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Abstract
Stress-dependent disorders cause severe harm to human health and trigger the risk of 

neurodegenerative disorder. Corticotropin-releasing factor-1 receptor was found to be a potent 
drug target.We evaluate the essential structural residues for pharmacophore identification through 
2D and 3D QSAR analysis and identify the binding residues for a possible mechanism of CRF-
1 binding with 1,2,3,4-tetrahydropyrimido[1,2-a]benzimidazole derivatives through molecular 
docking and molecular dynamics simulations. The best 2D QSAR model was obtained through 
the MLR method with an r2 value of 0.8039 and a q2 value of 0.6311. Also,a 3D QSAR model 
was generated through the KNN MFA method with a q2 value of 0.6013 and a q2_se value of 
0.3167. Further, docking analysis revealed that residue Glu196 and Lys334 were involved in 
hydrogen bonding and Trp9 in Π- Π stacking. Simulation analysis proves that target protein 
interactions with ligands were stable, and changes were acceptable for small and globular 
proteins. Compound B18, a benzimidazole derivative, has an excellent binding affinity towards 
CRF-1 protein compared to reference molecules; hence, this compound could be a potential drug 
candidate for stress-dependent disorders. Based on findings, 1,2,3,4-tetrahydropyrimido[1,2-a]
benzimidazole derivatives could be a novel class of corticotropin-releasing factor 1 receptor 
antagonists for stress-related disorders. All benzimidazole derivatives were found to be within the 
acceptable range of physicochemical properties. Hence, these observations could provide valuable 
information for the design and development of novel and potent CRF-1 receptor antagonists.

Keywords: Stress-dependent disorders; Corticotropin-Releasing Factor-1; 
1,2,3,4-tetrahydropyrimido[1,2-a]benzimidazole derivatives; Molecular docking; Molecular 
dynamics simulations; QSAR.

Introduction

Depression, anxiety and stress are the most 
prominent psychiatric disorders and play an 
important role in the onset of neurodegenerative 
disorders (1). Stress is a life-saving 
mechanism that has been figured and refined 
throughout evolution, and anxiety is a general 
response to stress (2, 3). Exposure to stress 

leads to a decrease in cognitive performance 
and anincrease in memory consolidation 
and can contribute to Alzheimer’s disease 
(4-7). In stress-related disorders, the stress 
response is an extremely arranged mechanism 
whereby the body expeditiously activates the 
hypothalamic-pituitary-adrenocortical (HPA) 
axis and autonomic nervous system (8, 9). 
This activation is responsible for releasing 
an enormous number of neuropeptides, 
neurotransmitters and hormones to restore 
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homeostasis as adaptive reactions (9). 
Corticotropin-releasing factor (CRF) is a 

principal mediator of the stress response on 
the HPA axis due to its ability to integrate 
physiological responses to react against 
a stressor (10). CRF is a 41-amino acid-
containing polypeptide secreted at the onset 
of stress in the paraventricular nucleus of the 
hypothalamus and implicated in depression 
and anxiety disorders (11-14). CRF regulates 
the HPA axis at the pituitary level and triggers 
stress-related events like secretion of the 
corticosteroids in the adrenal cortex (14). 
Various research investigations prove that 
elevated CRF levels were found in behavioral- 
and stress-related physiological disorders (13-
15). The actions of CRF are mediated through 
two types of G-protein coupled receptors, 
CRF-1 and CRF-2 and CRF-1 receptor is 
mainly distributed throughout the central and 
peripheral nervous system (16). Many studies 
have been conducted to discern the roles of 
CRF-1 and CRF-2 receptors in stress-related 
physiological and behavioral processes to 
gain insight into anxiety and major depressive 
disorders. CRF-1 binds with CRF receptors 
with high affinity and mediates the effects of 
CRF. It has been proved that CRF-1 deficient 
mice show reduced anxiety-related behavior, 
and overexpression of CRF in transgenic 
mice show increased anxiety-related disorders 
(17-20). In keeping with this, the concept is 
dawning that CRF, its congeners and their 
receptors form an intricate network in the 
brain that potentially provides various targets 
for drug intervention. These findings lead 
that CRF-1 is an attractive target for drug 
development programs for stress-related 
disorders. 

There are various CRF-1 receptor 
antagonists developed which still, no one can 
become potential drug due to various factors, 
including adverse side effects, tolerance, 
long latency of clinical effect and additive 
potential. Hence, development of potential 
CRF-1 receptor antagonists is quite essential 
to overcome stress related disorders. 

Computer-aided drug design (CADD) 
is a smart way to design and develop novel 
molecules. This approach reduces the cost of 
the drug discovery program and minimizes 
the chance of failures in the final step (21, 22). 

Quantitative structure-activity relationship 
study is a credible strategy in drug discovery 
which defines the insights of variation in 
chemical structure toward the biological 
activity for differentiating drug-like from 
nondrug-like molecules (23).

3D quantitative structure-activity 
relationships (3D QSAR) and pharmacophore 
modeling are the most important and widely 
used tools in ligand-based drug design. In this 
investigation, the ligand-based drug design 
approach was applied for pharmacophore 
identification and binding pattern recognition. 
We performed QSAR modeling of selected 
benzimidazole derivatives to identify essential 
pharmacophoric features and performed 
docking and dynamics simulation analysis to 
predict binding mechanism. In addition, we 
had executed physicochemical parameters 
calculations for predicting the drug-like 
ability. We hope this information could be 
used to facilitate thedevelopment and design 
of novel CRF-1antagonists.

Experimental 

The 1,2,3,4-tetrahydropyrimido[1,2-a]
benzimidazole derivatives with the 
antagonistic activity of the CRF-1 receptor 
(24) as selected for the computational 
study (Supplementary File, Table S1). The 
biological activity of derivatives was IC50 
in the nanomolar unit which was expressed 
in molar scale and converted into a negative 
logarithmic value (pIC50).

Pharmacophore modeling
To identify the pharmacophore, we 

performed 2D and 3D QSAR analysis through 
VLife Molecular Design Suite (VLife MDS; 
Supplied by VLife Science Technologies, 
Pune, India). 

For 2D QSAR, physicochemical and 
alignment independent 2D descriptors were 
calculated in the 2D-QSAR module with the 
removal of invariable descriptors.Further, 
the data set was divided into test and training 
sets. Test and training data set selection was 
validated by unicolumn statistics. Multiple 
linear regression (MLR) method coupled with 
the stepwise,forward and backward variable 
selection models was applied for generating 
the best 2D QSAR model with default settings. 
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For 3D QSAR, the k-nearest neighbor 
molecular field analysis (kNN MFA) method 
was applied with a common rectangular grid 
generation to align a set of molecules. The 
steric and electrostatic field descriptors were 
calculated with distance-dependent dielectric 
function. The carbon atom was selected in 
probe settings with charge 1.0, electrostatic 
and steric cutoffs selected as 10.0 and 30.0 
kcal/mol, respectively. In addition, data sets 
were divided into training and test sets. The 
3D QSAR equation was generated by the 
kNN MFA model coupled with the stepwise, 
forward and backward variable selection 
models. 

Molecular docking
For evaluation of binding pattern with CRF-

1 protein, molecular docking analysis was 
performed (25). The crystal structure of the 
extracellular domain of human corticotropin-
releasing factor receptor type 1 (CRFR1) 
in complex with CRF (PDB ID: 3EHT) was 
retrieved from Protein Data Bank (PDB) (26). 
The co-crystallized structure was prepared by 
the protein preparation tool where missing 
loops, hydrogens and atoms were added to 
the structure to make them ready for the next 
step. In the next step, restrained minimization 
was done to remove steric clashes of the 
atoms and hydrogen bond assignment using 
Propka. The reported CRF-1 antagonists such 
as Emicerfont, Verucerfont and Pexacerfont 
were selected as references, and further 
ligands were prepared using the Ligprep tool. 
All possible tautomers and low energy ring 
conformation states were generated for each 
ligand. Glide-grid was generated as 20 Å size 
into the ligand binding region by removing 
the co-crystallized ligand CRF. Docking was 
executed in extra precision mode with the 
selection of post docking minimization (25).

Binding energy calculation
The data set was carried out for binding 

free energy calculations by using the Prime/
MMGBSA tool of the maestro. Local 
optimization feature was used to minimize 
the docked poses in prime, where the energies 
of the complexes were computed using the 
OPLS-AA 2005 force field and generalized-
Born/surface area (GB/SA) continuum solvent 

model (27). The binding free energy was 
computed using the below Equation:

∆Gbind= ∆E+ ∆Gsolv+ ∆GSA

Where, ∆Gbind is the binding free energy, 
ΔE, ∆Gsolv and ∆GSA are considered as the 
minimized energy, solvation free energy and 
surface free energy of the complexes. 

Molecular dynamics simulations
Molecular dynamics simulation analysis 

was performed through the Desmond tool of 
Schrodinger for the protein-ligand complex. 
Among all evaluated compounds, the top 
one compound was selected for simulations 
based on binding energy, hydrogen bonds 
and docking scores. In the present work, we 
selected compound B18 for MD simulation 
studies. Prior to simulation, a solvated 
system was generated by selecting POPC as 
membrane, SPC as a solvent model with a 
10.0 Å box size. The salt concentration was 
maintained as 0.15 M of Na+ and Cl- ions to 
achieve physiological conditions.

Furthermore, the energy of the solvated 
complex was minimized by a maximum of 
2000 iterations. The processed complex was 
retrieved from the workspace to the molecular 
dynamics window, and the NPT ensemble 
was set at 1.01325 bar pressure and 300.0 K. 
Additionally, after model system relaxation, a 
20ns simulation was performed, and a 4.8 ps 
time interval was set for trajectory recording. 
In addition, conformational behavior and 
complex stability were analyzed through 
ligand-protein RMSD, RMSF, protein-ligand 
contacts charts. 

Physicochemical parameters calculation
Physicochemical parameters evaluation is 

essential to design an ideal drug. Hence, we 
evaluated all compounds for physicochemical 
parameters calculations using the QikProp 
tool of the maestro. 

Results and Discussion

Validation of 2D and 3D QSAR model
For 2D QSAR
The substituted benzimidazole derivatives 

were selected and divided into training and test 
sets with16 and 4 compounds, respectively. 
The data set selection was validated through 
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uni-column statistics (Table 1).
The maximum of the test set was found to 

be less than the maximum of the training set 
and the minimum of the test set was greater 
than the minimum of the training set. Hence, 
the test set was found to be interpolative 
within the maximum-minimum ranges of the 
training set along with the standard deviation 
of statistics. This validated data set was 
applied to generate a robust 2D QSAR model 
via different statistical methods. The best 
significant QSAR model was obtained through 
multiple linear regression (MLR) coupled with 
stepwise, forward and backward methods. The 
model is given in Equation 1:

pIC50 = -1.04 (T_N_O_6) -0.20 (T_2_N_6) 
0.25 (chi1) + 5.22                          Equation 1.

Where T_N_O_6, T_2_N_6 and chi1 
are the descriptors indicating their position 
along with their respective coefficients and 
regression constant is the last numerical term 
in this equation. 

The other statistical parameters used to 
evaluate the quality and stability of the model 
are given in Table 2. 

The squared correlation coefficient 
explains the quality of fit by 80% of the total 
variance in the training set. A high r2 and low 
standard error r2 (r2_se) value of 0.8039 and 
0.2492 denotes the accuracy of the obtained 
model. It also has an internal (q2) and 
external (pred_r2) predictive ability of ~63% 
and ~49%, respectively. These parameters 
indicate that obtained model indicated an 
excellent correlation between activity and 
physicochemical descriptors. Thus obtained 
MLR obtained model is robust. 

The fitness plot describes an idea about 
how well the model was trained and how well 
it predicts the activity of the external test set 
(Figure 1). In this plot, points were near to 
the regression line showing true prediction of 
training set activity and external test set. The 
predicted and residual activity of data sets was 
given in Table S1 of supplementary data.

Table 1. Uni-column statistics results for 2D and 3D QSAR analysis. 

 Average Max Min StdDev Sum 

2D QSAR 
Activity (Training set) 7.2188 8.1490 6.4950 0.5033 115.5000 

Activity (Test set) 7.4247 7.9590 6.9590 0.4125 29.6990 

3D QSAR 
Activity (Training set) 7.2619 8.1487 6.4949 0.5016 94.4051 

Activity (Test set) 7.3465 7.9586 6.6778 0.5870 29.3860 

 
  

Table 2. Statistical results of the 2D and 3D QSAR models for the CRF-1 dataset. 

 

Statistical parameters 2D QSAR 3D QSAR 

N (training/test) 16 13 

Degree of freedom 12 11 

r2 (squared correlation coefficient) 0.8039 - 

q2 (internal predictive ability) 0.6311 0.6013 

F test 16.3927 - 

r2_se (correlation coefficient standard error) 0.2492 - 

q2_se (internal predictive ability standard error) 0.3418 0.3167 

pred_r2(external predictive ability) 0.4918 0.5338 

pred_r2se (standard error) 0.3394 0.4063 

k Nearest Neighbour - 02 

Contributing descriptors T_N_O_6, T_2_N_6, chi1 E_1108 

 
  

Table 1. Uni-column statistics results for 2D and 3D QSAR analysis.

Table 2. Statistical results of the 2D and 3D QSAR models for the CRF-1 dataset.
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Figure 1. Linear fitness plot illustrating the correlation of predicted versus actual activity for training and test set for (A) 2D QSAR and (B) 3D 

QSAR model.  

  
Figure 1. Linear fitness plot illustrating the correlation of predicted versus actual activity for training and test set for (A) 2D QSAR 
and (B) 3D QSAR model. 

 

Figure 2. 2D parameters contribution plot for training and test set. 

  
Figure 2. 2D parameters contribution plot for training and test set.
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For 3D QSAR
The robust 3D QSAR analysis was carried 

out by applying the k-nearest neighbor 
molecular field analysis (kNNMFA) method 
coupled with the stepwise, forward and 
backward methods. All compounds were 
again divided into training and test data sets, 
including 13 and 7 compounds, respectively. 
The data selection was validated through uni-
column statistics (Table 1) and found to be 
interpolative within the maximum-minimum 
ranges of training set along with standard 
deviation of statistics. 

Furthermore, the kNN MFA model coupled 
with the stepwise, forward and backward 
methods was applied after a common 
rectangular grid generation around the co-
crystallized compounds. The descriptors, 
along with other statistically significant 
parameters, are given in Table 2. According 
to statistical results, the obtained model was 
found to comparatively better in terms of the 
internal (q2 = 0.6013) as well as the external 
(pred_ r2= 0.5338) model validation and 
accurately predicted the activity ~60% and 
~53% for the training and test set respectively. 
The obtained model describes that electrostatic 
interactions (E_1108) play a significant role in 
determining CRF-1 antagonistic activity. The 
difference between observed vs. predictive 
activity in distance point terms (Fitness plot) is 
shown in Figure 1. The predicted and residual 
activity of data sets was given in Table S1 of 
supplementary data.

Interpretation of pharmacophore model
Contribution of 2D parameters 
The obtained model revealed that the 

descriptors T_N_O_6, T_2_N_6, and chi1 play 
the most prominent role in predicting activity 
explaining the correlation with standard to the 
variation in different substitution sites (Figure 
2).

T_N_O_6: This alignment-independent 
descriptor is the count of number of nitrogen 
atoms (single, double or triple bonded) 
separated from oxygen atom by 6 bond 
distance in a molecule. This descriptor shows 
a negative contribution in terms of percentage 
is 45%.

T_2_N_6: This alignment-independent 
descriptor is the count of number of double-

bonded atoms (i.e., any double-bonded atom, 
T_2) separated from the nitrogen atom by 6 
bonds. This descriptor also shows a negative 
contribution in terms of percentage is 34%.

chi1: This physicochemical descriptor 
signifies a retention index (first-order) derived 
directly from gradient retention times. It shows 
positive contribution in terms of percentage is 
25%.

3D QSAR and pharmacophore modeling
The calculated field descriptors were 

utilized for the evaluation of the activity of 
the compounds. The steric and electrostatic 
energies are computed at the lattice points of the 
grid using a methyl probe of charge +1. These 
interaction energy values at the grid points are 
considered for relationship generation using 
the kNN method and utilized as descriptors for 
obtaining distances within this method. Figure 
3 shows the relative position and ranges of the 
corresponding important electrostatic/steric 
fields in the model provides the following 
guidelines for the design of a new molecule. 

For the electrostatic field, the negative 
range indicates that negative electrostatic 
potential is favorable for increased activity. 
Hence, a more electronegative substituent 
group is preferred in that region, and a positive 
range exhibited that positive electrostatic 
potential is favorable for an increase in the 
activity. So, a less electronegative substituent 
group is preferred in that region. Consequently, 
developed kNN-MFA model, one electrostatic 
fields range (E_1108: -0.0015 to 0.0406) 
shows the range is more towards the negative 
side, and hence, increasing electronegativity 
of the substituent group is favourable at 
the 1,2,3,4-tetrahydropyrimido-[1,2-a]
benzimidazole core.

Therefore, in the context of 2D and 3D 
QSAR, the pharmacophore responsible for 
CRF-1 antagonistic activity was investigated. 
The compound B3 (IC50=11 nM) with 
tetrahydropyrimidobenzimidazole core was 
potent as the compound B2 (IC50=18 nM) of 
benzimidazole with a trisubstituted phenyl 
group. The presence of an electronegative 
atom like Cl atom at the 9-position of 
compound B7 (IC50=7.1 nM) increases the 
binding activity. Hence, it was a promising 
lead for further development work. Removal 
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of diethylamino group on the 6-position 
through hydroxyl group (IC50=89 nM), cyano 
group (IC50=66 nM), and methoxy group 
(IC50=20 nM) maintained the activity and 
reducing the lipophilicity. Compound B18 has 
lower binding activity but improved metabolic 
stability due to the presence of fluorine, a 
more electronegative atom. Substitution 
with pyrimidine ring improves solubility by 
decreasing the lipophilicity of the compound. 
Thus, the presence of more electronegative 
atoms at the 6-position improves the binding 
activity and metabolic stability. 

Docking analysis
To explore the scope of work, we 

performed molecular docking analysis for 
selected data sets. The co-crystallized protein 
(PDB ID: 3EHT) has been selected, and the 
grid was generated around the ligand prior to 
XP docking. The docking results are described 
in Table 3.

Compound B18 (9-chloro-6-(1-
(difluoromethoxy)-2,2,2-trifluoroethyl)-
1-(4-methoxy-2-methylphenyl)-1,2,3,4-
t e t r ahyd robenzo [4 ,5 ] imidazo [1 ,2 - a ]
pyrimidine) has the highest docking score 
-8.920 and shows 2 hydrogen bonds with 
residue Arg5 and Glu196. It also shows one 

Π-cation interaction with Arg283. In reference 
compounds, CP-316,11 has the docking score 
-6.889 and shows Π-Π stacking with Tyr194, 
Trp287 and Salt bridge with Glu305, Glu196 
residues. The ligand interaction and 3D 
diagram of compound B18 are given in Figure 
4.

The nitrogen of the benzimidazole nucleus 
involves in hydrogen bond formation for 
better binding and benzene ring forms 
Π-cation interaction with Arg283 residue. The 
most interesting fact is that all benzimidazole 
compounds show hydrogen bonding (Glu196, 
Lys334, Arg5, Arg283, Glu238, Asp284 and 
Asn199). Overall, compound B18 has the 
highest binding affinity towards the binding 
pocket of 3EHT protein. The hydrophobic 
interactions enhance the binding affinity 
between drug-protein interfaces; therefore, 
incorporation of hydrogen bonding can be 
helpful to optimize the binding affinity due 
to hydrophobic interactions (28). Hence, 
comparison with reference molecules suggests 
that all benzimidazole compounds have an 
excellent binding affinity towards the same 
binding pocket of protein (Figure 5). The 
presence of OCH3, Cl or polar substituents at 
1-position enhances the binding affinity. 

 

Figure 3. 3D plot of the common rectangular grid around the nucleus through the kNN-MFA model. 

  Figure 3. 3D plot of the common rectangular grid around the nucleus through the kNN-MFA model.



29

Kumar S et al. / IJPR (2021), 20 (2): 22-34

Docking results revealed that the binding 
pocket consists of hydrophobic (Pro195, 
Phe193, Trp119, Leu87, Ala286, Met19, Tyr8, 
Tyr139 and Tyr194), and hydrogen bonding 
(Arg283, Glu196, Lys334, Arg5, Glu238, 
Asp284 and Asn199) amino acid residues. 
Other amino acid residues are also involved in 
Π- Π stacking, Π-cat and salt bridge formation. 

Binding energy calculation
The binding energy of the selected data 

sets was calculated and given in Table S2 of 
supplementary data. Compound B7 has the 
highest binding energy -107.147 kcal/mol.In a 
reference molecule, emicerfont has the highest 
binding energy -62.828 kcal/mol. Compound 
B18 has the dG bind energy -89.375 kcal/
mol which is higher among all reference 
compounds. 

MD simulation analysis
The independent 20 ns atomistic MD 

simulation was performed to obtain insights 
into the dynamical behavior of the highest 
potent compound B18 at the trans-membrane 
pocket of CRF-1 protein. The system reached 
convergence through 20 ns simulation which 
is enough to determine the complex stability 
more precisely. The structural stability of 
protein-ligand complex was assessed by 
root mean square deviation (RMSD) which 
denotes the measure in the average change 
in displacement of a selection of atoms for a 
particular frame with respect to a reference 
frame (25). The RMSD of Cα of the simulated 
trajectories is shown in Figure 6A. The 
RMSD value of Cα was found to increase up 
to a value of 6.0 Å with respect to its starting 
coordinatefor the first 10 ns and stabilize 

 
 

Figure 4. Docked compound B18 with the target protein (A) Ligand interaction diagram (B) 3D diagram. 

  
Figure 4. Docked compound B18 with the target protein (A) Ligand interaction diagram (B) 3D diagram.
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around an average value of 8.0 Å for the 
rest of the MD trajectories which indicate 
a significant change in protein backbone 
compared to crystal structure. 

In addition, the root mean square fluctuation 
(RMSF) of the sidechain of 3EHT is found 
to be 5.25 Å which indicates a lower degree 
of flexibility in that region. It suggests lower 
conformational changes in C-terminal and 
N-terminal residues. It is clear that ligand’s 
movement was stable during the simulation. 
The observed Ligand-protein contacts 
were depicted in Figure 6B. Compound 
B18 (9-chloro-6-(1-(difluoromethoxy)-
2,2,2-tr if luoroethyl)-1-(4-methoxy-2-
methylphenyl)-1,2,3,4-etrahydrobenzo[4,5]
imidazo[1,2-a]pyrimidine) shows hydrogen 
bonding with Glu196, water bridge with Arg5, 
Arg283, Glu304 and Asp335. The residues 
involved in hydrophobic interactions were 
Trp287, Ala286, Arg283, Pro195, Tyr194, 
Trp119, Met19, Trp9 and Tyr8. It is evident 
from the above discussions that hydrophobic 
and hydrogen bonding interactions are a major 

contributing factor for stabilizing compound 
B18 at the trans-membrane pocket of 3EHT 
which is in accordance with docking results. 

The ligand torsions plot summarizes the 
conformational evolution of every rotatable 
bond (RB) in the ligand throughout the 
simulation trajectory. Each rotatable bond 
torsion is accompanied by a dial plot and bar 
plots of the same color. Dial (or radial) plots 
denotes the probability density of the torsion 
throughout the simulation. 

Physicochemical parameters calculation
In the drug discovery process, the ideal 

drug candidate under consideration needs 
to possess high efficacy as well as excellent 
pharmacokinetic profiles to confirm their 
action and potency. The acceptable ranges of 
crucial pharmacokinetic properties and the 
predicted properties of all selected compounds 
are listed in Table S3 of supplementary file. 
All evaluated physicochemical properties 
were found to be in their permissible range and 
therefore confirming their drug-like abilities. 

 
 

Figure 5. The binding pattern of superimposed docked compounds in the binding pocket of 3EHT protein showing H-bond interactions. 

  
Figure 5. The binding pattern of superimposed docked compounds in the binding pocket of 3EHT protein showing H-bond interactions.
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Table 3. Glide Gscore, hydrogen bond and other main interactions involved in ligand-receptor stabilizing and reference molecules with the CRF-

1 target protein. 

 

Compound 

code 
Glide Gscore 

No. of H 

bond 
Residues involved in H bond Other interactions 

B1 -7.159 02 Glu196 - 

B2 -7.487 02 Glu196 - 

B3 -6.547 01 Glu196 - 

B4 -7.395 02 Arg283, Glu196 - 

B5 -7.532 01 Glu196 - 

B6 -8.113 01 Glu196 Π-cat with Trp9 

B7 -6.194 01 Glu196 - 

B8 -7.908 03 Glu196, Lys334, Glu238 Π-cat with Arg283 

B9 -7.346 02 Glu196, Lys334 - 

B10 -7.687 01 Glu196 - 

B11 -8.664 01 Asp284 
Π- Π stacking with Trp9, Arg283 and Salt 

bridge with Asp335 

B12 -8.664 01 Asp284 
Π- Π stacking with Trp9, Arg283 and Salt 

bridge with Asp335 

B13 -7.967 02 Glu196, Lys334 - 

B14 -8.041 03 Arg5, Glu196, Lys334 Π-cat with Arg283 

B15 -8.348 02 Arg5, Glu196 - 

B16 -7.602 02 Glu196, Asn199 - 

B17 -7.355 02 Glu196, Lys334 
Π-cat with Arg283 and Π- Π stacking with 

Trp9 

B18 -8.920 02 Arg5, Glu196 Π-cat with Arg283 

B19 -7.533 02 Glu196, Lys334 - 

B20 -8.060 02 Glu196, Lys334 - 

CP-316,11 
 

-6.889 

 

01 

 

Asn337 

Π- Π stacking with Tyr194, Trp287 and Salt 

bridge with Glu305, Glu196 

Emicerfont -6.406 02 Glu238, Lys334 - 

Verucerfont -5.834 01 Asp335 - 

Pexacerfont -3.417 01 Arg5 
Π- Π stacking with Trp287 and Salt bridge 

with Arg283 

 

 

Table 3. Glide Gscore, hydrogen bond and other main interactions involved in ligand-receptor stabilizing and reference molecules 
with the CRF-1 target protein.



32

In-silico Studies of 1,2,3,4-tetrahydropyrimido[1,2-a]benzimidazoles

 

Figure 6. (A) Timeline representation of RMSD profile of Cα of 3EHT with respect to its coordinates and (B) Ligand-protein contacts of compound 

B18. 

  

Figure 6. (A) Timeline representation of RMSD profile of Cα of 3EHT with respect to its coordinates and (B) Ligand-protein contacts 
of compound B18.

 

Figure 7. Snapshot of ligand torsion profile of compound B18. 

 Figure 7. Snapshot of ligand torsion profile of compound B18.
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Conclusion

In the present investigation, pharmacophore 
modeling, molecular docking, MM/GBSA, 
ADME, and molecular dynamics simulation 
studies were performed to identify structural 
determinants responsible for CRF-1 
antagonism. The obtained 2D QSAR model 
gave an r2 value of 0.8039 and a q2 value of 
0.6311, indicating excellent consistency and 
robustness of the model. Generated 3D QSAR 
model suggests the E_1108 descriptor plays 
a significant role with a q2 value of 0.6013. 
Statistical parameters results prove the 
robustness of the obtained model. The kNN-
MFA model 3D plot revealed the electrostatic 
field descriptor position contributing to 
increase the activity. The presence of more 
electronegative atoms at 6-position enhances 
metabolic stability and activity.

Further, molecular docking analysis 
predicted the binding mode of the selected 
antagonist at the binding site of CRF-1. 
The decisiveness of the docking study was 
confirmed by a low RMSD value of 6.0 Å 
between the co-crystal and docked ligand. 
Docking results suggest that the polar region 
forms the hydrogen bonding network with 
Arg283, Glu196, Lys334, Arg5, Glu238, 
Asp284 and Asn199 amino acid residues. 
MD simulation revealed that no ionic 
interactions between amino acid residue and 
compound B18 were reported. Molecular 
docking results revealed that compound 
B18 showed the highest binding affinity 
towards the binding pocket of 3EHT protein 
compared to all reference molecules. MD 
simulation results indicate that compound 
B18 (9-chloro-6-(1-(difluoromethoxy)-
2,2,2-tr if luoroethyl)-1-(4-methoxy-2-
methylphenyl)-1,2,3,4-etrahydrobenzo[4,5]
imidazo[1,2-a]pyrimidine) movement was 
stable during the simulation, and major 
interaction was found with Glu196 in terms 
of hydrogen bonding. Hence, this work can 
provide the lead for benzimidazole-based 
drug discovery program for stress-related 
disorders. Various physicochemical and 
relative binding energy parameters were also 
calculated for all compounds. Therefore, 
substituted 1,2,3,4-tetrahydropyrimido[1,2-a]
benzimidazole compounds could be a 

selective, efficacious and potent for treating 
anxiety, depression and stress associated 
disorders. The outcomes of the present work 
provide insightful information regarding 
the design and development of novel CRF-1 
antagonists to treat stress dependent disorders. 
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