mL MTT dissolved in RPMI medium without phenol red was added. After 4 h of incubation at 37°C, DMSO was added to solubilize the formazan crystals for an additional two hours. The absorbance of each well was measured at 570 nm, with background correction at 655 nm using a microplate reader (Bio-Rad) (5).

3.5. Antibacterial Test

The antibacterial activity of the extract was assessed against four Gram-negative bacteria, including Klebsiella pneumonia: PTCC1053, Escherichia coli: PTCC1330, Pseudomonas aeruginosa: PTCC1074, and Salmonella typhi: PTCC609, and three Gram-positive bacteria, including Staphylococcus epidermidis: PTCC1114, Staphylococcus aureus: PTCC1112, and Bacillus subtilis: PTCC1023. The test was performed as previously described (19). Nutrient broth micro-dilution was performed in the media containing the plant extracts with final concentrations of 5 and 2.5 mg/mL, respectively. In addition, chloramphenicol was used as the positive control at the final concentrations of 0.4, 0.2, 0.1, 0.05, 0.025, and 0.0125 mg/mL in the media. For doing so, 5 μL of the extract solution or positive control in DMSO were added to 95 μL of fresh media and 100 μL of bacterial suspension in a 96-well microplate. After incubating at 37°C for 24 h in a shaking incubator, 10 μL of 0.5% INT solution was added to the test solution and incubated for 30 minutes.

4. Results and Discussion

Different chromatographic techniques were used to isolate two steroids (compounds 1 and 2) and two glycerides (compounds 3 and 4), and geraniol (compound 5) from the CH$_2$Cl$_2$ extract of S. compressa. Spectroscopic analyses, including 1D- and 2D-NMR techniques, were employed to identify the chemical structures of the isolates. The structures of compounds 1-5 (Figure 1) were deduced as described below.

Compound 1 was determined as citrostadienol, (24Z, 4α,6α-ethyl-5β-stigmasta-7,24(28)-dien-3β-ol, a phytosterol that has been isolated from different sources such as Schisandra chinensis (11) and Solanum melongena (eggplant) (20). The 1H- and 13C-NMR spectra of 1 agree well with the reported data (11, 20). The phytosterols were reported as highly anti-complementary active compounds (21). The proteins of the complement system were activated by a cascade mechanism and played an essential role in the process of allergic reactions and inflammation in addition to the host defense (11). Citrostadienol showed potent anti-complementary activity on the classical pathway with the IC$_{50}$ of 4.6 \times 10$^{-8}$ M. Lee et al. Compared citrostadienol with other active phytosterols and concluded that it possessed the essential OH group at C-3 in addition to the C-4 methyl and C-7 double bond for the anti-complementarity activity. Therefore, its high potency may be ascribed to some of these structural differences from other sterols (11).

Compound 2 was determined as β-sitosterol based on its 1H-NMR and 13C-APT-NMR spectra. The 1H-NMR spectrum showed one olefinic proton at δ 5.28, which suggested unsaturation at C-5/C-6 in the chemical structure of compound 2. The oxymethine group at δ 3.50 showed the multiplicity four times doublets with coupling constant val-
structures of compounds 1-5 isolated from CH$_2$Cl$_2$ extract of S. compressa.

Figure 1: Structures of compounds 1-5 isolated from CH$_2$Cl$_2$ extract of S. compressa
and linolenic acids.

Compound 4 was a mixture of 1,3-diglyceride and triglyceride based on the same interpretation for compound 3. The 13C-APT-NMR spectrum of compound 4 showed three signals at 69.0 (C-2), 65.2 (C-1/C-3, 1,3-diglyceride), and 62.2 (C-1/C-3, triglyceride) for the carbon atoms on the glycerol backbone. The first C-2 signal is characteristic for both 1,3-diglycerides and triglycerides, while the signal of δ 65.2 is only observed for the C-1 (3) of 1,3-diglycerides, and the last signal at δ 62.2 is considered for triglycerides (15). In addition to the presence of two proton signals of H-1b and H-3b attached to δ(3) carbon atoms of glycerol, there is another signal at δ ± 4.14 (3H) attributed to the presence of a free CHOH at C-2. The olefinic protons at δ 5.43 - 5.30 (6H), four double allylic signals at δ 2.81 and 2.77, and six allylic signals at δ 2.00 supported the above suggestion. The acyl groups are the same as linolenic and linoleic, as described earlier for compound 4.

Compound 5 was identified as geraniol or (2E)-3,7-dimethylocta-2,6-dien-1-ol and was isolated as a colorless oily liquid. It had a sweet, fruity, and berry-like smell, as previously described (25). Its 1H and 13C-APT-NMR spectra agreed with the reported data (17,18). Geraniol is a valuable fragrant substance in the perfume industry and industrial synthesis of vitamins A and E (26,27), and respells the booklouse, Liposcelis bostrychophila, and the red flour beetle (18).

The CH$_2$Cl$_2$ extract showed a mild effect and lowered the MCF-7 cell viability to 68.2 ± 13.1% (mean ± SEM) at the concentration of 50 µg/mL compared to the average IC50 of cisplatin, 17.0 ± 3.4 µg/mL. On the other hand, none of the bacterial strains was susceptible to the extract at 2.5 and 5 mg/mL in the NBMD method. The MIC values of the positive control, chloramphenicol, were 0.05, 0.05, 0.05, and 0.025 mg/mL for Gram-negative bacteria, including K. pneumonia, E. coli, S. typhi, and P. aeruginosa, and 0.05, 0.0125, and 0.0125 mg/mL for Gram-positive bacteria, including S. epidermidis, S. aureus, and B. subtilis, respectively. Although some Iranian Salvia species have shown good cytotoxic and antibacterial activities due to the presence of triterpenoids (28), labdane and abietane diterpenoids (4), and essential oils (19), the CH$_2$Cl$_2$ extract of S. compressa only showed mild cytotoxic and weak antibacterial activities.

5. Conclusions

The present research is the first report on the characterization of nonvolatile phytochemicals from the shoots of S. compressa. Although the plant extract was not an active antibacterial and showed moderate cytotoxic activity, due to the presence of the rare steroid citrostadienol, it may show potential anti-inflammatory activity in future research.

Acknowledgments

The authors thank the Elite Researcher Grant Committee for an award [943640] to conduct the current research from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Footnotes

Authors’ Contribution: FN.: study concept and design, data acquisition, manuscript drafting data analysis and interpretation. S. Z.: data acquisition, data analysis and interpretation, and manuscript drafting. A. S.: Administrative, technical, and material support. O. E.: manuscript drafting, data analysis, and interpretation. J. N. C.: administrative, technical, and material support. B. S.: administrative, technical, and material support, critical revision of the manuscript for important intellectual content. A.R. J.: study supervision, data analysis, and interpretation, critical revision of the manuscript for important intellectual content.

Conflict of Interests: ARJ is reviewer of IJPR. The paper was supported by a NIMAD Grant. There is no support from any company in which the authors have stock shares. No patents and no consultant fees are earned regarding this manuscript. Omidreza Firuzi is not an editorial member of IJPR but may be a reviewer of some papers in IJPR.

Data Reproducibility: The data presented in this study are uploaded during submission as a supplementary file and are openly available for readers upon request. The 1D- and 2D-NMR spectra of compounds 1-5 are available as supporting information.

Funding/Support: The authors thank the Elite Researcher Grant Committee for an award [943640] to conduct the current research from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran. (nimad.ac.ir/index.php?sid=1&slct_pg_id=25&slc_lang=fa)

References

