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Abstract

Nonenzymatic glycation of low density lipoprotein (LDL) is a reaction of glucose and other 
reducing sugars with apolipoprotein B100 (apo-B100) lysine residues. In diabetes, this reaction is 
greatly accelerated and is important in the pathogenesis of diabetic complications. The objective 
of this study was to investigate in vitro effects of α-tocopherol, ascorbic acid and lycopene on 
LDL glycation. 

LDL was isolated from EDTA-plasma by ultracentrifugation using a single step discontinuous 
gradient. LDL and glucose were incubated without and with different concentrations of 
lycopene, ascorbic acid and α-tocopherol. LDL glycation were estimated by sodium periodate 
assay.   

Based on this study results, α-tocopherol, ascorbic acid and lycopene decrease LDL 
glycation in a dose dependent manner. The electrophoretic mobility of glycated LDL decreased 
in presence these nutrients. 

These effects may be due to antioxidant properties of these nutrients and may have a role in 
ameliorating atherosclerotic risk of patients with diabetes mellitus.

Keywords: Low density lipoprotein (LDL); Glycation; α-Tocopherol; Ascorbic acid; 
Lycopene.

Introduction

Nonenzymatic glycation of low density 
lipoprotein (LDL) naturally occurs in all 
individuals due to condensation of reducing 
sugars with apolipoprotein-B100 (apo-B100) 
moiety of LDL particles. LDL glycation is 
increased in diabetic patients because of their 
elevated plasma glucose concentrations (1). 
During glycation, glucose reacts with lysine 
residues of target proteins (apo-B100) to form a 
labile Schiff’s base. This product may further 
react into a more stable fructosamine that is 

characteristic of glycated proteins (2). Chemical 
modification of lysine residues of apo-B100 by 
glycation is known to decrease the recognition 
of LDL by its receptor. This cause an increase 
in relative circulation time of LDL, which 
may increase particle oxidation, formation of 
advanced glycation end products (AGEs) and the 
activation of alternative uptake mechanisms by 
non-LDL receptor mediated pathways (3). It is 
to be noted that no AGEs is solely derived from 
glucose but account for its reactive carbonyl 
species (RCS) such as 3-deoxyglucosone, glyoxal 
and methylglyoxal that are critical intermediates 
during glycation of proteins by glucose and they 
have identified as important precursors of AGEs 
in vivo (4, 5). Methylglyoxal can readily bind 
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to amino groups, thereby modifying biological 
molecules to form covalently cross-linked 
aggregates (6). Because these processes are 
considered proatherogenic, it has been proposed 
that the nonenzymatic glycation of LDL could 
contribute to the increased susceptibility of 
diabetic patients to atherosclerosis and coronary 
heart disease (2). In consideration of the 
significance of glycooxidative stress to diabetic 
pathology, a supplement of antioxidants in 
response to the inhibition of protein (apo-B100) 
modification should be a theoretical strategy 
for preventing diabetic complications (7). This 
hypothesis has been supported by the clinical 
results indicating the development of type 
2 diabetes may be reduced by the intake of 
antioxidants in diets (8). Fruits and vegetables 
are important dietary sources of α-tocopherol, 
ascorbic acid and lycopene (9). These nutrients 
are of current interest in research due to their 
important biological and pharmacological 
properties attributed to their antioxidant 
properties (10). Nevertheless, the literature 
data concerning the effect of these nutrients in 
preventing glycooxidative modification of LDL 
are limited. Given the link mentioned above, 
we hypothesized those antioxidant nutrients               
(α-tocopherol, ascorbic acid and lycopene) might 
possess significant antiglycoxidation activities 
as well. In this study, the effects of α-tocopherol, 
ascorbic acid and lycopene on LDL glycation 
were investigated. This study will underline the 
importance of above naturally occurring nutrients 
in prevention of hyperglycemia mediated protein 
(apo-B100) modification.             

Experimental

Materials
α-tocopherol, ascorbic acid and lycopene were 

purchased from Sigma (St. Louis, Mo, U.S.A.) 
and used without further purification. Ethylene 
diamidine tetraacetic acid (EDTA), dimethyl 
sulfoxide (DMSO), potassium bromide, bovine 
serum albumin (BSA), agarose, glucose, fructose 
and sodium periodate were obtained from Merck 
(Darmstadt, Germany). Sodium borohydride 
was obtained from Riedel-deHaen (Germany). 
Solutions were freshly prepared with double 
deionized water.

 Methods
LDL isolation
Blood from normolipidemic overnight 

fasting volunteers (n=25, age 30±5 yr, men, 
non smokers, non diabetics, not taking any drug 
since at least 2 weeks before) was collected 
into syringes containing EDTA (1 mg EDTA/ml 
blood). LDL was isolated by ultracentrifugation 
using a single step discontinuous gradient 
according to the method of Gieseg et al. (11). 
Briefly, anticoagulated (EDTA) plasma was 
obtained by centrifugation (3000×g, 10 min). 
4.5 ml of 1 mg/ml EDTA solution pH 7.4 was 
placed in 10 ml centrifuge tubes. Using a long 
needle this solution was underlaid with dense 
plasma solution. The dense plasma solution 
was prepared by dissolving 0.632 g of solid 
potassium bromide in 2 ml of EDTA-plasma. 
The centrifuge tubes were ultracentrifuged 
at 400000 × g for 2 hours in a Damon B-60 
ultracentrfuge. LDL fraction as the orange 
band at the middle of the tubes was carefully 
withdrawn. EDTA and potassium bromide were 
separated from LDL by dialysis tubing (10 mm 
flat width) with a molecular weight cutoff 12 
to 14 KDa at 4 °C for 24 h against phosphate 
buffered saline (PBS), pH 7.4. The LDL protein 
content was determined by Bradford method 
(12), using bovine serum albumin as standard. 
The cholesterol, triglyceride, LDL-cholesterol 
and HDL-cholesterol were determined using 
the Pars Azmoon kit. The purified LDL was 
examined by electrophoresis carried out at pH 
8.6 in 0.05 M barbital buffer on 0.8% agarose 
gel. Gels were stained with Sudan Black B stain 
(13). 

LDL was sterilized by filtration (0.45 µm 
Millipore filter). Then stored in darkness under 
nitrogen gas at 4 °C and was used within 4 
weeks.

LDL glycation 
Glycation of LDL was performed by 

incubation of LDL (0.2 mg protein/ml) at 
different times (1-11 days) and different 
concentrations of glucose (0-200 mM) in PBS 
containing 1 mM EDTA (pH 7.4) at 37 °C. 
The degree of LDL glycation was measured 
by periodate method (14). According to this 
method, 500 µl LDL (0.2 mg protein/ml) was 
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incubated for 1 h at room temperature with 100 
µl of 200 mM sodium borohydride dissolved in 
ice-cold 0.01 mM NaOH, using 100 µl of 0.01 
mM NaOH as control. The sodium borohydride 
solution was prepared and used freshly. The 
reaction was stopped by adding 100 µl of 0.2 
mM HCl, after which 100 µl of 0.1 mM sodium 
periodate was added to each sample. After 30 
min at room temperature, the samples were 
chilled in ice bucket for 10 min and then 200 µl 
each of ice-cold 0.7 mM NaOH and zinc sulfate 
(15%) were added, with mixing. The samples 
were centrifuged at 13000 ×g for 10 min and 
the supernatant was removed, the samples were 
centrifuged again. Then 600 µl of the final 
supernatant was mixed with 300 µl color reagent. 
The color reagent was made by adding 46 µl of 
acetylacetone to 5 ml of 6.6 mM ammonium 
acetate. Samples were left at 37 °C for 1 h and 
absorbance of each sample at 450 nm was then 
measured. 

Fructose solutions (0-0.9 mM) were 
used to construct a calibration curve for the 
periodate assay. Both fructose and amadori 
products (a stable sugar adduct that is formed 
by the rearrangement of the labile Schiff base 
formed in the initial stages of glycation) exist 
predominantly in a ring structure, and after 
periodate oxidation, both produce 1 mole of 
formaldehyde per mole of sugar moiety (14). 
Thus, in this paper degree of glycation of LDL 
expressed as mmol of formaldehyde released 
per mg of LDL protein.

Effect of α-tocopherol, ascorbic acid and 
lycopene on LDL glycation

The effects of three nutrients, i.e. α-
tocopherol, ascorbic acid and lycopene on the 
glycation of LDL were examined by incubation 
of LDL (0.2 mg protein/ml) with glucose (120 
mM) and 0 to 150 µM α-tocopherol, ascorbic 
acid and lycopene in PBS, pH 7.4 at 37 °C for 
7 days. The ascorbic acid was dissolved in PBS, 
pH 7.4, whereas α-tocopherol and lycopene were 
dissolved in 10% dimethyl sulfoxide (DMSO) 
in PBS, pH 7.4. Degree of LDL glycation was 
determined by sodium periodate assay (14). The 
electrophoretic mobility of native LDL, glycated 
LDL in the absence and/or presence of 150 µM 
α-tocopherol, ascorbic acid and lycopene was 

compared on 5% polyacrylamide gel. Gels were 
stained with comassi blue (15).

Statistical analysis
Results are expressed as mean±SD. Degree 

of LDL glycation in the absence (as control) 
and presence of α-tocopherol, ascorbic acid and 
lycopene were compared using ANOVA test. 
Values of p≤0.05 were considered statistically 
significant.

Results and Discussion

Isolation of LDL was assessed by 
measurement of lipid concentration (Figure 
1A). As shown in this Figure, cholesterol and 
LDL-cholesterol amounts were increased 
in LDL fraction approximately by 65% and 
76%, respectively. This measurement confirms 
isolation of LDL from plasma. This isolation was 
also confirmed by agarose gel electrophoresis 
(Figure 1B). This Figure shows the separated 
fractions of LDL (Lane 2) and VLDL (Lane 3) 
compared to plasma (Lane 1).

Glycated LDL was prepared by incubation 
of LDL with glucose as in vitro. Glucose was 
used as glycating agent, which is commonly 
adopted in many Millard reaction studies. In 
nonenzymatic glycation of proteins, also known 
as Millard reaction, reducing sugars covalently 
attach to free amino groups and ultimately 
form advanced glycation end products (AGEs) 
(16). Free amino groups of apolipoprotein B100 
(apo-B100) of LDL could serve as a target for 
glycating agents. Glucose mainly adducts with 
the ε-amino group of lysine residues in apo-
B100 (17). In the present study, the best glucose 
concentration for glucose incorporation with 
LDL was investigated by incubation of a range 
of glucose concentrations (0-180 mM) with LDL 
(0.2 mg protein/ml) in PBS containing 1 mM 
EDTA, pH 7.4 at 37 °C for 7 days under aseptic 
condition (Figure 2A). The best incubation time 
for glucose incorporation with LDL was also 
investigated by incubating 0.2 mg protein/ml of 
LDL with 120 mM glucose for 1 to 11 days at 
37 °C in PBS and 1 mM EDTA, pH 7.4, under 
aseptic condition (Figure 2B). As shown in 
Figure 2 (A and B), LDL glycation was increased 
in the presence of 20-120 mM of glucose 
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concentrations at 1 to 7 days of incubation time. 
However, in higher glucose concentrations (140-
180 mM) and longer incubation time (8-11 days) 
this phenomenon was decreased. Our results 
were shown that optimum glucose concentration 
and incubation time for LDL glycation were 120 
mM and 7 days, respectively.

A series of experiments were carried out to 
examine the influence of α-tocopherol, ascorbic 
acid and lycopene on LDL glycation process. 
α-tocopherol (0-150 µM) was incubated 
with LDL (0.2 mg protein/ml) and glucose 
(120 mM) at 37 °C for 7 days under aseptic 
condition. The extent of LDL glycation in 
the absence (as control) and/or presence of  
α-tocopherol were estimated from mole of 

formaldehyde released per mg of LDL protein 
as shown in Figure 3A. Glycation of LDL was 
decreased in the presence of various α-tocopherol 
concentrations (25-150 µM). As shown in Figure 
3A, this reduction was dependent on α-tocopherol 
concentration. Same procedure was repeated 
to investigate the effects of ascorbic acid and 
lycopene on LDL glycation (Figure 3A). The 
results showed the nutrients significantly reduced 
LDL glycation in a dose dependent manner (n=3, 
ANOVA test, p<0.05). According to this study, 
150 µM concentration of α-tocopherol, ascorbic 
acid and lycopene were able to reduce LDL 
glycation approximately 54%, 54.5% and 63%, 
respectively (Figure 3B). In glycation process, 
glucose reacts with an amine group to form 
a labile Schiff base that rearranges to amadori 
product. The Schiff base is prone to oxidation 
and free radical generation, which leads to the 
formation of reactive carbonyl species such as 
glyoxal (18). Given the link mentioned above 
between glycation and oxidation, we suggested 
that antioxidant nutrients might possess 
antiglycooxidative activities. α-tocopherol, as a 
potent antioxidant has been previously shown 
by Ceriello to be an anti-glycating agent in vitro 
and in vivo when administered as a supplement 
to diabetics (19). Ascorbic acid form ionic bonds 
with biological molecules such as proteins. 
The carbonyl group of ascorbic acid may also 
compete with glucose for proteins (20). Lycopene 
is a carotenoid without provitamin A activity 
that occur almost exclusively in tomatoes and 
tomato products. It is a 40 carbon atom and open 
chain polyisopronoid with 11 conjugated double 
bonds. Because of this unique structure, it is one 
of the most potent singlet oxygen quenchers 
suggested to possibly have stronger antioxidant 
properties compared to other major plasma 
carotenoids (21). Many reports have shown that 
typical antioxidant nutrients such as vitamin 
B1, B6, C, niacinamide, carnosine and sodium 
selenite inhibit the in vivo and in vitro AGEs 
formation (22). The present study also showed 
that lycopene, ascorbic acid and α-tocopherol 
decrease LDL glycation approximately 63%, 
54.5% and 54%, respectively. It was found that 
when LDL was subjected to sugar-mediated 
modification, the addition of above three 
nutrients decrease the amount of formaldehyde 
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Figure 1. (A) The comparison of lipid concentrations in plasma 
pool and LDL fraction.
(B) Electrophoresis analysis of plasma (Lane 1), LDL fraction 
(Lane 2) and VLDL fraction (Lane 3) on 0.8% agarose gel.
Values have represented as the mean±SD of triplicated 
determinations.LDL= Low density lipoprotein, VLDL= Very 
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(mmol) released per mg of LDL protein, as dose 
dependently. Lycopene was the most effective 
compound on LDL glycation in our study.

Finally, we investigated electerophoretic 
mobility of LDL treated with 150 µM α-
tocopherol, ascorbic acid and lycopene on 
polyacrylamid gel (Figure 4A). This Figure 
shows that glycation, has increased anodic 
migration of LDL compared to native LDL. This 
probably resulted from the increased negative 
charge caused by the modification of lysine 
amino groups. This result is in agreement with the 
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finding of Witztum et al. (23). Compared samples 
rate of flow (RF) on gel electrophoresis has also 
shown in Figure 4B. Lycopene, ascorbic acid 
and α-tocopherol decreased RF of glycated LDL 
in comparison with native LDL approximately 
23%, 18% and 18%, respectively (Figure 4B). 

These results reiterate that lycopene, ascorbic 
acid and α-tocopherol play an important role 
in the prevention of LDL glycation by glucose. 
The mechanism by which these nutrients 
suppress LDL glycation is still unknown. 
Generation inhibition and/or scavenging of free 
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Figure 2. The effect of glucose concentration (A) and incubation time (B) on glycation of LDL.
Values have represented as the means±SD of triplicate determinations.
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Figure 3. (A) The effect of 25µM to 150µM concentrations of α-tocopherol, ascorbic acid and lycopene on glycation of LDL (0.2mg 
protein/ml) by glucose (120mM).
(B) The comparison of inhibition percent of LDL glycation in absence and presence of 150µM concentration of α-tocopherol, ascorbic 
acid and lycopene.
 Values have represented as the means±SD of triplicate determinations.
 *p<0.05



Ghaffari MA and Mojab S / IJPR (2007), 6 (4): 265-271
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nonglycated subfractions of low density lipoprotein 
isolated from type I diabetic patients and nondiabetic 
subjects. Diabetes (1995) 44: 1093-1098
Zimmermann R, Panzenbock U, Wintersperger A, 
Levak-Frank S, Graier W and Glatter O. Lipoprotein 
lipase mediates the uptake of glycated LDL in 
fibroblasts, endothelial cells and macrophages. 
Diabetes (2001) 50: 1643-1653
Lyons TY and Jenkins AJ. Lipoprotein glycation 
and its metabolic consequences. Curr. Opin. Lipidol. 

(1)

(2)

(3)

radicals resulted from glycation process and 
subsequent inhibition of protein modification 
is one of the probable mechanisms of anti-
glycation effect of these nutrients (8). Yim et 
al. indicated that glycation of proteins generates 
some active centers for catalyzing one-electron 
oxidation-reduction reactions, which mimic the 
characteristics of the metal catalyzed oxidation 
system (24). In addition, glycated proteins 
accumulated in vivo may provide stable active 
sites for catalyzing the formation of free radicals 
(24). Results from Jiang et al. also demonstrated 
that reactive oxygen species (ROS) such as 
hydrogen peroxide and superoxide anion are 
generated during glycation process (25). Chien et 

al. showed that ascorbic acid prevents oxidative 
modification of LDL primarily by scavenging free 
radicals and other reactive oxygen species in the 
aqueous milieu (26). Farvid et al. indicated that  
α-tocopherol can act as a chain breaking 
antioxidant by scavenging highly reactive lipid 
peroxyl and alkoxyl radicals (27). Kiho et al. also 
showed, lycopen with its unique structure (11 
conjugated double bonds and no cyclic groups) 
can quench singlet oxygen and subsequently 
inhibit the formation of AGEs (16). Thus, 
we could suggest that antiglycation activity 
of α-tocopherol, ascorbic acid and lycopene 
possibly correlate with their radicals scavenging 
abilities. 

In conclusion, these nutrients, especially 
lycopene, have inhibitory effects on LDL 
glycation. All of the studied nutrients naturally 
occur in the body. But ascorbic acid is known to 
be lowered in the tissues of subjects with diabetes 
(28). This fact and the results of the present 
study point to the necessity of a healthy diet in 
diabetes and to the possibility of inexpensive and 
relatively non-toxic therapies for the prevention 
and treatment of diabetic complications. Because 
glycated LDL and atherogenesis are correlated 
in vivo (28), inhibition of glycation of LDL by 
these nutrients may also form the basis of future 
antiatherogenic strategies in both diabetic and 
non-diabetic individuals. However, the detailed 
mechanisms deserve further investigation. 
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