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Abstract

The descriptors computed by HyperChem® software were employed to represent the solubility 
of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the 
architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing 
average of absolute error (AE) of calculated and experimental logarithm of solubilities. The 
AE (±SD) of data sets was 0.4 (±0.3) when all data points were used as training set and the 
solubilities were back-calculated. The AE for predicted solubilities using a trained network 
employing 1/3 of data points from each set was 0.4 (± 0.3) and this finding reveals that the 
network is well trained using a limited number of experimental data. To provide a full predictive 
method, data sets were divided into two sets and the network was trained using 20 data sets 
and the next 20 sets were used as prediction sets. The produced average AEs (±SD) were 
1.7 (±1.1) and 1.6 (±1.5), for two sets of analyses. In these analyses, only the computational 
descriptors, temperature and pressure of SC-CO2 were used and no experimental solubility 
data is employed.

Keywords: Solubility prediction; Supercritical carbon dioxide; Artificial neural network; 
Pharmaceuticals.

Introduction

Supercritical fluid technology provides 
great potential in pharmaceutical industry. The 
properties of supercritical fluids (SCFs) are 
between liquids and gases. Density (a property 
representing solubilization power) of SCFs is 
similar to that of liquids, viscosity (a property 
representing flow rate) is similar to the viscosity 
of gases, and diffusion coefficient is at least 
ten times more than that of liquids. These 
properties of SCFs can be easily controlled by 
changing temperature and pressure. There are 

various industrial applications in chemical and 
pharmaceutical areas and the main industrial 
applications of SCFs could be categorized as:

1. Alternative solvents for separation 
processes: The release of common solvents 
used in industrial separation processes is a 
major environmental consideration and is not 
compatible with green chemistry, while there is 
no hazardous wastes for mainly used SCF, i.e. 
supercritical carbon dioxide (SC-CO2).

2. Reaction media for chemical synthesis 
both for small molecules and polymers.

3. Reprocessing fluid in production of 
particles (in micro and nano scales), fibers and 
foams.

Solubility data of drugs in SCFs is the 
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key information for designing a supercritical 
technology. A number of solubility data sets 
of pharmaceuticals have been published in the 
literature; however, demand is more than the 
available databases. In addition, there is no 
data for new drugs or chemicals. Experimental 
determination of solubility in SCFs is time 
consuming and also costly. As an alternative, 
researchers developed a number of models for 
representing the data. In a paper (1), available 
empirical and semi-empirical models were 
compared employing experimental data sets 
and it was found that the Equation 1 was the 
most accurate model both from correlation and 
prediction points of view.

                            K4TLny2=K0+K1 P+K2 P 2+K3PT+ ——+K5 In ρ
                             p

                  (Equation 1)

where y2 is the mole fraction solubility of the 
solute in SC-CO2, P is the pressure (bar), T stands 
for temperature (K), ρ denotes the density of 
pure SC-CO2 and K0-K5 are the model constants 
(1). The main limitation of the empirical and/or 
semi-empirical models is the presence of curve-
fitting parameters which should be computed 
employing experimental data. To overcome this 
limitation, the models can be trained using a 
minimum number of experimental data and then 
predict the unmeasured solubilities at pressures 
and temperatures of interest (2). To provide a 
predictive method, physico-chemical properties 
of drugs were calculated using HyperChem® 
software and then used along with temperature 
and pressure as input variables for a neural 
network model and the accuracy of the proposed 
method was compared with those of previous 
methods.

The artificial neural network (ANN) 
technique is a powerful non-linear mapping 
technique which is a mathematical system that 
simulates biological neural networks. It consists 
of processing elements (neurons, nodes) that 
are organized in the layers. There is always one 
input and one output layer and at least one hidden 
layer. Each layer of nodes receives its input from 
the previous layer or from the network input. 
The output of each node feeds the next layer 

or the output of the network. There are several 
types of neural networks, but back-propagation 
neural networks are the most frequently used 
models  used in chemical and pharmaceutical 
applications (3). 

A three layer network with a sigmoidal 
transfer function in hidden and output layers 
with back-propagation error algorithm was 
designed in this study. Neural networks were 
implemented in Matlab 6.1 (4) software using 
Neural Network Toolbox for Windows running 
on a personal computer (Pentium IV 2400 
MHz). The architecture of the network was 15-
4-1. Before ANN analysis, all input and output 
data were normalized between 0.1 and 0.9. After 
simulation, the values of predicted data sets were 
transformed to the experimental values.

The calculated physico-chemical properties of 
the solutes computed by HyperChem® software 
were used as inputs and the logarithms of their 
solubilities were used as outputs. Generally, 
the neural network methodology has several 
empirically determined parameters. These 
include: the number of iteractions or epochs, 
the number of hidden nodes, learning rate and 
momentum terms. The optimum values for ANN 
parameters were evaluated by obtaining those 
values, which yielded the lowest prediction 
errors. The optimized values for the number of 
epochs, number of nodes in the hidden layer, 
learning rate and momentum are 20000, 4, 0.1 
and 0.9, respectively. To ensure that the global 
optimum had been reached and not just a local 
optimum, the algorithm was run from different 
starting values of initial weights. Each set of 
starting values resulted in almost the same set 
of optimum values, confirming that a global 
optimum had been found.

Experimental

Numerical methods and experimental data
Solubility data of 40 pharmaceutically 

interesting compounds were collected from the 
literature. Details of data sets including solute’s 
name, number of data points in each set (N), 
temperature and pressure ranges are listed in 
Table 1. Considering the experimental data 
collected, one should keep in mind that there 
are some differences between experimental 
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No. Solute N T (K) P (bar) Reference

1 p-Acetoxyacetanilide 16 308.2-348.2 100.0-200.0 2

2 Aspirin 24 308.2-328.2 120.0-250.0 9

3 Beclomethasone dipropionate 21 338.0-358.0 213.0-385.0 10

4 Benzocaine 40 308.0-348.0 122.0-355.0 11

5 Benzocaine 29 298.0-318.0 84.0-251.0 12

6 Benzoin 19 308.2-328.2 111.3-244.3 13

7 Bisacodyl 39 308.0-348.0 122.0-355.0 14

8 Budesonide 21 338.0-358.0 213.0-385.0 10

9 Caffeine 24 313.0-353.0 199.0-349.0 16

10 Chloramphenicol 20 313.2-333.2 140.0-463.0 17

11 Cyproterone acetate 40 308.0-348.0 122.0-355.0 15

12 Florfenicol 15 313.2-333.2 117.0-490.0 17

13 Flurbiprofen 27 303.0-323.0 89.0-245.0 18

14 Ketoprofen 15 313.0-328.0 90.0-250.0 19

15 Lidocaine 33 298.0-318.0 70.0-252.0 20

16 Mandelic acid 21 308.2-328.2 101.0-230.6 13

17 Medroxyprogestron acetate 40 308.0-348.0 122.0-355.0 15

18 Methimazole 39 308.0-348.0 122.0-355.0 14

19 Methylparaben 40 308.0-348.0 122.0-355.0 14

20 Metronidazole benzoate 40 308.0-348.0 122.0-355.0 11

21 Naproxen 40 308.0-348.0 122.0-355.0 11

22 Naproxen 18 313.1-333.1 89.6-193.1 21

23 Nicotinic acid 17 308.2-348.2 100.0-200.0 2

24 Penicillin G 18 313.2-333.2 100.0-350.0 22

25 Penicillin V 24 314.9-334.9 79.9-280.5 23

26 Pindolol 30 298.0-318.0 80.0-275.0 12

27 Piroxicam 9 312.5-331.5 100.0-220.0 24

28 Procaine 28 298.0-318.0 69.0-252.0 20

29 Propyl 4-hydroxybenzoate 21 308.2-328.2 94.1-220.9 13

30 Pyrocatechol 32 308.2-338.2 121.6-405.3 25

31 Resorcinol 32 308.2-338.2 121.6-405.3 25

32 Retinol 20 313.0-353.0 200.0-350.0 26

33 Salicylic acid 49 308.2-328.2 81.1-202.6 27

34 Sulfadimethoxine 19 313.2-333.2 131.0-488.0 28

35 Sulfamerazine 18 313.2-333.2 151.0-474.0 28

36 Sulfamethazine 20 313.2-333.2 136.0-476.0 28

37 Theobromine 23 313.0-353.0 193.0-345.0 16

38 Theophylline 24 313.0-353.0 199.0-349.0 16

39 Uracil 12 313.2-333.3 100.0-299.9 29

40 Vitamin K1 24 313.0-353.0 200.0-350.0 26

Table 1. Details of experimental data, number of data points in each set (N), temperature (T) and pressure (P) ranges and the 
references.



data for a given solute from different research 
groups. The importance of solubility data, their 
accuracies and precisions have been discussed 
by Hutchensen and Foster (5) and different 
solubility behaviours of oleic acid in SC-CO2 
have been reported from various research 
groups. As another example, Bush and Eckert 
(6) compared the experimental solubility of 
octacosane in SC-CO2 at 35 °C from 4 different 
research groups where solubility differences of 
more than a 10 factor had been reported. As a 
general rule, the lower the solubility the higher 
the expected RSD values. The possible reason 
for these differences should be an enhancement 
effect caused by any impurities, differences in 
pressure and temperature calibrations or technical 
variations during solubility measurements.

All data points from 40 data sets were used to 
train the ANN, and then the solubilities were back-
calculated using the trained ANN (numerical 
method I). The calculated solubilities were 
compared with the corresponding experimental 
values and the individual absolute error (IAE) 
was computed using the following equation:

IAE=|Lny2
Experimental-Lny2

Calculated|

The absolute error (AE) was calculated by 
the following equation:

         ∑|Lny2
Experimental-Lny2

Calculated|
AE = ———————————

    N

Where N is the number of data points. 
In order to investigate the prediction 

capability of the proposed ANN method, all 
data points were divided into training (1/3 of 
data points) and test (2/3 of data points) sets. 
The ANN was trained using training set and the 
solubility of test set was predicted using trained 
ANN (numerical method II). Using this method, 
one needs a number of experimental data points 
from each solute to predict the solubility at other 
temperatures and pressures of interest.

In the next set of analysis, 40 data sets were 
divided into training and test sets and then the 
ANN trained using training data sets and solubility 
of test set was predicted (numerical methods 
III and IV). Using this prediction method, the 

researchers need only chemical structure of the 
solute of interest and no experimental solubility 
data of the solute is required. 

Computation of descriptors
The selected theoretical descriptors of the 

solutes were found by AM1 semi-empirical 
quantum mechanical method using molecular 
descriptors, properties and orbital programs 
of HyperChem® 7.0 (7). The structure of each 
solute was drawn in 2D, converted to 3D using 
HyperChem® 7.0 (7), and preminimized by 
Polak-Ribiere  geometry optimization using MM+ 
software (8). The structures found by MM+, were 
used as the starting point for re-minimization 
by Polak-Ribiere optimization using AM1 semi-
empirical quantum mechanical method. Energy 
minimizations were performed until the absolute 
value of the largest partial derivative of energy 
with respect to the coordinates was below 0.01 
kcal mol-1 A-1. The computed descriptors include: 
surface area approximate (SAA), surface area 
grid (SAG), molar volume (VOL), hydration 
energy (HE), logarithm of partition coefficient 
(logP), molar refractivity (REF), polarizability 
(POL), molecular mass (MASS), total energy 
(TE), dipole moment (DM), energy of the lowest 
unoccupied molecular orbital (LUMO) and 
energy of the highest occupied molecular orbital 
(HOMO). Table 2 lists the numerical values of the 
computational descriptors of the studied solutes.

Results and Discussion

Solubility data of 40 drugs in SC-CO2 at 
various temperatures and pressures were used to 
train the ANN, then the solubilities were back-
calculated, and AE was computed and listed 
in the second column of Table 3. The analysis 
(numerical method I) showed the correlation 
ability of the ANN and the minimum and 
maximum AEs for this analysis were 0.1 (for 
resorcinol) and 1.1 (for benzocaine) and the 
overall AE (±SD) was 0.4 (± 0.3). 

In the next numerical analysis (method II) 
all data points of 40 solutes were divided into 
training and test sets. The AEs of predicted 
solubilities for test sets are listed in the third 
column of Table 3. The overall AE was 0.4            
(± 0.3) and there was no difference between 
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Solute SAA SAG VOL HE LogP REF POL MASS TE DM LUMO HOMO

p-Acetoxyacetanilide 384.5 396.2 614.4 -4.82 -1.54 54.99 19.93 193.2 -59953.7 4.57 0.15 -8.55

Aspirin 302.3 342.0 531.8 -4.73 -0.26 48.00 17.38 180.2 -58660.8 5.58 -0.67 -9.76
Beclomethasone
dipropionate

622.5 713.3 1337.0 -2.93 4.71 134.79 52.86 521.1 -154771.1 6.42 -0.48 -10.21

Benzocaine 333.1 366.2 559.0 -6.96 -0.36 50.02 18.01 165.2 -49626.1 3.97 -0.02 -8.65

Benzocaine 333.1 366.2 559.0 -6.96 -0.36 50.02 18.01 165.2 -49626.1 3.97 -0.02 -8.65

Benzoin 332.7 416.3 661.1 -7.89 2.18 70.70 24.49 212.3 -59905.7 3.34 -0.48 -9.78

Bisacodyl 530.7 634.7 1058.4 -6.51 0.70 111.62 39.67 361.4 -105280.2 4.26 -0.21 -9.21

Budesonide 442.5 603.2 1109.8 -7.02 3.40 116.11 45.12 430.5 -128881.1 7.28 -0.25 -7.67

Caffeine 337.4 363.0 570.5 -2.33 -1.06 50.01 18.87 194.2 -60617.4 3.66 -0.32 -8.94

Chloramphenicol 448.8 478.9 799.9 -16.41 -0.25 76.21 28.02 323.1 -99961.2 6.78 -1.07 -10.32

Cyproterone acetate 501.9 609.4 1104.5 -0.58 3.05 113.07 43.93 419.0 -118860.0 6.20 -0.61 -9.58

Florfenicol 496.6 512.0 864.7 -8.13 -0.43 81.97 28.42 358.2 -107115.9 3.69 -0.92 -10.41

Flurbiprofen 388.0 448.6 728.4 -7.82 1.48 74.72 26.23 244.3 -74384.2 1.12 -0.46 -9.14

Ketoprofen 393.1 461.3 763.4 -8.82 3.46 72.52 28.24 254.3 -73848.9 2.96 -0.51 -9.77

Lidocaine 460.2 474.3 793.8 -0.19 0.56 75.44 27.90 234.3 -65258.2 3.83 0.33 -8.95

Mandelic acid 271.2 318.7 476.5 -12.14 0.48 42.84 15.46 152.2 -48340.7 2.12 0.02 -9.85

Medroxyprogestron
acetate

495.3 585.4 1067.1 -0.15 4.37 107.81 42.42 386.5 -111241.3 3.44 0.00 -10.00

Methimazole 249.8 270.4 380.0 -5.06 0.31 32.25 12.43 114.2 -27706.3 4.89 0.29 -8.33

Methylparaben 308.7 325.2 488.0 -9.17 -0.01 43.33 15.46 152.2 -48329.2 2.90 -0.40 -9.54

Metronidazole
benzoate

416.1 475.0 774.7 -9.17 1.19 74.39 27.16 275.3 -86271.9 3.32 -0.98 -9.85

Naproxen 389.9 435.1 708.8 -7.86 2.99 64.85 26.40 230.3 -67952.7 2.51 -0.43 -8.67

Naproxen 389.9 435.1 708.8 -7.86 2.99 64.85 26.40 230.3 -67952.7 2.51 -0.43 -8.67

Nicotinic acid 235.4 274.2 394.4 -8.46 -0.49 33.39 12.28 123.1 -38853.4 3.05 -0.82 -10.42

Penicillin G 458.3 536.2 904.6 -9.05 0.91 84.43 33.83 334.4 -96514.7 3.54 -0.05 -9.33

Penicillin V 470.1 557.5 959.8 -4.70 0.37 87.18 35.05 356.4 -105850.0 1.45 0.00 -9.25

Pindolol 482.8 516.7 843.0 -5.73 -0.30 79.80 29.32 246.4 -68196.0 1.56 0.37 -8.10

Piroxicam 427.5 514.9 860.4 -11.55 0.22 86.82 31.03 330.4 -95225.2 2.13 -1.28 -8.97

Procaine 484.0 491.2 797.8 -5.89 -0.04 72.79 26.70 236.3 -69067.1 3.95 -0.17 -8.85

Propyl 4-
hydroxybenzoate

378.1 389.3 600.7 -8.06 0.80 52.60 19.13 180.2 -55515.4 2.99 -0.37 -9.51

Pyrocatechol 218.3 259.3 372.7 -14.76 1.48 29.45 11.71 110.1 -34396.4 2.13 0.30 -8.88

Resorcinol 229.5 261.4 373.8 -15.70 -0.45 34.17 11.71 110.1 -34396.6 1.59 0.27 -8.98

Retinol 593.3 563.9 936.5 14.36 3.91 93.70 33.80 268.4 -71065.9 4.32 -0.96 -8.35

Salicylic acid 240.2 283.1 423.9 -12.19 1.46 34.51 13.63 138.1 -44749.0 1.24 -0.55 -9.47

Sulfadimethoxine 455.4 525.8 840.1 -15.52 1.78 76.89 27.46 310.3 -92952.8 8.89 -0.34 -9.14

Sulfamerazine 341.8 431.9 681.7 -13.24 1.66 65.92 22.52 250.3 -71008.5 5.20 -0.56 -8.78

Sulfamethazine 418.6 492.3 790.3 -10.23 2.03 75.78 26.19 278.3 -78195.3 5.00 -0.50 -8.73

Theobromine 264.5 312.5 470.4 -8.33 -1.55 40.21 15.20 166.1 -53457.0 4.39 -0.47 -8.73

Theophylline 299.8 337.9 519.4 -5.42 -1.31 45.11 17.04 180.2 -57034.9 3.29 -0.37 -9.07

Uracil 226.0 251.1 347.8 -6.75 -1.31 26.00 10.02 112.1 -37401.5 4.29 -0.32 -9.97

Vitamin K1 867.5 836.7 1459.1 4.36 8.83 141.55 53.49 436.7 -117376.0 0.83 -1.42 -9.40

Table 2. Details of descriptors of solutes computed by HyperChem®.

SAA: Surface Area Approximate, SAG: Surface Area Grid, VOL: Molar Volume, HE: Hydration Energy, logP: Logarithm of Partition 
Coefficient, REF: Molar Refractivity, POL: Polarizability, MASS: Molecular Mass, TE: Total Energy, DM: Dipole Moment, LUMO: 
energy of the Lowest Unoccupied Molecular Orbital, HOMO: energy of the Highest Occupied Molecular Orbital.
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Solute All data points as 
training (Method I)

1/3 data points of 
each set as training 

(Method II)

All data points of 
odd set numbers as 

training (Method III)

All data points of 
even set numbers as 
training (Method IV)

p-Acetoxyacetanilide 0.5 0.8 - 0.9

Aspirin 0.2 0.3 1.1 -

Beclomethasone dipropionate 0.2 0.1 - 1.3

Benzocaine 1.1 0.9 3.3 -

Benzocaine 1.1 1.1 - 0.7

Benzoin 0.3 0.3 1.1 -

Bisacodyl 0.3 0.3 - 0.9

Budesonide 0.1 0.1 3.4 -

Caffeine 0.3 0.2 - 1.2

Chloramphenicol 0.7 0.2 0.6 -

Cyproterone acetate 0.4 0.2 - 0.7

Florfenicol 0.9 1.1 3.8 -

Flurbiprofen 0.3 0.2 - 0.4

Ketoprofen 0.7 0.6 0.7 -

Lidocaine 0.6 0.4 - 0.7

Mandelic acid 0.8 0.4 1.6 -

Medroxyprogestron acetate 0.2 0.2 - 0.9

Methimazole 0.2 0.2 0.3 -

Methylparaben 0.3 0.2 - 0.7

Metronidazole benzoate 0.3 0.3 2.9 -

Naproxen 0.2 0.2 - 1.2

Naproxen 0.4 0.3 1.5 -

Nicotinic acid 0.4 0.2 - 6.0

Penicillin G 0.3 0.4 0.6 -

Penicillin V 0.2 0.2 - 1.7

Pindolol 0.3 0.3 1.8 -

Piroxicam 0.6 0.3 - 1.6

Procaine 0.3 0.4 0.1 -

Propyl 4-hydroxybenzoate 0.5 0.4 - 0.8

Pyrocatechol 0.4 0.2 2.0 -

Resorcinol 0.1 0.2 - 1.3

Retinol 0.3 0.2 2.0 -

Salicylic acid 0.5 0.6 - 0.9

Sulfadimethoxine 0.3 0.5 1.5 -

Sulfamerazine 0.5 0.6 - 4.0

Sulfamethazine 0.3 0.2 2.7 -

Theobromine 0.2 0.1 - 4.9

Theophylline 0.3 0.3 1.5 -

Uracil 0.9 0.9 - 1.0

Vitamin K1 0.4 0.2 0.7 -

Average AE (± SD) 0.4 (± 0.3) 0.4 (± 0.3) 1.7 (± 1.1) 1.6 (± 1.5)

Table 3. Absolute error (AE) for various numerical analyses (I-IV) and the average AE and their standard deviations.
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AE of ANN trained using all data points and 
a limited number of data points. This shows 
that the ANN method is well trained using a 
limited number of data points. This type of 
numerical analysis which reduces the number of 
experimental measurements could be employed 
in industry where researchers are interested in 
an accurate prediction method.

The real need in pharmaceutical industry is 
a predictive method without any experimentally 
obtained parameter in prediction procedure. To 
check the applicability of the proposed method 
for providing such a prediction method, data sets 
with odd set numbers in  1 were used to train 
the ANN and, the solubility data of even data 
set numbers were predicted (numerical method 
III). AEs are computed and listed in the fourth 
column of Table 3 and the overall AE was 1.7 
(±1.1). In numerical method IV, even data set 
numbers were used as training and the odd data 
sets as test set and the overall AE was 1.6 (±1.5). 
AE variation of the full predictive version of the 
proposed method (numerical methods III and IV) 
was 0.1 (for procaine) to 6.0 (for nicotinic acid). 
The prediction error produced by the proposed 
method is relatively high, however, one should 
keep in mind that there are high discrepancies 
between experimental solubilities of a solute 
determined under similar experimental conditions 
from different laboratories. 

Figure 1 shows the relative frequency of IAE 
in five subgroups for four numerical analyses. 
The probabilities of solubility prediction using 
numerical methods I and IIwith IAE<1.6 was 
0.975 and 0.961. The average probability for 
solubility prediction using numerical methods 
III and IV (ab initio prediction method) with 
IAE<1.6 was 0.631.

In conclusion, the proposed method provides 
relatively accurate solubility calculations. 
Computation of descriptors is straightforward 
and by collecting a minimum number of 
experimental data, acceptable predictions 
could be achieved. Ab initio method provides a 
reasonably accurate prediction method and could 
be used as an estimation method in industry.
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