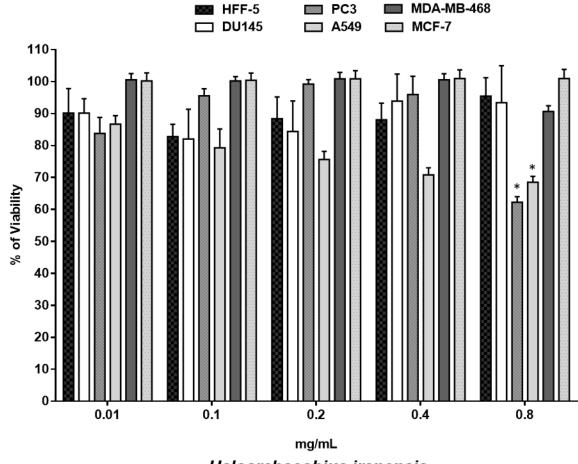


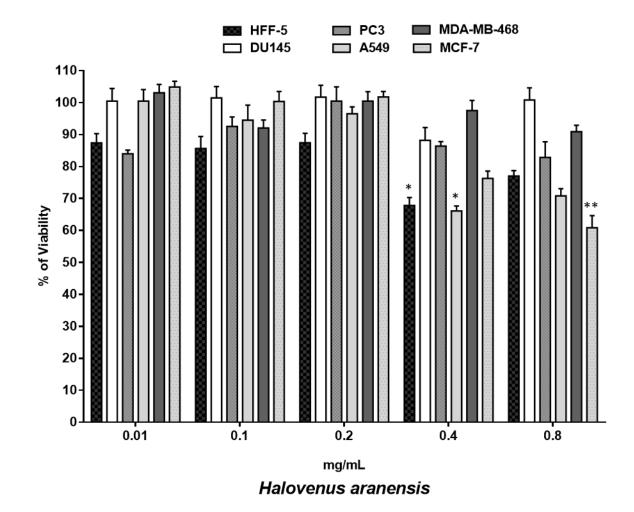
Supplementary Materials for

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer *In-vitro* and *In-vivo*

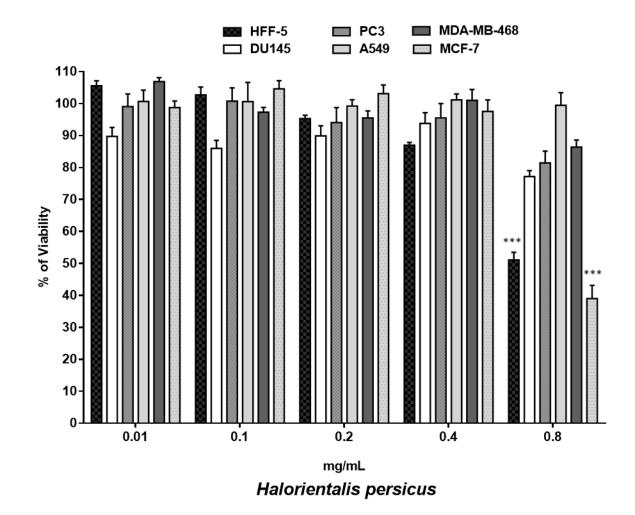

Atefeh Safarpour, Marzieh Ebrahimi^{*}, Seyed Abolhassan Shahzadeh Fazeli^{*} and Mohammad Ali Amoozegar

*To whom correspondence should be addressed. E-mail: Mebrahimi@royaninstitute.org; fazeli@ibrc.ir

Volume 18, Issue 1 (Winter 2019)


This PDF file includes:

Figures S1 to S8



Haloarchaeobius iranensis

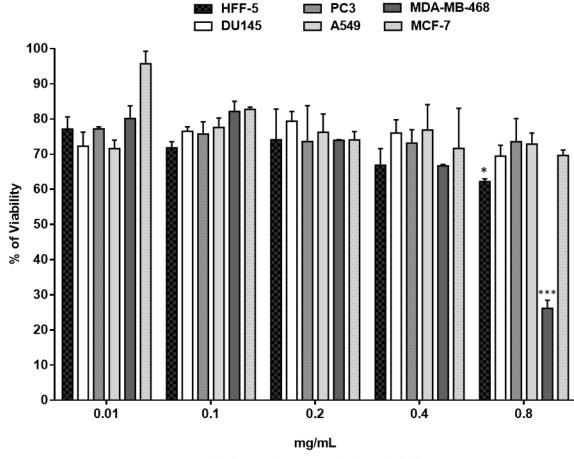

Figure S1. Screening of Supernatant Metabolites (SM) from *Haloarchaeobius iranensis* on viability of prostate (PC3 and DU145), breast (MCF7 and MDA-MB-231), lung (A549) cancer cell lines and human foreskin fibroblast (HFF-5). The viability of cells measured 48 h post treatment with supernatant metabolites from *Haloarchaeobius iranensis* by MTT. HFF-5 was used as normal control group. Bars indicated mean \pm SD at least in five different biological replications. *p*-values showed significance of viability decrease. **p* < 0.05.

Figure S2. Screening of Supernatant Metabolites (SM) from *Halovenus aranensis* on viability of prostate (PC3 and DU145), breast (MCF7 and MDA-MB-231), lung (A549) cancer cell lines and human foreskin fibroblast (HFF-5). The viability of cells measured 48 h post treatment with supernatant metabolites from *Halovenus aranensis* by MTT. HFF-5 was used as normal control group. Bars indicated mean \pm SD at least in five different biological replications. *p*-values showed significance of viability decrease. *p < 0.05, **p < 0.01.

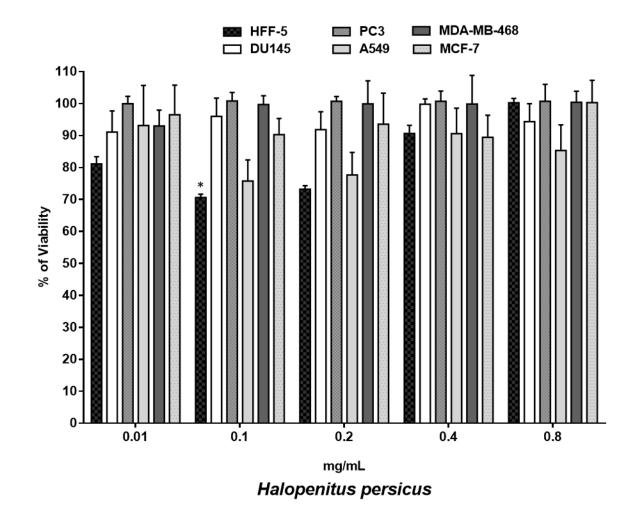
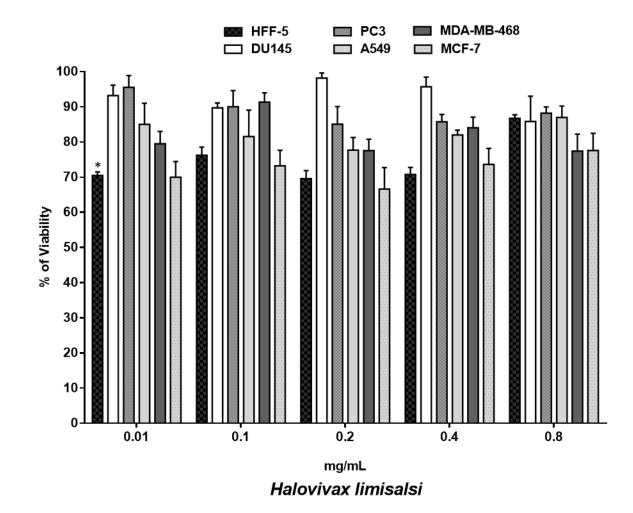
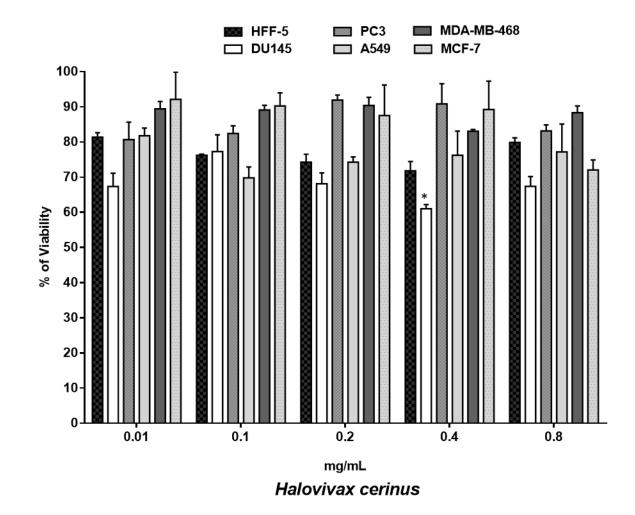


Figure S3. Screening of Supernatant Metabolites (SM) from *Halorientalis persicus* on viability of prostate (PC3 and DU145), breast (MCF7 and MDA-MB-231), lung (A549) cancer cell lines and human foreskin fibroblast (HFF-5). The viability of cells measured 48 h post treatment with supernatant metabolites from *Halorientalis persicus* by MTT. HFF-5 was used as normal control group. Bars indicated mean \pm SD at least in five different biological replications. *p-values* showed significance of viability decrease. *** p < 0.001



Halopenitus malekzadehii


Figure S4. Screening of Supernatant Metabolites (SM) from *Halopenitus malekzadehii* on viability of prostate (PC3 and DU145), breast (MCF7 and MDA-MB-231), lung (A549) cancer cell lines and human foreskin fibroblast (HFF-5). The viability of cells measured 48 h post treatment with supernatant metabolites from *Halopenitus malekzadehii* by MTT. HFF-5 was used as normal control group. Bars indicated mean \pm SD at least in five different biological replications. *p*-values showed significance of viability decrease. *p < 0.05, ***p < 0.001.

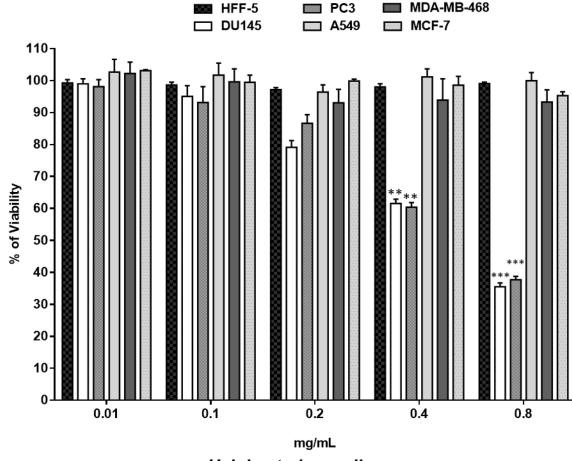

Figure S5. Screening of Supernatant Metabolites (SM) from *Halopenitus persicus* on viability of prostate (PC3 and DU145), breast (MCF7 and MDA-MB-231), lung (A549) cancer cell lines and human foreskin fibroblast (HFF-5). The viability of cells measured 48 h post treatment with supernatant metabolites from *Halopenitus persicus* by MTT. HFF-5 was used as normal control group. Bars indicated mean \pm SD at least in five different biological replications. *p-values* showed significance of viability decrease. ^{*}p < 0.05.

Figure S6. Screening of Supernatant Metabolites (SM) from *Halovivax limisalsi* on viability of prostate (PC3 and DU145), breast (MCF7 and MDA-MB-231), lung (A549) cancer cell lines and human foreskin fibroblast (HFF-5). The viability of cells measured 48 h post treatment with supernatant metabolites from *Halovivax limisalsi* by MTT. HFF-5 was used as normal control group. Bars indicated mean \pm SD at least in five different biological replications. *p*-values showed significance of viability decrease. **p* < 0.05.

Figure S7. Screening of Supernatant Metabolites (SM) from *Halovivax cerinus* on viability of prostate (PC3 and DU145), breast (MCF7 and MDA-MB-231), lung (A549) cancer cell lines and human foreskin fibroblast (HFF-5). The viability of cells measured 48 h post treatment with supernatant metabolites from *Halovivax cerinus* by MTT. HFF-5 was used as normal control group. Bars indicated mean \pm SD at least in five different biological replications. *p*-values showed significance of viability decrease. **p* < 0.05.

Halobacterium salinarum

Figure S8. Screening of Supernatant Metabolites (SM) from *Halobacterium salinarum* on viability of prostate (PC3 and DU145), breast (MCF7 and MDA-MB-231), lung (A549) cancer cell lines and human foreskin fibroblast (HFF-5). The viability of cells measured 48 h post treatment with supernatant metabolites from *Halobacterium salinarum* by MTT. HFF-5 was used as normal control group. Bars indicated mean \pm SD at least in five different biological replications. *p*-values showed significance of viability decrease. ^{**}*p* < 0.01, ^{***}*p* < 0.001