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Lead exposure impairs the NMDA agonist-induced NOS expression 
in pyramidal hippocampal cells
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Abstract

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) 
particularly the learning and memory. On the other hand, alteration of calcium level in the CNS 
results in activation of NOS. It has been shown that lead enters the neurons through calcium 
channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C 
thereby affecting calcium-mediated processes.

Our recently data showed that no prodaction due to NMDA receptor simulation in cultured 
CA1 pyramidal cells has been diminished in the presence of 10 nM of Lead acetate. Therefore, 
it is possible that Lead can inhibit the elevation of NO through blockade of NMDA receptor and 
interference of LTP through this mechanism. This finding may attribute to the effect of lead on 
the NOS activity or expression as key enzyme producing NO. In this study we have examined 
the effect of lead acetate on the NOS expression in the presence of NMDA agonist using 
immunocytochemical analysis. Expression of nNOS were examined in the CA1 pyramidal 
cells exposed to 10 and 100 nM lead acetate and 40 μM ACBD (NMDA agonist). The result of 
this experiment showed that the enhanced nNOS expression induced by ACBD significantly 
diminished by lead acetate. The trend of this inhibition is similar to amount of NO production 
indicating that the decrease of expression may major reason of decrease in NO production.
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Introduction

Lead (Pb) is a heavy metal environmental 
toxicant that possesses a significant health 
threat, particularly to the development of CNS 
in infants and children (1-3). Furthermore, Pb 
is known to be a potent neurotoxin, inducing 
neuronal damage and behavioral disruptions 
(4, 5). The neurological effects of low level 
of Pb exposure range from impaired cognitive 
performance to altered brain development 

(6, 7). During brain development, chronic 
exposure to environmental levels of Pb results 
in accumulation of this metal at its highest level 
in the hippocampus (8). This has been the main 
hypothesis to explain why learning and memory 
are affected by chronic exposure to Pb (9). In 
this regards, Altmann et al. have reported that 
acute lead perfusion of hippocampal slices as 
well as chronic lead exposure impaired long-
term potentiation (LTP) in CA1 area (10, 11). 
It is known that activation of NMDA receptors 
which are densely distributed in the mammalian 
CNS and participate in several forms of synaptic 
Plasticity (12- 14), is critical for the induction 
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of LTP (15, 16). However, the role of NMDA 
receptors in the Pb neurotoxicity has not been 
well defined. It has been reported that Pb blocks 
LTP in rat brain slice of hippocampus (17, 18) 
through mechanisms which may (19) or may 
not (20) involve interference with the NMDA 
receptors. The influx of calcium through NMDA 
receptor channels activates a cascade of events 
that lead to persistent changes in synaptic 
efficacy (21, 22). Despite clear role of NMDA 
receptors in LTP, previous studies have shown 
that untimely activation of NMDA receptors 
prior to delivery of an LTP-inducing stimulus 
impairs the LTP generation without persistently 
altering baseline synaptic responses (23). 

 Other neurotransmitters have been proposed 
in the mechanisms of memory and LTP. Recent 
evidence supports nitric oxide (NO) as a 
retrograde messenger mediating LTP in the 
hippocampus (24-27) and in a similar process 
in the cerebellum called long-term synaptic 
depression (28). NO is produced by nitric oxide 
synthase (NOS) from L-arginine in an oxygen 
and NADPH requiring reaction. The constitutive 
form of brain NOS is Ca2+ -calmodulin 
dependent (29, 30) and NOS activity may be 
regulated by phosphorylation and affected by 
Ca2+ (29, 31, 32). It has been shown that NO 
plays a key role in morphogenesis and neuronal 
plasticity in the early brain development                                                       
(33- 36) as well as synaptic plasticity and normal 
physiological regulation of the nervous system 
(37, 38). Therefore, changes in NO production 
could affect its regulatory role in CNS. It is 
known that chronic exposure to Pb affects neural 
functions in CNS particularly the learning and 
memory by blocking voltage dependent calcium 
channels. Since NO production in neuronal cell 
is Ca2+ dependent, alteration in calcium level 
in neuron could result in lower NO production 
in hippocampus. Our recent data showed that 
stimulation of NMDA receptor enhances NO 
production in cultured CA1 pyramidal cells 
diminished in the presence of 10 nM of lead 
acetate . Therefore, it is possible that lead can 
inhibit the elevation of NO through blockade 
of NMDA receptor and therefore can interfere 
with LTP through this mechanism (39).This 
finding may attribute to the effect of lead on 
the NOS activity or expression as key enzyme 

producing NO. In this study we have examined 
the effect of lead acetate on the NOS expression 
in the presence of NMDA agonist using 
immunocytochemical analysis.

Experimental

Preparation of CA1 hippocampal (CA1HP) 
cells

Pregnant Sprague-Dawley rats (300- 400 gr) 
were purchased from Iran Pasteur Institute and 
housed in a room controlled at 23 ± 2°C with 
controlled lighting conditions (12/12 hrs light 
/dark cycles) with food and water provided ad 
libitum. The hippocampus of one-day-old pups 
were removed aseptically (10 pups in each 
experiment in three separate occasions). The 
tissue was then incubated in dissociation medium 
(90 mM Na2SO4, 30 mM K2SO4, 5.8 mM MgCl2, 
0.25 mM CaCl2 and 10 mM HEPES with the 
pH adjusted to 7.4) containing 0.025% trypsin 
(Gibco, UK) for 20 minutes. Cells were then 
filtered through 50 μm nylon filter and washed 
in Dulbecco Modified Eagle culture medium 
(DMEM, Gibco, UK) containing 5% fetal bovine 
serum (FBS, Gibco, UK), 5% horse serum (HS, 
Gibco, UK), 400 μg L-glutamine and 17 mM D-
glucose (40). The dissociated cells were plated 
at a density of approximately 5.6 x 105 cells/ml 
in 35 mm poly-D-Lysine coated plates (Nunc, 
Denmark). Non-neural cells were omitted 
by 24 hrs exposure to cytosine arabinoside               
(Sigma, UK) (40). 

Immunocytochemistry
Determination of MAP2 antigen
Cultured neurons were stained with 

monoclonal anti-MAP2 antibody that recognizes 
phosphate independent epitope of the 280 KD a 
cytoskeletal MAP2 protein (Calbiochem, USA). 
Briefly, cells were fixed in 4% paraformaldehyde 
at room temperature for 4 min, followed by 
washing in PBS and incubation in blocking 
reagent for 30 min. Then, cells were incubated 
with the anti-MAP2 antibody (1:100) in 
blocking reagent for 3 hrs at room temperature. 
Visualization was carried out using the FITC-
conjugated anti-mouse IgG (Sigma, UK). The 
number of the immunoreactive neurons was 
determined under the fluorescent microscope 
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(Olympus B201, Japan).

Determination of NOS expression
Immunocytochemistry for nNOS was 

done as previously described (55). The anti-
nNOS antibody (which corresponded to the 
N- terminal region of nNOS, Santa Cruz USA) 
was used at a 1:40 dilution of purified antibody 
(nNOS; 200 μg/ml to 5 μg/ml; Satna Cruz USA) 
have been used for specific immunoreactivity 
on cultured pyramidal cells, followed by 
incubation with secondary Streptavidin-HRP 
conjugated antibody. Briefly, the cells were 
fixed in methanol-acetone (1:1 v/v) for 10 
minutes at 4°C and were washed twice with 
3% hydrogen peroxide in order to remove 
endogenous peroxidase. The cells were then 
incubated in bovine serum albumin (BSA) 1% 
w/v for 1 hour to block nonspecific proteins and 
then washed twice with tris buffer (0.05 M). The 
cells were then incubated in humidified chamber 
with primary mouse antibody against NOS for 
24 hours in 4°C (Optimum concentration of 
primary antibody 1:50) and were then washed 

twice with Tris buffer (pH. 7.2). The cells were 
incubated for 2 hours in 1–3 drops of biotinylated 
secondary antibody. Rinse with PBS, and then 
wash in PBS twice for 2 minutes each on stir 
plate and stained as mentioned in the Santa Cruz 
kit (LSAB2 kit). Positive cells were counted in 
1000 cells in 4 different slides. Specificity of 
nNOS antibody was examined by omission of 
the primary antibody. The results were reported 
as percent of control and statistically analyzed 
using one way ANOVA followed by Tukey 
multiple comparison post test and p<0.05 were 
considered significance.

 
Lead administration to the cultured cells
The CA1HP cells were exposed at day 

second of culture to different concentrations 
of lead acetate (10-9-10-6 M) for 7 days. The 
ACBD (NMDA agonist) at concentration of 
40 μM was added to the culture medium at the 
beginning of culture of hippocampal cells. At 
day seven the cells were fixed by methanol:
acetone for 5 minutes in the refrigerator followed 
immunocytochemistry as explained previously. 

Results

Figure 1 shows the immunofluorescence of 
anti-MAP2 antigen on the surface of pyramidal 
cells demonstrating the purity of pyramidal cells 
in culture which has been calculated more than 
98% with the mentioned method. The pyramidal 
cells obtained from CA1 region of one day 
old of neonate rat were successfully grown in 
the culture in vitro. After 8 days they showed 

Figure  1. (Top) shows the immunofluorescence of anti-MAP2 
antigen on the surface of pyramidal cells in culture (Bottom) 
The cell were stained with Meyer Haematoxylene (X100). 

Figure  2. The CA1 pyramidal cells in culture after 8 days. 
Connection between cells is noted. Stained with nNOS antibody 
and secondary staining system with DAB chromogen (X200). 
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cell- cell connection properly and expressed 
constitutive nNOS (Figure 2). Elimination of 
primary antibody resulted in disappearance of 
nNOS expression indicating specificity of method 
for nNOS as antigen (Figure 3). Cells were all 
counterstained by Meyer Haematoxylene. ACBD 
at 40 μM concentration induced the expression of 
nNOS in these cells (Figure 4). On the other hand 
100 nM of lead acetate did not alter the pattern 
of nNOS expression (Figure 5) comparing to 
control; however, it significantly reduced the 
ACBD-induced nNOS expression (Figure 6, 
p<0.01). Figure 7 shows the semiquantitative 
measurement of nNOS expression using digitized 
imaging system Olysia Software (Olympus 
DP70, Japan). As indicated in figure 7, ACBD as 
an NMDA agonistsignificantly increased NOS 
expression comparing to control group (p<0.01). 
The NOS expression induction significantly 

reduced in the presence of 10 and 100 nM of lead 
acetate (Figure 7). 

Discussion

Nitric oxide (NO) is a lipophilic and 
chemically unstable free radical. NO also 
serves as a neuronal messenger since cerebellar 
neurons release an NO-like muscle relaxing 
factor (41) which is not stored in the vesicles but 
is produced on demand from L-arginine by the 
constitutive form of NOS (42). Recent research 
reports have confirmed that the distributed NOS 
in various regions of the brain produce NO (43).  
The NO may possess both neurodestructive and 
neuroprotective properties (44, 45). Neuronal 
nitric oxide synthase (nNOS) is a calcium 
dependent enzyme, and have been reported 

Figure  3. The CA1 pyramidal cells with stained with LSAB2 
system without primary antibody against nNOS but stained 
with Meyer Haematoxylene. Note that no stained with DAB 
chromogen (X400).

Figure  4. The CA1 pyramidal cells in culture treated with 40 
µM ACBD (NMDA agonist). Note the expression of nNOS 
increased with this treatment. The cells stained with nNOS 
primary antibody with secondary LSAB2 kit with DAB 
chromogen (X200).

Figure  5. The effect of 100 nM lead acetate in the CA1 
pyramidal cells in culture. The cells stained with nNOS primary 
antibody following secondary DAB immunostaining system. 
Note no apparent different expression of nNOS compare with 
basal expression has been observed (X100).

Figure  6.  The effect of 100 nM lead acetate and 40 µM ACBD 
concurrently administered to CA1 pyramidal cells in vitro. Note 
that the induce effect of ACBD on nNOS expression has been 
diminished. The cells stained with nNOS primary antibody 
following DAB-HRP immunostained (X100). 
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to be highly expressed in the cerebellum and 
the hippocampus (46, 47). Lead is known to 
exhibit a high affinity for calcium binding sites 
(48, 49). This could prevent accessibility of 
calcium to NOS, leading to a decreased activity 
of nNOS and reduced production of NO. This 
idea was supported by the results obtained 
from an in vitro model where lead inhibited 
the Ca2+ - calmodulin dependent NOS prepared 
from rat cerebellum (50), and from the whole 
brain cytosolic fractions (51, 52). However our 
previous results showed that the basal nNOS 
expression did not alter with 10 and 100 nM 
of lead acetate of hippocampal neurons, the 
concentration that usually achieved during 
chronic exposure. In the present study, our 
results showed that in hippocampal pyramidal 
cells, lead exposure impairs NOS expression 
induced by NMDA agonist. Neurons treated 
with lead (10 and 100nM) did not show any 
alterations in nNOS expression. However, the 

ACBD induced NOS expression was completely 
blocked to control level (Figure1), suggesting 
the role of lead on the excited neuron. Our 
previous study revealed that NMDA agonist can 
enhance net nitric oxide production in pyramidal 
cells (53). Howeverin the present study, lead 
acetate diminished the ACBD induced NO 
production. This effect was observed only when 
NMDA receptors on neurons were activated 
therefor lead acetate solely could not change 
the amount of nitric oxide production. One 
possible explanation for this phenomenon is the 
involvement of lead in changing expression of 
NOS as key enzyme for nitric oxide production 
through blockade of NMDA receptor. Our 
results confirmed that trend of NOS expression 
is in accord with NO production observed in 
our previous study. Furthermore, we observed 
that the inhibition of NO production by nNOS 
occurred at concentrations of Pb2+ that did not 
alter pyramidal cell morphology, induce cell 
membrane leakage or alter the rate of ATP 
production. This result may attribute to the 
alteration of NO as a result of alteration of NOS 
expression by lead in pyramidal cells. In vivo 
exposure to low level of Pb2+ during development 
impairs spatial learning and LTP and alters gene 
and protein expression of NMDA receptor in 
the hippocampus (54). Other reports were also 
confirmed the result, of our studies indicatins 
that lead affect, the NO production through 
NMDA receptor. Furthermore, this decrease 
in NO level may happens through decrease of 
NOS expression in the pyramidal cell.
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