

Supplementary Materials for

Anti-Helicobacter pylori Compounds from Oliveria decumbens Vent. through

Urease Inhibitory In-vitro and In-silico Studies

Mahdieh Eftekhari, Mohammad Reza Shams Ardekani, Mohsen Amin, Mahboubeh Mansourian, Mina Saeedi, Tahmineh Akbarzadeh and Mahnaz Khanavi^{*}

*To whom correspondence should be addressed. E-mail: khanavim@tums.ac.ir

Volume 20, Issue 3 (Summer 2021)

This PDF file includes:

Figures S1-S18

(b)

Figure S1. (a) ¹HNMR 500 MHz, in CDCl₃: Octacosane, (b) EI-MASS :Octacosane

Figure S2.¹ HNMR 500 MHz, in CDCl_{3:} Mixture of thymol and car vacrol

Figure S3^{.1} HNMR 500 MHz, in CDCl₃: Stigmasterol

Figure S4. ¹HNMR 500 MHz, in DMSO-d₆: Kaempferol-3-O-(6"-O-trans-coumaryl)glucoside

Figure S5. ¹³CNMR 125 MHz, in DMSO-d₆: Kaempferol-3-O-(6"-O-trans-coumaryl)glucoside

Figure S6. ¹HNMR 500 MHz, in DMSO-d₆: Kaempferol 3 -O-(6''-O-trans-coumaryl)glucoside 7-O-(6'''-O-trans-coumaryl) glucoside.

Figure S7. ¹³CNMR 125, in DMSO-d₆, Kaempferol 3 -O-(6''-O-trans-coumaryl)glucoside 7-O-(6'''-O-trans-coumaryl) glucoside.

Figure S8. COSY, in DMSO-d₆, Kaempferol 3 -O-(6''-O-trans-coumaryl)glucoside 7-O-(6'''-O-trans-coumaryl) glucoside

Figure S9. NOSEY, in Acetone-d₆, Kaempferol 3 -O-(6''-O-trans-coumaryl)glucoside 7-O-(6''-O-trans-coumaryl) glucoside

Figure S10. ¹³CNMR 125 MHz, in DMSO-d₆: 3-Hydroxythymol-6-O-D-Glucopyranoside- &6-Hydroxythymol-3-O-D-Glucopyranoside

Figure S11. ¹HNMR 500 MHz, in DMSO-d₆, 3-Hydroxythymol-6-O-D-Glucopyranoside- &6-Hydroxythymol-3-O-D-Glucopyranoside

Figure S12. ¹HNMR 500 MHz, in DMSO-d₆: : kaempferol 3-O-neohesperidoside-7-O-[2-O-(cis-feruloyl)]-D-glucopyranoside

Figure S13. ¹³CNMR 125 MHz, in DMSO-d₆: kaempferol 3-O-neohesperidoside-7-O-[2-O-(cis-feruloyl)]-D-glucopyranoside

Figure S14. Schematic interaction of the best docking resulting from AutoDock software presented by LigPlot software for thymol. In this figure, the compound exposure is highlighted in blue. Hydrogen bonding is in green and van der Waals interactions are in red circulars.

Figure S15. Schematic interaction of the best docking resulting from AutoDock software presented by LigPlot software for compound 7. In this figure, the compound exposure is highlighted in blue. Hydrogen bonding is in green and van der Waals interactions are in red circulars.

Figure S16. Schematic interaction of the best docking resulting from AutoDock software presented by LigPlot software for compound 8. In this figure, the compound exposure is highlighted in blue. Hydrogen bonding is in green and van der Waals interactions are in red circulars.

Figure S17. Schematic interaction of the best docking resulting from AutoDock software presented by LigPlot software for compound 6. In this figure, the compound exposure is highlighted in blue. Hydrogen bonding is in green and van der Waals interactions are in red circulars.

Figure S18. Schematic interaction of the best docking resulting from AutoDock software presented by LigPlot software for compound 9. In this figure, the compound exposure is highlighted in blue. Hydrogen bonding is in green and van der Waals interactions are in red circulars.