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Abstract

The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitors 
can be used to efficiently target it. In the present study, the multiple linear regression (MLR), 
and support vector machine (SVM) methods were used to interpret the chemical structural 
functionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structural 
information were described through various types of molecular descriptors and genetic algorithm 
(GA) was applied to decrease the complexity of inhibition pathway to a few relevant molecular 
descriptors. Non-linear method (GA-SVM) showed to be better than the linear (GA-MLR) 
method in terms of the internal and the external prediction accuracy. The SVM model, with 
high statistical significance (R2

train = 0.938; R2
test = 0.870), was found to be useful for estimating 

the inhibition activity of 17β-HSD3 inhibitors. The models were validated rigorously through 
leave-one-out cross-validation and several compounds as external test set. Furthermore, the 
external predictive power of the proposed model was examined by considering modified R2 and 
concordance correlation coefficient values, Golbraikh and Tropsha acceptable model criteriaʹs, 
and an extra evaluation set from an external data set. Applicability domain of the linear model 
was carefully defined using Williams plot. Moreover, Euclidean based applicability domain 
was applied to define the chemical structural diversity of the evaluation set and training set.
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Introduction

There are growing concerns over treatment of 
prostate cancer as the death ratio increases, and 
it requires of an emerging need for development 
of new and efficient drugs (1, 2). The treatment 
therapy for such disease is of great discussions 
as they are frequently failing or are selective for 

patients. There are still some rooms to discuss 
for an optimal therapy for a progressive prostate 
cancer. Prostate cancer is an androgen sensitive 
disease in which androgens testosterone (T) and 
dihydro testosterone (DHT) play major roles 
in development of this type of cancer (1, 2). 
Currently, an efficient therapy is to manage the 
prostate cancer either from the central regulation 
of androgen biosynthesis or by blocking of 
androgen receptor (3). The production of 
androgens is restricted to two steps within 



the central nervous system; it is also locally 
controlled in peripheral organs that are targeted. 
The active androgens T and DHT are directly 
synthesized by conversion of the inactive 
forerunner and rostenedione (Δ4-dione) in 
presence of 17β-hydroxysteroid dehydrogenases 
(17β-HSDs) (3). In fact, the 17β-HSDs arbitrate 
the last step in the alteration of sex steroids in 
the peripheral target tissues (3, 4). The final 
step in the biosynthesis of a potent androgen T 
is controlled by 17β-HSD3 and NADPH as a 
cofactor through reduction of the C17 ketone of 
Δ4-dione (5). Since 17β-HSD3 is largely uttered 
in testes and prostate tissue at some prostate 
tumors, it is believed to play crucial role in both 
gonadal and non-gonadal T biosynthesis (1, 4). 
In this regard, this enzyme is such an attractive 
target of small inhibitors for the treatment of 
prostate cancer (3, 6-8).

Many medicines are typically developed 
using several blind trials which could be costly, 
time-consuming or failed to show high inhibition. 
Using theoretical methods as alternative tools 
for predicting activities of chemicals could help 
decreasing the chance of having false negatives 
prior to any trials. Among the theoretical methods, 
the quantitative structure-activity relationships 
(QSAR) have been successfully established to 
predict different important biopharmaceutical 
properties, including genotoxicity, toxicity, oral 
bioavailability, carcinogenicity, and mutagenicity 
(9-11). There are plenty of literatures reporting 
the application of computational methods for 
describing the bioactivities of newly synthesized 
compounds (12-15). The main aim of QSAR 
studies is to establish an empirical rule or a 
function to correlate set of chemical descriptors 
of compounds to their bioactivities. Different 
modeling techniques thus can be critical to 
achieve a good QSAR model. Multivariate 
modeling techniques have been widely 
employed in QSAR studies such as multiple 
linear regressions (MLR) (16-21), partial least 
squares analysis (PLS) (22), principal component 
regression (PCR) (23), artificial neural networks 
(ANN) (24, 25), and support vector machine 
(SVM) (11, 26). Such methods require a few 
numbers of relevant molecular features for the 
sake of simplicity in interpreting the mechanism 
of act and also preventing over-fitting. Based 

on probabilistic choice, genetic algorithm (GA) 
offers high capability to select set of molecular 
features having the best fit to explain the existed 
problem (27, 28).

In this work, a QSAR based approach was 
conducted to interpret the chemical functionality 
toward 17β-HSD3 inhibition activity for set of 
potent inhibitors. GA-MLR and GA-SVM were 
two modelling techniques used to develop these 
QSAR models for 17β-HSD3 inhibitors. Various 
validation protocols were used to investigate 
the accuracy of proposed models and finally, 
some new compounds were designed and their 
activities were predicted. The results derived 
from GA-SVM method were compared to the 
results of GA-MLR method and showed to be 
more accurate

Experimental

Data set
A data set consists of 35 compounds as 

17β-HSD3 inhibitors for the QSAR workflow 
was adopted from the literature (3) as listed 
in Table 1. The pIC50 = −log [IC50 (M)] values 
were used as the dependent variables so as to 
give numerically larger values. The chemical 
structures and corresponding pIC50 values are 
shown in Table 1.

Descriptor calculations and reduction
The 2D structures of the molecules were 

drawn using HyperChem 7 software (29). For 
these molecules, the conformers having less 
energy were obtained using the semi empirical 
AM1 method. The molecular structures were 
optimized using the Polak-Ribiere algorithm 
until the root mean square gradient reaches 0.01 
kcal/mol. These conformers were sent to Dragon 
program (30) to calculate molecular descriptors 
of 0D (Constitutional), 1D (Functional group 
and Atom-Centred Fragment, Empirical and 
Properties descriptors), 2D (Topological, 
Molecular Walk Count, BCUT, Galvez topol. 
Charge indices and 2D autocorrelations 
descriptors) and 3D classes [Charge, aromaticity 
indices, Randic molecular profile, Geometrical, 
Radial Distribution Function, 3D-MoRSE 
(3Dmolecular Representation of Structure based 
on Electron diffraction), WHIM (Weighted 
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Table 1. Experimental and predicted pIC50 values for 17β-HSD3 inhibitors using GA-MLR and GA-SVM models.

No. R1 R2 Exp. MLR SVM

 O O

R2

R1

HO

1 CH2Ph H 5.00 5.43 5.21

2 CH2O-Phenyl H 5.00 5.16 5.01

3 CH2OMe H 5.30 5.06 5.31

4 CH2S-4-Pyridyl H 5.30 5.66 5.51

5 CH2NH-Phenyl H 5.40 5.41 5.39

6 Me H 6.00 5.79 5.99

7 CH2S-2-Pyrimidinyl H 6.00 6.90 6.62

8 H Me 6.00 6.22 6.01

9 Me n-Pr 6.62 6.88 6.63

10 Me Me 6.68 7.12 6.72

11 Me CH2Ph 6.70 6.56 6.69

12 Et H 7.00 7.11 6.99

13 Me Cl 7.00 7.09 6.99

14 CH2S-2-Thiazolidinyl H 7.02 7.31 7.03

15 CH2S-1-Methyl-2-imidazolyl H 7.04 7.14 7.03

16 CH2S-5-Nitro-2-pyridyl H 7.06 7.06 7.05

17 CH2S-6-Methyl-2-pyridyl Cl 7.33 7.70 7.32

18 (CH2)2Ph H 7.70 7.81 7.69

19 (CH2)2-6-Methyl-2-pyridyl H 8.10 7.81 7.91

20 CH2S-6-Methyl-2-pyridyl H 8.82 7.89 8.09

21 Ph H 6.00 6.05 5.99

22 Me CN 6.00 5.82 5.99

23 CH2S-5-Trifluoromethyl-2-pyridyl H 6.64 7.20 6.65

24 CH2S-Phenyl H 7.03 6.05 6.48

25 CF3 CH2Ph 7.52 6.97 7.51

26 CF3 H 6.72 7.00 6.73

27 (CH2)2O-6-Methyl-2-pyridyl H 6.00 5.75 5.99

28 CH2S-2-Thiazolyl H 8.00 7.03 7.27

29a CF3 CH2S-2-pyridyl 6.00 5.67 6.05

30a CH2S-6-Methyl-2-pyridyl F 6.70 6.78 6.67

31a n-Pr H 7.57 7.12 6.94

32a CH2NMe-Phenyl H 7.23 7.08 6.89

33a CH2S-2-Pyridiyl H 8.52 7.42 7.41

34a CH2S-1,3,4-Thiadiazol-2-yl H 5.22 4.63 5.20

35a Me F 6.49 6.76 6.78
a Test set.
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Holistic Invariant Molecular descriptors), 
GETAWAY (Geometry, Topology and Atoms- 
Weighted AssemblY)], creating total of 1497 
descriptors. The calculated descriptors were 
screened for the existence of constant or near 
constant variables and removed from the data 
matrix. In addition, the correlation between 
descriptors as well as the activity was examined 
and the collinear descriptors (i.e. r > 0.9) were 
detected. Among the collinear descriptors, the 
one presenting the highest correlation with 
the activity was retained and the others were 
removed from the data matrix. After these steps, 
the number of descriptors was reduced to 519.

Clustering
One of the most important steps in a QSAR 

study is to divide the data set into training and 
test sets correctly to avoid any information lost 
during creation of models and fitting step. Here, 
a hierarchical cluster method was used while 
comparing the diversity of chemical structure 
and their related activities. Hierarchical cluster 
method is a statistical approach for finding 
relatively homogeneous clusters of cases based 
on measured characteristics (31, 32). It starts 
with each case in a separated cluster, and then, 
combines the clusters sequentially, reducing 
the number of clusters at each step until only 
one cluster is left. When there are N cases, this 

involves N-1 clustering steps, or fusions. This 
hierarchical clustering process can be represented 
as a tree or a dendrogram that each step in the 
clustering process is illustrated by a linkage. The 
selection of the training and test sets was done 
in a random way from each cluster with close 
investigation of the activity of each selection. 
The justification behind the selection can be 
defined in two steps; a) the range of the activity 
values of both the training set and the test set 
should be covered from the lowest to the highest; 
b) each selected data point for the test set should 
show high distance linkage in the dendrogram 
from the previously chosen one. Consequently, 
a training set of 28 compounds to develop the 
model and a test set of 7 compounds to evaluate 
the model were comprised. The dendrogram of 
used data set is shown in Figure 1.

Results and Discussion

The prediction ability of QSAR models is 
affected by two factors. One is the descriptors, 
which must carry enough information of 
molecular structures for interpreting how the 
observed activity correlates to chemical structure; 
the other one is the modeling method employed. 
There are pools of descriptors which may cause 
over fitting of statistical methods. Therefore, 
identifying important descriptors certainly is a 

Figure 1. A dendrogram illustrating the results of the hierarchical clustering of the training and test sets.
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need in QSAR studies. In this study, the genetic 
algorithm coded in the MATALAB software was 
used to select relevant descriptors for building 
the QSAR models. For the selection of the 
most important descriptors, GA ran many times 
with different initial sets of population creating 
different final models. Among these models, one 
model presented the highest statistical quality 
was selected and reported. Five descriptors were 
selected by this method and used to construct 
linear and nonlinear models based on MLR and 
SVM techniques. 

MLR analysis
In order to build and test the linear model 

a data set of 35 compounds was divided by 
hierarchical cluster method into a training set 
of 28 compounds, which was used to build 
the model, and into a test set of 7 compounds 
which was applied to evaluate it. The following 
equation based on five molecular descriptors is 
obtained:

pIC50 = 11.510 (± 1.329) + 249.056 (± 45.566) 
GATS6m - 2.156 (± 0.826) GATS1e + 4.497 

(± 1.624) P2e - 33.803 (± 5.075) R7u+ -0.95 
(± 0.232) C-026                                               (1)

The prediction results are given in Table 1 
and shown in Figure 2. The square correlation 
coefficient (R2) and Fisher F statistic (F) are 0.779 

and 15.508 for the training set, respectively. The 
root mean square error value (RMSE = 0.443) is 
lower enough to indicate successful predictions 
of the QSAR model developed by GA-MLR. 
Then, the built model was used to predict the 
test set data. The statistical external validation 
(R2

Test = 0.823, FTest = 0.675, RMSETest = 0.531) 
confirmed the high satisfactory prediction ability 
for the compounds that were not used during the 
model development.

The model obtained was internally validated 
using leave-one-out (LOO) cross-validation 
process. For LOO cross-validation, a compound 
was removed from the set, and the model was 
recalculated. The predicted activity for that 
compound was then compared to its actual value. 
This is repeated until all compounds omitted 
once. High value for correlation coefficient of 
cross-validation (Q2 = 0.674) indicates that the 
obtained regression model has a good internal 
predictive power. In addition, the robustness of 
the proposed model and its predictive ability was 
guaranteed by a high Q2

BOOT (Q2
BOOT = 0.665) 

based on bootstrapping repeated 5000 times. 
This indicates that the proposed regression 
model has a good internal predictive power.

Y-randomization test is a widely used 
technique to evaluate the robustness of QSAR 
model in terms of correlation obtained by 
chance. In this technique, the dependent variable 
(Y vector) randomly shuffles, and new QSAR 

Figure 2. Predicted versus experimental pIC50 by GA-MLR model.

The prediction results are given in Table 1 and shown in Figure 2. The square 

correlation coefficient (R2) and Fisher F statistic (F) are 0.779 and 15.508 for the 

training set, respectively. The root mean square error value (RMSE = 0.443) is lower 

enough to indicate successful predictions of the QSAR model developed by GA-MLR. 

Then, the built model was used to predict the test set data. The statistical external 

validation (R2
Test = 0.823, FTest = 0.675, RMSETest = 0.531) confirmed the high 

satisfactory prediction ability for the compounds that were not used during the model 

development.

Figure 2. Predicted versus experimental pIC50 by GA-MLR model.
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models develop. This process gets repeated for 
10 times. The lower values of R2 and Q2 in the 
shuffled cases via Y-randomization test confirm 
the robustness of the QSAR model (33). The 
statistical data of R2 and Q2 for all runs are listed 
in Table 2.

The leverage values can be calculated for 
every compound and plotted versus standardized 
residuals, and it allows a graphical identification 
of both outliers and the influential chemicals 
in a model. Figure 3 shows the Williams plot. 
The applicability domain is established inside a 
squared area within ± 3 bound for residuals and a 
leverage threshold h* (h* = nk ′3 , where k ′  is 
the number of model parameters plus one and n 
is the number of compounds) (34). It shows that 
all compounds for the training set and test set are 
inside of this area. Figure 3 indicates that that 
there are obviously no compounds with standard 
residuals  > 3δ for both the training and test sets 
(outlier). All the chemicals have the leverage 
less than the warning h* value of 0.64.

Interpretation of descriptors
By interpreting the descriptors introduced 

by QSAR model, it is possible to gain some 
insights into chemical features that reveal the 
contributions of functional group toward the 
inhibition activity of the 17β-HSD3 inhibitors. 

The first and second descriptors in 
the proposed model are GATS6m and 
GATS1e. These descriptors belong to the 2D 

autocorrelation indices descriptors. For these 
descriptors, the Geary coefficient is a distance-
type function that can be any physico-chemical 
property calculated for each atom, such as 
atomic mass, polarizability, etc. Therefore, the 
atoms represent the set of discrete points in 
space and the atomic property is the function 
evaluated at those points. GATS6m is the 
mean Geary autocorrelation - lag 6 /weighted 
by atomic masses. The physico-chemical 
property in this case is atomic mass. GATS6m 
descriptor displays a positive coefficient in 
equation 1 which indicates that the pIC50 value 
directly relates to this descriptor. Hence, it 
is concluded that by increasing the atomic 
masses, the value of this descriptor increasing, 
cause an increase in its pIC50 value. GATS1e 
is the Geary autocorrelation lag 1/weighted by 
atomic Sanderson electronegativities containing 
information about atomic electronegativities. In 
this case, the path connecting a pair of atoms 
has length 1 and involves the atomic Sanderson 
electronegativities as weighting scheme to 
distinguish their nature. This descriptor displays 
a negative sign, which indicates that the pIC50 is 
inversely related to the atomic electronegativities.

The third descriptor is P2e (second component 
shape directional WHIM index weighted by 
atomic Sanderson electronegativities). It is one 
of the WHIM descriptors which are based on the 
statistical indices calculated from the projections 
of atoms along principal axes. The algorithm 

Table 2. The Q2
LOO and R2

training values after several Y-randomization tests.

No. Q2 R2

1 0.114 0.036

2 0.058 0.103

3 0.058 0.137

4 0.139 0.048

5 0.091 0.104

6 0.046 0.287

7 0.006 0.180

8 0.001 0.244

9 0.452 0.078

10 0.003 0.169
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consists of performing a principal components 
analysis of the centered Cartesian coordinates of 
a molecule by using a weighted covariance matrix 
obtained from different weighing schemes for the 
atoms. The atomic Sanderson electronegativity 
is one of the weighting schemes that is used for 
computing the weighted covariance matrix in 
this descriptor (P2e). The P2e has a positive sign 
which indicates that pIC50 directly relates to this 
descriptor; therefore, increasing the value of this 
descriptor for a molecule leads to increase in its 
pIC50 value.

The forth descriptor is R7u+ (R maximal 
autocorrelation of lag 7/unweighted). It is one 
of the GETAWAY descriptors. GETAWAY 
descriptors encode both the geometrical 
information given by the influence molecular 
matrix and the topological information derived 
from the molecular graph. The weighting 
function is any physicochemical properties in 
selected atoms (26). The negative sign of this 
descriptor indicates that the pIC50 inversely 
relates to R7u value.

The C-026 descriptor belongs to atom-centred 
fragments. This provides information about the 
number of predefined structural features in the 
molecule, which in this case is R–CX–R. The 
C-026 displays a negative sign indicating that the 
pIC50 inversely relates to the C-026 descriptor. 
It was concluded that by increasing the number 
of R-CX-R substations of molecules the pIC50 

value would decrease.
Multi-collinearities for the above descriptors 

were inspected by calculating their variation 
inflation factors (VIF) as follows:

                                                                    (2)
21

1
R

VIF
−

=

Where r in the formula is; the correlation 
coefficient of multiple regression between 
a variable and the others in the model (35). 
Correlation coefficient and corresponding VIF 
values for each descriptor are given in Table 3. 
All correlation coefficient values were less than 
0.51 indicating that the selected descriptors are 
independent. All variables have VIF less than 5 
indicating that the selected descriptors are not 
highly correlated and the developed model has 
high statistical significance (35).

Support vector machine
In addition to linear model, the non-linear 

model was also built by support vector machine 
based on the same subset of descriptors used in 
GA-MLR model. The SVM method originally 
proposed and developed by Vapnik (36). Its 
main advantage is adopting the structure risk 
minimization (SRM) principle, minimizing an 
upper bound of the generalization error on the 
Vapnik-Chernoverkis dimension. This is shown 
to be superior to a traditional empirical risk 

Figure 3. The Williams plot of the training and test sets.

The leverage values can be calculated for every compound and plotted versus

standardized residuals, and it allows a graphical identification of both outliers and the 

influential chemicals in a model. Figure 3 shows the Williams plot. The applicability 

domain is established inside a squared area within ± 3 bound for residuals and a 

leverage threshold h* (h* = nk ′3 , where k ′ is the number of model parameters plus 

one and n is the number of compounds) (34). It shows that all compounds for the 

training set and test set are inside of this area. Figure 3 indicates that that there are 

obviously no compounds with standard residuals > 3δ for both the training and test sets

(outlier). All the chemicals have the leverage less than the warning h* value of 0.64.

Figure 3. The Williams plot of the training and test sets.

-4

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

St
an

da
rd

iz
ed

 re
si

du
al

s

Leverages

Training Test

12



QSAR Study of 17β-HSD3 inhibitors by GA-SVM

973

minimization (ERM). More details about SVM 
can be found in our previous works (11, 26, 37).

RMSE of leave one out cross-validation was 
used as fitness function to optimize SVM model. 
Performance of SVM for regression purpose 
depends on the combination of several factors 
like kernel function type, capacity parameter C, 
ε of ε-insensitive loss function, and Gamma (γ).

First, the kernel function should be determined, 
which represents the sample distribution in the 
mapping space. In this work, the radial basis 
function (RBF) was used because it offered a 
good general performance. The next step in the 
construction of SVM model was optimizing its 
parameters, including γ, ε-insensitive and C. The 
optimization of SVM parameters was performed 
by changing their values in the training step and 
calculating the RMSE of leave one out cross-
validation for the model. 

γ as the kernel function affects the number 
of support vectors, which has a close relation 
with the performance of the SVM and training 
time. Also, the γ controls the amplitude of 
the RBF function and, therefore, controls the 
generalization ability of SVM. The optimal 
value of γ was obtained at 5.

The optimal value for ε depends on the 
type of noise presented in the data, which is 
usually unknown. ε -insensitivity prevents the 
entire training set to meet boundary conditions 
and allows the possibility of sparsity in the 
dual formulations solution. Thus, choosing the 
appropriate value of ε is a critical step. The ε = 
0.01 was selected as optimal value. The other 
parameter is a regularization parameter C that 
controls the trade-off between maximizing the 
margin and minimizing the training error. If C is 
too small, then insufficient stress will be placed 

on fitting the training data. On the other hand, if 
C is too large, then the SVM model will over-fit 
on the training data. The C = 50 was selected as 
the optimal value. 

After optimizing SVM parameters, it was 
used to predict the pIC50 of training and test 
sets. The statistical parameters of this model are 
R2 = 0.938, and RMSE = 0.260 for the training 
set, and R2 = 0.870, and RMSE = 0.513 for the 
test set. The predicted against the experiment 
pIC50 values by GA–SVM method are plotted in 
Figure 4 and also are shown in Table 1.

The comparison results of the proposed 
models by SVM and MLR are presented in Table 
4. As can be seen, the RMSE of SVM method 
has less value for the training and test sets than 
the MLR method. Low RMSEs indicates more 
accurate model. In addition to above statistical 
parameters, external predictive power of both 
proposed models using a test set was examined 
by considering modified R2 (38) and to further 
investigate the accuracy and precise of a model, 
concordance correlation coefficient method 
can be used (39). Concordance correlation 
coefficient (CCC) evaluates the degree to which 
pairs of observations fall in the 45° line through 
the origin. These results show the superiority of 
GA-SVM model against the GA-MLR model.

Experimental and Theoretical Validation
Further validation protocols were followed 
to be sure that these models are applicable for 
prediction of the subsequent novel molecules. 
Since the developed models met the initial 
acceptance criteria, the Golbraikh and Tropsha 
acceptable model criteriaʹs was also followed 
(40). As discussed, refereeing to Q2

LOO and R2 
values for presenting the predictive ability of a 

Table 3. The correlation coefficient of selected descriptors and corresponding VIF values by GA-MLR.

GATS6m GATS1e P2e R7u+ C-026 VIFa

GATS6m 1 0 0 0 0 1.047

GATS1e 0.095 1 0 0 0 1.172

P2e -0.080 0.297 1 0 0 1.495

R7u+ 0.078 0.255 0.503 1 0 1.441

C-026 0.209 -0.105 -0.217 -0.220 1 1.052
a Variation inflation factor.
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built model is not sufficient in all cases, and it 
was claimed that the predictive power of a model 
can be investigated only based on the test set 
compounds. Therefore, a true and valid model 
can be established only on the biases of model 
validation procedure consisted of prediction 
of activities or properties of compounds not 
included in the model structure. Despite the 
generation of different models and selection 
of best model based on classical statistical 
parameters, Tropsha suggested that to simulate 
the use of QSAR models, it should consist of 
compounds with known activities/properties that 
are not included in either training or test sets. 
Even it was proposed that external evaluation 
set can be selected randomly from the entire 

initial dataset. In general, the size of the external 
evaluation set should be about 15%–20% of 
the entire dataset, and the remaining part of the 
dataset is called modeling set which can be split 
into the training and test sets. Since in some 
QSAR/QSPR works, the initial dataset do not 
consist of a large number of compounds so as to 
have the external evaluation set, in this work, we 
used an external data set published in different 
literatures. Performing this workflow is not 
only validated that the model is applicable for 
subsequent inhibitors and prediction purpose. 
Therefore, some new compounds with the similar 
core were used to develop the external evaluation 
set, and then, the statistical parameters for this 
set were calculated. The chemical structures 

Figure 4. Predicted versus experimental pIC50 by GA-SVM model.
Figure 4. Predicted versus experimental pIC50 by GA-SVM model.
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a test set was examined by considering modified R2 (38) and to further investigate the 

accuracy and precise of a model, concordance correlation coefficient method can be 

used (39). Concordance correlation coefficient (CCC) evaluates the degree to which 

pairs of observations fall in the 45° line through the origin. These results show the 

superiority of GA-SVM model against the GA-MLR model.
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Table 4. The statistical parameters of different constructed QSAR models.

Training

 
GA-MLR
GA-SVM

R2 RMSE F CCC R2
adj

0.779 0.444 15.508 0.8758 0.729

0.938 0.260 42.831 0.9563 0.924

Test

GA-MLR
GA-SVM

R2 RMSE F CCC rm2

0.823 0.531 0.675 0.8554 0.775

0.870 0.513 0.390 0.8257 0.667

CCC: concordance correlation coefficient.
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and experimental data used with their prediction 
results are shown in Table 5. As it can be seen, 
the results are in good agreement for compounds 
E1-E5; however, to better understand the 
deviations between predicted and observed 
values, Euclidean based applicability domain 
was used to detect the outliers (41), Euclidean 
based applicability domain helps to ensure that 
the training set compounds employed in model 
development is representative for the compounds 
of the evaluation set. This method is based on the 
distance scores calculated by Euclidean distance 

norms. Firstly, the normalized mean distance 
score for training set compounds are calculated 
(these values ranges from 0 to 1 where 0.0 is 
least diverse, and 1.0 is the most diverse training 
set compound). Then, the normalized mean 
distance score for the test set compounds are 
calculated, and those test compounds which are 
scored outside of 0.0 to 1.0 ranges are defined 
to be outside of the applicability domain. The 
Euclidean based applicability domain is shown 
in Figure 5. Therefore, the reason behind these 
prediction results is the lower diversity of 

Table 5. Experimental validation of models based on evaluation external set.

No. R1 R2 Exp. GA-MLR GA-SVM

 

O O

R1

HO

R2

E1-E3 E4 and E5

O OHO

S N R1

E1 a,d H H 5.85 4.80 5.27

E2 b,d CH2S-2-Thienyl H 6.38 5.79 5.99

E3 a,d Me H 6.04 6.91 6.72

E4 c,d H - 8.52 7.27 7.29

E5 c,d Me - 8.82 7.72 7.87
a See reference (42).
b See reference (3).
c See reference (8).
d Based on Euclidean applicability domain, the molecules are within applicability domain of models.

Figure 5. Euclidean based applicability domain of the proposed modelsFigure 5. Euclidean based applicability domain of the proposed models

Figure 6. The Williams plot of the training and evaluation sets.
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Figure 6. The Williams plot of the training and evaluation sets.
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21chemical structures comparing to the training set. 
In this respect, to predict the activities/properties 
of new compounds, it is here suggested to 
perform the Euclidean based applicability 
domain before performing any computing so as 
to be confident that the prediction of inhibition 
activity of compounds are within the capability 
of the models. One may refer to residuals 
values to compare the prediction results at once, 
but the presence of outliers can be normally 
detected by William plots as discussed above. 
The Williams plot for these five compounds 
was calculated and the results showed 
no presence of outliers. The Williams 
plot for molecules E1-E5 was shown in 
Figure 6.

Golbraikh and Tropsha acceptable model 
criteriaʹs are described as follows:

I) Q2
LOO value must be higher than 0.5.

II) R2 value must be higher than 0.6.
III) R0

2 _ R0
′2 / R2 < 0.1 and 0.85 < K′ < 1.15 

or R2 _ R0
2 / R2 < 0.1 or 0.85 < K < 1.15

IV) R2 _ R0
′2 < 0.3

Where R2 is correlation coefficient between 
the predicted and observed values; R0

2 is 
coefficients of determination (correlation of 
predicted versus observed values with intercept 
of zero), and R0

′2 is correlation between observed 
versus predicted values for regressions through 
the origin; K is slope and K′ is slope of regression 
lines through the origin. The results of these 
calculations for GA-MLR are listed in Table 6.

The final analysis to ensure that the model is 
established well and the molecular descriptors 
are selected appropriately is to derive a different 

Table 6. Golbraikh and Tropsha acceptable model criteria's for GA-MLR.

Values for GA-MLR GA-MLR

Condition I 0.674 Passed

Condition II 0.823 Passed

K = 1.049

K′= 0.950

Condition III R2_R0
2/R2 = 0.004 Passed

R0
2_R0′

2/R2 = 0.020

Condition IV R0
2_R0′

2 = 0.0123 Passed
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Table 7. Statistical parameters comparison based on different selected descriptors by GA-MLR.

Linear model equation

Model 1: pIC50 = 7.0086 (± 0.44447)  - 0.56701 (± 0.28122) nN + 0.21651 (± 0.0772) RDF100u + 0.22206 (± 0.05459) 
RDF070e - 0.29424 (± 0.11456) RDF065p - 1.16837 (± 0.40968) Mor15m

Model 2: pIC50 = 6.09379 (± 0.76707)  - 0.4853 (± 0.28032) nN + 0.46193 (± 0.33757) GATS6e + 0.19134 (± 0.04665) 
RDF070e - 1.19599 (± 0.38172) Mor10m - 1.03101 (± 0.39102) Mor15m

Model 3: pIC50 = 6.72661 (± 0.47912)  + 0.23447 (± 0.34966) nBnz - 0.05179 (± 0.01078) Eig1p + 0.24754 (± 0.049) 
RDF070e - 0.43443 (± 0.14922) Mor03m + 1.79601(± 0.46346) C - 029

Model 4 : pIC50 = 6.48189 (± 0.61284)  + 0.20329 (± 0.3866) nBnz - 0.0438 (±0.01101) Eig1p + 0.255 (± 0.05382) RDF070e 
+ 0.39064 (± 0.2075) H0m + 1.71489 (± 0.50505) C-029

Model 5: pIC50 = 6.61855 (± 0.58588) +  0.1342 (± 0.38201) nBnz - 0.04662 (± 0.01173)  Eig1p + 0.2437 (± 0.05394) 
RDF070e + 0.12274 (± 0.06922) RTm + 1.71805 (±0.50909) C-029

Model 6: pIC50 = 6.9527 (± 0.42856) 0.69797 (± 0.28258) nN + 0.18259 (± 0.04581)RD F070e - 1.11912 (± 0.35743) 
Mor10m - 1.06653 (± 0.37879) Mor15m + 0.53212 (± 0.31188) C-029

Model 7: pIC50 = 7.4772 (± 0.43517)  - 0.59149 (± 0.25509) nN + 0.21837 (± 0.06629) RDF100u - 0.1982 (± 0.05626) 
RDF065m + 0.20205 (± 0.04439) RDF070e - 1.67878 (± 0.36124) Mor15m

Model 8: pIC50 = 6.8958 (± 0.43333)  + 0.01576 (± 0.22858) nN - 0.04743 (± 0.00872) Eig1p + 0.23367 (± 0.04769) 
RDF070e - 0.40774 (± 0.15963) Mor03m + 1.60567 (± 0.37707) C-029

Model 9: pIC50 = 6.65879 (± 1.20624)  + 0.08351 (± 0.4122) IDDE - 0.04773 (± 0.00881) Eig1p + 0.23025 (± 0.05042) 
RDF070e - 0.40408 (± 0.15195) Mor03m + 1.60321 (± 0.37471) C-029

Model 10: pIC50 = 6.77014 (± 0.44483)  - 0.56233 (± 0.28016) nN + 0.11016 (± 0.04713) RDF070e - 1.2491 (± 0.38605) 
Mor15m - 0.95591(± 0.35215) Mor10e + 0.60422 (± 0.33097) C-029

Statistical Results

R2
train Ftrain Q2

LOO R2
test rm2

test

Model 1 0.608 6.820 0.333 0.736 0.702

Model 2 0.618 7.081 0.389 0.714 0.498

Model 3 0.692 9.856 0.452 0.820 0.771

Model 4 0.632 7.549 0.420 0.878 0.704

Model 5 0.626 7.362 0.409 0.836 0.718

Model 6 0.633 7.581 0.360 0.766 0.616

Model 7 0.674 9.101 0.399 0.790 0.613

Model 8 0.685 9.574 0.446 0.811 0.722

Model 9 0.686 9.597 0.464 0.803 0.720

Model 10 0.602 6.663 0.370 0.805 0.584

Main model 0.779 15.50 0.674 0.823 0.775

nN: Number of Nitrogen atoms

RDF100u: Radial Distribution Function - 100 /unweighted

RDF070e: Radial Distribution Function - 070 / weighted by Sanderson electronegativity

RDF065p: Radial Distribution Function - 065 /weighted by polarizability

Mor15m: Signal 15 / weighted by mass

GATS6e: Geary autocorrelation of lag 6 weighted by Sanderson electronegativity

Mor10m: Signal 10 / weighted by mass

nBnz: Number of benzene-like rings

Eig1p: Leading eigenvalue from polarizability weighted distance matrix

Mor03m: Signal 03 / weighted by mass

C-029: R-CX-X

H0m: H autocorrelation of lag 0 /weighted by mass

RTm: R total index / weighted by mass

RDF065m: Radial Distribution Function - 065 /weightedby mass

IDDE: Mean information content on the distance degree equality

Mor10e: Signal 10 / weighted by Sanderson electronegativity
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Table 8. Design of some novel inhibitors with the predicted inhibition activities.

No. R1 R2 GA-MLR

O O

R2

R1

HO  

N1 H iPr 5.15

N2 H CF3 6.07

N3 H Et 7.52

N4 Me Et 7.51

N5 Me CF3 7.17

N6 Me iPr 5.38

N7 H Et 7.52

N8 H H 7.64

N9 H CH2Ph 6.04

N10 H CH2OPh 4.10

N11 H CH2OMe 7.72

N12 H CH2NH-Phenyl 4.17

N13 H (CH2)2Ph 6.24

N14 H Ph 6.24

N15 H CN 7.52

N16 H CH2S-Phenyl 4.32

N17 H nPr 8.41

N18 H CH2NMe-Phenyl 5.12

set of molecular descriptors combinations by GA. 
The results of this analysis are listed in Table 7. 
Since the models are verified by test set and also 
above methodologies, the proposed models can 
be used to estimate the inhibition activities of 
new compounds within the applicability domain 
of the models. The series of novel compounds 
were drawn and then by using the GA-MLR 
model, which is simple and initially verified, 
the inhibition activities were obtained. The 
structures and the activities of the new designed 
compounds are shown in Table 8.

Conclusions

In this study, MLR and SVM were used to 

develop the linear and nonlinear QSAR models 
for prediction of the inhibition activities of 
17β-HSD3 inhibitors. The proposed models 
clearly demonstrated a good correlation between 
the chemical structures and inhibition activities 
of the studied compounds. The validation of the 
models using the leave one out cross-validation, 
external test set, and Y-randomization, Golbraikh 
and Tropsha acceptable model criteria’s, 
modified R2 values,  concordance correlation 
coefficient values, Euclidean based applicability 
domain, and employing an external evaluation 
set showed that the proposed models have a 
good internal and external predictive power. 
Comparison between GA-MLR and GA-SVM 
methods demonstrated that the performance of 
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GA-SVM model is better than that of GA-MLR 
suggesting that the nonlinear model is able to 
describe the relationship between the structural 
descriptors and the activity more accurately. The 
proposed models can identify and provide some 
insights about the chemical structural features 
required to derive inhibitors with high potency 
and thus, some instructions for successful 
synthesis of the potent 17β-HSD3 inhibitors.

References

Van Bokhoven A, Varella-Garcia M, Korch C, 
Johannes WU, Smith EE, Miller HL, Nordeen SK, 
Miller GJ and Lucia MS. Molecular characterization 
of human prostate carcinoma cell lines. The Prostate 
(2003) 57: 205-25.
Adamski J and Jakob FJ. A guide to 17β-hydroxysteroid 
dehydrogenases. Mol. Cell. Endocrinol. (2001) 171: 
1-4. 
Harada K, Kubo H, Tomigahara Y, Nishioka K, 
Takahashi J, Momose M, Inoue S and Kojima 
A. Coumarins as novel 17β-hydroxysteroid 
dehydrogenase type 3 inhibitors for potential treatment 
of prostate cancer. Bioorg. Med. Chem. Lett. (2010) 20: 
272-5.
Koh E, Noda T, Kanaya J and Namiki M. Differential 
expression of 17β-Hydroxysteroid dehydrogenase 
isozyme genes in prostate cancer and noncancer 
tissues. The Prostate (2002) 53: 154-9. 
Maltais R, Luu-The V and Poirier D. Synthesis 
and optimization of a new family of type 3 
17β-Hydroxysteroid dehydrogenase inhibitors by 
parallel liquid-phase chemistry. J. Med. Chem. (2002) 
45: 640-53.
Cornel KMC, Kruitwagen RF, Delvoux B, Visconti 
L, Van de Vijver KK, Day JM, Van Gorp T, Hermans 
RJ, Dunselman GA and Romano A. Overexpression of 
17β-Hydroxysteroid dehydrogenase type 1 increases 
the exposure of endometrial cancer to 17β-Estradiol. J. 
Clin. Endocr. Metab. (2012) 97: E591-E601. 
Day J, Tutill H and Purohit A. 17ß-Hydroxysteroid 
dehydrogenase inhibitors. Minerva. Endocrinol. 
(2010) 35: 87-108.
Marchais-Oberwinkler S, Henn C, Möller G, Klein 
T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, 
Xu K, Frotscher M, Hartmann RW and Adamski J. 
17β-Hydroxysteroiddehydrogenases (17β-HSDs) as 
therapeutic targets: protein structures, functions, and 
recent progress in inhibitor development. J. Steroid. 
Biochem. Mol. Biol. (2011) 125: 66-82.
Sabet R, Fassihi A and Moeinifard B. QSAR study of 
PETT derivatives as potent HIV-1 reverse transcriptase 
inhibitors. J. Mol. Graph. Model. (2009) 28: 146-55.
Fatemi MH and Gharaghani S. A novel QSAR model 
for prediction of apoptosis-inducing activity of 4-aryl-
4-H-chromenes based on support vector machine. 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Bioorg. Med. Chem. (2007) 15: 7746-54.
Pourbasheer E, Aalizadeh R, Ganjali M, Norouzi P and 
Banaei A. QSAR study of mGlu5 inhibitors by genetic 
algorithm-multiple linear regressions. Med. Chem. 
Res. (2014) 23: 3082-91.
Crisan L, Pacureanu L, Bora A, Avram S, Kurunczi L 
and Simon Z. QSAR study and molecular docking on 
indirubin inhibitors of Glycogen Synthase Kinase-3. 
Cent. Eur. J. Chem. (2013) 11: 63-77. 
Nowaczyk A and Modzelewska-Banachiewicz B. 
QSAR studies of a number of triazole antifungal 
alcohols. Cent. Eur. J. Chem. (2010) 8: 440-7.
Toropova AP, Toropov A, Benfenati E, Gini G, 
Leszczynska D and  Leszczynski J. QSAR modeling 
of anxiolytic activity taking into account the presence 
of keto- and enol-tautomers by balance of correlations 
with ideal slopes. Cent. Eur. J. Chem. (2011) 9: 846-
54.
Toropov A, Toropova A, Raska I Jr., Benfenati E and 
Gini G. Development of QSAR models for predicting 
anti-HIV-1 activity using the Monte Carlo method. 
Cent. Eur. J. Chem. (2013) 11: 371-80.
Pourbasheer E, Banaei A, Aalizadeh R, Ganjali MR, 
Norouzi P, Shadmanesh J and Methenitis C. Prediction 
of PCE of fullerene (C60) derivatives as polymer solar 
cell acceptors by genetic algorithm–multiple linear 
regression. J. Ind. Eng. Chem.(2015) 21: 1057-68. 
Zvinavashe E, Murk AJ, Vervoort J, Soffers AEMF, 
Freidig A and Rietjens IMCM. Quantum chemistry 
based quantitative structure-activity relationships 
for modeling the (sub) acute toxicity of substituted 
mononitrobenzenes in aquatic systems. Environ. 
Toxicol. Chem. (2006) 25: 2313-21.
Pourbasheer E, Shokouhi Tabar S, Masand VH, 
Aalizadeh R and Ganjali MR. 3D-QSAR and docking 
studies on adenosine A2A receptor antagonists by the 
CoMFA method. SAR QSAR Environ. Res. (2015) 26: 
461-77.
Pourbasheer E, Aalizadeh R, Ebadi A and Ganjali M. 
3D-QSAR analysis of MCD inhibitors by CoMFA and 
CoMSIA. Comb. Chem. High T. Scr. (2015) 18: 751-
66.
Pourbasheer E, Aalizadeh R, Ardabili JS and Ganjali 
MR. QSPR study on solubility of some fullerenes 
derivatives using the genetic algorithms—Multiple 
linear regression. J. Mol. Liq. (2015) 204: 162-9.
Pourbasheer E, Vahdani S, Aalizadeh R, Banaei A and 
Ganjali MR. QSAR study of prolylcarboxypeptidase 
inhibitors by genetic algorithm-multiple linear 
regressions. J. Chem. Sci. (2015) 127: 1243-51.
Thissen U, Üstün B, Melssen WJ and Buydens LMC. 
Multivariate calibration with least-squares support 
vector machines. Anal. Chem. (2004) 76: 3099-105.
Borin A, Ferrão MF, Mello C, Maretto DA and Poppi 
RJ. least-squares support vector machines and near 
infrared spectroscopy for quantification of common 
adulterants in powdered milk. Anal. Chim. Acta (2006) 
579: 25-32.
Habibi-Yangjeh A, Pourbasheer E and Danandeh-

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)



 Pourbasheer E et al. / IJPR (2017), 16 (3): 966-980

980

Jenagharad M. Prediction of melting point for drug-
like compounds using principal component-genetic 
algorithm-artificial neural network. Bull. Korean 
Chem. Soc. (2008) 29: 833-41.
Habibi-Yangjeh A, Pourbasheer E and Danandeh-
Jenagharad M. Application of principal component-
genetic algorithm-artificial neural network for 
prediction acidity constant of various nitrogen-
containing compounds in water. Monatsh. Chem. 
(2009) 140: 15-27.
Pourbasheer E, Aalizadeh R, Ganjali MR and Norouzi 
P. Prediction of superoxide quenching activity of 
fullerene (C60) derivatives by genetic algorithm-
support vector machine. Fuller. Nanotub. Car. N. 
(2014) 23: 290-9.
Gao H, Lajiness MS and Drie JV. Enhancement 
of binary QSAR analysis by a GA-based variable 
selection method. J. Mol. Graph. Model. (2002) 20: 
259-68.
Min S-H, Lee J and Han I. Hybrid genetic algorithms 
and support vector machines for bankruptcy prediction. 
Expert. Syst. Appl. (2006) 31: 652-60.
HyperChem. molecular modeling system. 7.03 ed: 
Hypercube, Inc., Gainesville, FL; 2002.
Todeschini R, Consonni V, Mauri A and Pavan M. 
DRAGON. software for the calculation of molecular 
descriptors. 5.3 ed. Talete srl, Milan, Italy. 2010.
Zhou F, Frade FDlT and Hodgins JK. Hierarchical 
aligned cluster analysis for temporal clustering of 
human motion. IEEE Trans. Pattern. Anal. Mach. 
Intell. (2013) 35: 582-96.
Beehr TA. Hierarchical cluster analysis of the profile 
of organizational characteristics. J. Appl. Psychol. 
(1977) 62: 120-3.
Tropsha A, Gramatica P and Gombar VK. The 
importance of being earnest: validation is the absolute 
essential for successful application and interpretation 
of QSPR models. QSAR Comb. Sci. (2003) 22: 69-77.
Netzeva TI WA, Aldenberg T, Benigni R, Cronin 
MT, Gramatica P, Jaworska JS, Kahn S, Klopman 

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

G, Marchant CA, Myatt G, Nikolova-Jeliazkova 
N, Patlewicz GY, Perkins R, Roberts D, Schultz T, 
Stanton DW, van de Sandt JJ, Tong W, Veith G and 
Yang C. Current status of methods for defining the 
applicability domain of (quantitative) structure-activity 
relationships. The report and recommendations of 
ECVAM Workshop 52. Altern. Lab. Anim. (2005) 33: 
155-73.
Agrawal VK and Khadikar PV. QSAR prediction of 
toxicity of nitrobenzenes. Bioorg. Med. Chem. (2001) 
9: 3035-40.
Vapnik V. Statistical learning theory. Wiley, New York 
(1998) 400-93.
Pourbasheer E, Riahi S, Ganjali M and Norouzi P. 
QSAR study of C allosteric binding site of HCV NS5B 
polymerase inhibitors by support vector machine. Mol. 
Divers. (2011) 15: 645-53.
Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S and 
Das RN. Some case studies on application of “rm2” 
metrics for judging quality of quantitative structure–
activity relationship predictions: emphasis on scaling 
of response data. J. Comput. Chem. (2013) 34: 1071-
82.
Lin L. A concordance correlation coefficient to evaluate 
reproducibility. Biometrics (1989) 45: 255-68.
Golbraikh A and Tropsha A. Beware of q2!.  J. Mol. 
Graph. Model. (2002) 20: 269-76.
Golmohammadi H, Dashtbozorgi Z and Acree Jr WE. 
Quantitative structure–activity relationship prediction 
of blood-to-brain partitioning behavior using support 
vector machine. Eur. J. Pharm. Sci. (2012) 47: 421-9.
Le Lain R, Barrell KJ, Saeed GS, Nicholls PJ, Simons 
C, Kirby A and Smith HJ. Some coumarins and 
triphenylethene derivatives as inhibitors of human 
testes microsomal 17β-hydroxysteroid dehydrogenase 
(17β-HSD Type 3): further studies with tamoxifen on 
the rat testes microsomal enzyme. J. Enzym. Inhib. 
Med. Chem. (2002) 17: 93-100.

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

This article is available online at http://www.ijpr.ir


