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Abstract

Background: Since the incidence of food adulteration is rising, finding a rapid, accurate, precise, low-cost, user-friendly, high-
throughput, ruggedized, and ideally portable method is valuable to combat food fraud. Near-infrared spectroscopy (NIRS), in com-
bination with a chemometrics-based approach, allows potentially rapid, frequent, and in situ measurements in supply chains.
Methods: This study focused on the feasibility of a benchtop Fourier-transformation-NIRS apparatus (FT-NIRS, 1000 - 2500 nm) and
a portable short wave NIRS device (SW-NIRS, 740 - 1070 nm) for the discrimination of genuine and citric acid-adulterated lime juice
samples in a cost-effective manner following chemometrics study.
Results: Principal component analysis (PCA) of the spectral data resulted in a noticeable distinction between genuine and adulter-
ated samples. Wavelengths between 1100 - 1400 nm and 1550 - 1900 nm were found to be more important for the discrimination
of samples for the benchtop FT-NIRS data, while variables between 950 - 1050 nm contributed significantly to the discrimination
of samples based on the portable SW-NIRS data. Following partial least squares discriminant analysis (PLS-DA) as a discriminant
model, standard normal variate (SNV) or multiplicative scatter correction (MSC) transformation of benchtop FT-NIRS data and SNV
in combination with the second derivative transformation of portable SW-NIRS data on the training set delivered equal accuracy
(94%) in the prediction of the test set. In the soft independent modeling of class analogy (SIMCA) as a class-modeling approach, the
overall performances of generated models on the auto-scaled data were 98% and 94.5% for benchtop FT-NIRS and portable SW-NIRS,
respectively.
Conclusions: As a proof of concept, NIRS technology coupled with appropriate multivariate classification models enables fast de-
tection of citric acid-adulterated lime juices. In addition, the promising results of portable SW-NIRS combined with SIMCA indicated
its use as a screening tool for on-site analysis of lime juices at various stages of the food supply chain.
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1. Background

Food adulteration or “food fraud” is defined as the in-
tentional substitution of food with inferior substances, re-
moval of some valuable compounds, and misrepresenta-
tion of food ingredients for financial advantages and eco-
nomic motivation (1). Food fraud lowers food quality, has a
significant economic impact, and carries incidentally pub-

lic health threats (2, 3). Over the past decades, several ma-
jor adulterated cases in agro-food products have been dis-
covered. For instance: The Chinese milk scandal where the
milk products and infant formula were adulterated with
melamine (4, 5), the contamination of chili powder with
dye (6), several cases of the adulteration of spices with
ground materials (7), the Irish pork crisis (8), the horse-
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meat scandal (9), adulteration of olive oil with hazelnut oil
(10) and honey made from an artificial sweetener (11) are
just some examples. Besides, several cases of adulteration
in fruit juices have been detected in recent years (12, 13).

Lime and lemon, two main citrus family members, are
commercialized as fresh fruits and juices (14). Lime juice
is highly prone to adulteration by unscrupulous produc-
ers due to growing consumers demand all over the world.
Most often, adulteration in lime juice happens by water di-
lution and subsequent addition of citric acid, sugars, pulp
wash, cheaper ingredients, and non-recommended minor
compounds to compensate for flavor and odor loss and
even sometimes to prepare completely synthetic products
(15). Citric acid concentration is the main factor affecting
the price of lime juice. Thus, adding exogenous citric acid
could be considered one of the most likely types of adulter-
ations in lime juice.

Detection of adulterated raw materials or finished
products is an important issue for official bodies in charge
of labeling and governmental organizations where im-
ported batches from abroad must be tested for compliance
with specifications (16). It is also pivotal for control by
businesses in the supply chain. Several methods and tech-
niques such as chromatographic analysis, mass spectrom-
etry (MS)-based methods, electrophoretic methods, spec-
troscopic methods, and immunoassays have been utilized
to detect adulteration and fraud in food products (17). Pre-
viously, high-performance liquid chromatography (HPLC)
and isotope ratio mass spectroscopy (IRMS) techniques
were used to detect adulterated lime and lemon juice sam-
ples. Although these techniques have high resolution,
high sensitivity, and specificity, they are often technically
challenging, expensive, labor and resource-intensive, and
need large consumable requirements (18, 19).

Following adulteration crises, producers, retailers,
and food authorities developed a great demand for rapid,
user-friendly, high-throughput, ruggedized, and ideally
portable methods (20). Spectroscopic-based methods, in-
cluding Fourier-transformation infrared spectroscopy
(FT-IRS), near-infrared spectroscopy (NIRS), Fourier-
transformation near-Infrared spectroscopy (FT-NIRS),
and Raman spectroscopy have always been mentioned
as nondestructive techniques that could be applied for
rapid, on-line and continuous monitoring of the market
without any or minimal sample preparation and solvent
consumption (21-23). It is well-known that NIRS combined
with chemometrics could be used to detect adulterants
(24). Since a NIR spectrometer, like other fingerprinting
techniques, produces several hundred to thousands
of data points as a single measurement, data science
approaches such as chemometrics are fundamental for
interpreting the obtained data (25, 26). The knowledge
of chemometrics is required to magnify the relevant in-

formation and lessen the undesirable information in the
spectra without missing any important data (16, 27).

Although fruit juices are included in the top 10 food
categories that are most at risk of food fraud (28), there
are only a few studies based on the portable NIRS for the
rapid detection of fruit juice adulteration. The ability of
benchtop NIRS and chemometrics to detect synthetic lime
juices was reported by Shafiee and Minaei (15). In our pre-
vious study, we revealed the capability of a portable NIRS
(Tellspec®, 900 - 1700 nm) and chemometrics approach for
the discrimination of genuine and citric-adulterated lime
juices (29). However, despite the versatility of NIRS technol-
ogy, there is no information on the performance of bench-
top FT-NIRS (range 1000 - 2500 nm) and a portable short
wave NIRS (SW-NIRS, range 740 - 1070 nm) technology in
the detection of this type of adulteration. In addition, in
most previous studies, discriminant analysis techniques
were applied, while class modeling approaches seem to be
more suitable in the case of food authenticity assessment.

2. Objectives

This study aimed to compare the performance be-
tween the benchtop FT-NIRS and portable SW-NIRS ap-
proaches in combination with discriminant analysis and
class modeling techniques for the authenticity assessment
of lime juice.

3. Methods

3.1. Reagents and Standards

Analytical grade citric acid, iso-citric acid, and cit-
ric acid-2,2,4,4-d4 were obtained from Sigma-Aldrich (St.
Louis, MO, USA). HPLC grade methanol was purchased from
Merck Co. (Darmstadt, Germany) with a purity of 99.8%. Pu-
rified water was prepared with a Milli-Q system (MA, USA).

3.2. Sample Collection and Preparation

A total of 16 authentic lime fruit samples (Citrus latifo-
lia) originating from Jahrom (Fars Province, Iran) were di-
rectly acquired from the local market of Tehran, Iran. Sam-
ples were then authenticated by a botanist at the herbar-
ium department of Shahid Beheshti University of Medical
Sciences (Tehran, I.R. Iran). Juices (about 500 mL from 1
kg of fruit) were prepared using a cold press juicer ma-
chine (MCP 3500, Bosch, Germany). Since the NIR spectra
are highly affected by the homogeneity of the sample (30),
lime juices were carefully homogenized using an ultra-
turrax homogenizer (T8; IKA, Staufen, Germany) and were
stored in the freezer at -18°C until the analysis day. Further-
more, 28 lime juice samples were provided by the Iran Food
and Drug Administration that were labeled as citric acid-
adulterated samples. To verify the nature of the samples,
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the citric acid to iso-citric acid ratio was determined in trip-
licate in all samples using an LC-MS/MS method (31).

3.3. LC-MS/MSMeasurement

The measurement of citric acid and iso-citric acid con-
tents in lime juice samples was performed according to a
validated method using an LC-MS/MS system (31). Briefly,
50 µL of each sample was mixed with 1400 µL of water
and 50 µL of d4-citric acid as the internal standard. The
prepared mixture was filtered through a 0.22 µm syringe
filter before analysis. The measurement of organic acid
contents was performed on a Waters Alliance 2695 HPLC
system (Waters, Milford, MA, USA) coupled with electro-
spray ionization (ESI) triple quadrupole Quattro Ultima
mass spectrometer (Waters-Micromass, Manchester, UK).
An octadecyl-silica C18 column (250 mm× 4.6 mm× 5µm,
GL Science, Japan) with mobile phase methanol/formic
acid 0.1% was used to separate organic acids. The injec-
tion volume, flow rate, column temperature, and run-time
were adjusted at 15 µL, 0.4 mL min-1, 40°C, and 25 min-
utes, respectively. The MS/MS system was operated in the
negative ionization mode. Capillary voltage, extractor, RF
lens, source temperature, desolvation temperature, des-
olvation gas, and cone gas (nitrogen 99.99% purity) flow
rates were 4.12 kV, 2 V, 0.1 V, 130°C, 350°C, 500 Lh-1, and 50
Lh-1, respectively (31).

3.4. Benchtop FT-NIRS Spectral Collection

An N-500 FT-NIR spectrometer (Buchi AG, Flawil,
Switzerland) equipped with a tungsten halogen lamp,
InGaAs detector, and six round glass cuvette holder (QX
2.0 mm, Hellma Analytics, Müllheim, Germany) with a
path length of 2 mm was utilized for spectral acquisition.
For each sample, triplicate diffuse reflectance spectra
were recorded in the range of 4000 - 10.000 cm-1 (1000 -
2500 nm) on average at a 4-cm-1 sampling interval (1500
individual wavelengths) at room temperature. To calibrate
the equipment, a built-in external reference (laboratory
air) was measured before each series. Before multivariate
analysis, the spectra (R) were converted to absorbance
units using log (1/R) transformation, and the replicates of
each sample were averaged.

3.5. Portable SW-NIRS Spectral Collection

For spectral analysis, a small and portable (just 35 g)
short wave NIR spectrometer (SW-NIRS) SCiOTM version 1.1
(ConsumerPhysics Inc®) in the diffuse reflectance mode
was used. The SW-NIR spectrometer was modified by ap-
plying a strip of yellow transparent tape (Kapton 5413-1/4”
× 3 m, 3M Maplewood, MN, USA) on the device LED ac-
cording to the manufacturer’s instructions to prevent ex-
cess fluorescence with certain materials. The spectrometer

contains a wide-band NIR illumination source with a cor-
responding detector (740 - 1070 nm) and was controlled
by bluetooth using the smartphone app ‘SCiOLab’ (Con-
sumerPhysics, version 2.3.0 (iOS)). Calibration of the spec-
trometer was carried out before each series of analyses by
applying the 99 % diffuse reflectance white reference built-
in into the cover of the spectrometer. SW-NIR spectra of the
samples were acquired by placing the bottom of a glass vial
upright on the optical and illuminating part of the appara-
tus. The glass vials were shaken immediately before mea-
surement to guarantee homogeneity. Three spectral repli-
cates of each sample were taken in the spectral range of
740 - 1070 nm, and the average of acquired scans was used
for further analysis.

3.6. Multivariate Data Analysis

Chemometrics and multivariate statistical analysis
were performed to evaluate obtained NIR spectra using
MATLAB software (The Mathworks, Natick, MA, USA). Be-
cause of the effect of many factors on spectroscopic data,
such as light scattering, instrumental drift, and baseline
shift caused by differences in particle size and physical
properties of the samples, it is not possible to analyze raw
data directly and without any pre-processing (16). Raw NIR
data were subjected to several data pre-processing meth-
ods such as smoothing, auto-scaling, multiplicative scat-
ter correction (MSC, mean), standard normal variate (SNV),
first derivative, and second derivative (Savitzky-Golay, win-
dow: 15 pt) to correct the scattering and overlapping effects
of the signal without affecting chemical information of the
samples reflected in the NIR spectra. These pre-processing
methods were chosen as they are the most commonly ef-
fective for removing NIR additive baseline effects and mul-
tiplicative scatter effects (32).

3.6.1. Principal Component Analysis

Principal component analysis (PCA) as an unsuper-
vised pattern recognition method was performed to de-
compose large datasets into latent variables, extract any
relevant and interpretable structure, and provide visual in-
formation regarding the distances or the similarities of the
objects in a new space (33).

3.6.2. Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) as
a discriminant model was built to classify genuine and
adulterated samples (34). The model was validated by in-
ternal (leave-one-out cross-validation) and external valida-
tion by dividing the sample set into a training and a test
set. For this purpose, the initial data set was divided into
the training set (60% of samples; 9 genuine and 17 adulter-
ated samples) and test set (40% of samples; 7 genuine and
11 adulterated samples) using the Kennard-stone maximal
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distance division method (35) following averaging of trip-
licate sample spectra. The training set was used for inter-
nal validation and optimization of the generated models
by performing leave-one-out cross-validation. The cross-
validation process consisted of excluding one sample in
the data set, creating the model on the rest of the sam-
ples, and classifying the left-out sample by the model. This
procedure was repeated until each sample was left out
one at a time. The external validation was carried out on
the test set. Sensitivity, specificity, accuracy, and precision
were computed to evaluate the performance of the gener-
ated classification models. Moreover, the receiver opera-
tor characteristic (ROC) curves were plotted. In this study,
sensitivity, specificity, and accuracy are defined as the per-
centage of correct predictions in adulterated samples, cor-
rect predictions in genuine samples, and the percentage
of total correct predictions, respectively. The following
equations (Equations 1-3) were used to calculate the perfor-
mance of each parameter (36, 37):

(1)Sensitivity =
TP

(TP + FN)

(2)Specificity =
TN

(TN + FP )

(3)Accuracy =
(TP + TN)

(TP + TN + FP + FN)

In Equations 1-3: TP, true positive; TN, true negative; FP,
false positive; FN, false negative.

3.6.3. Soft Independent Modeling of Class Analogy

Soft independent modeling of class analogy (SIMCA)
as a class modeling technique based on PCA was applied
to portable SW-NIR and benchtop FT-NIRS data. In this
technique, genuine samples were modeled independently
from adulterated samples based on boundaries built us-
ing Hotelling’s T2 and Q statistics. In the current study,
we avoided dividing genuine and adulterated samples into
training and test sets since there were a limited number of
samples in the modeled group. In this case, all the genuine
samples were used as the training set for the model de-
velopment, and the leave-one-out cross-validation method
was employed during the model construction (38). All
adulterated lime juice samples were used as the test set and
were subjected to the developed model. To estimate the
overall performance of the final model, the percentages
of correctly assigned samples for the training set, cross-
validation set, and adulterant test set were calculated (39).

4. Results and Discussion

4.1. Citric Acid to Iso-citric Acid Ratio

Following LC-MS/MS measurement of citric acid and
iso-citric acid, samples were divided into two groups of
genuine and adulterated based on the citric acid to iso-
citric acid ratio. This ratio for each sample is presented
in Table 1. According to the Association of the Industry of
Juices and Nectars (AIJN) reference guideline for lime juice,
samples with citric acid to iso-citric acid ratio over 300 are
considered non-authentic (adulterated) samples (40).

Table 1. Citric Acid to the Iso-citric Acid Ratio in the Genuine and Adulterated Sam-
ples a

No. Genuine Samples Adulterated Samples

1 135 ± 1 > 1093

2 165 ± 3 432 ± 1

3 120 ± 2 > 958

4 158 ± 1 439 ± 2

5 227 ± 2 935 ± 2

6 152 ± 3 433 ± 2

7 213 ± 1 > 687

8 171 ± 2 > 1405

9 166 ± 1 > 1233

10 155 ± 4 > 802

11 147 ± 2 > 1412

12 109 ± 2 > 1267

13 125 ± 3 > 863

14 140 ± 2 > 1460

15 151 ± 2 > 1253

16 145 ± 2 > 1258

17 > 1407

18 427 ± 3

19 333 ± 1

20 697 ± 2

21 784 ± 2

22 655 ± 2

23 > 1462

24 749 ± 1

25 445 ± 2

26 > 1472

27 > 1563

28 > 1605

a Values are expressed as mean ± SD.
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4.2. Spectral Features

Each sample, either genuine or adulterated, was sub-
jected to spectroscopic analysis by benchtop FT-NIRS and
portable SW-NIRS in triplicate. The averaged spectrum
were used for further data processing. Figure 1A presents
the NIR spectra of homogenized lime juice samples ac-
quired by the benchtop FT-NIRS in the range of 1000 - 2500
nm. Similarly, the NIR spectra of samples acquired by the
portable SW-NIRS in the range of 740 - 1070 nm are shown
in Figure 1B.

As shown in Figure 1A, in the benchtop FT-NIRS mea-
surements, variables between 1100 - 1400 nm and 1550 -
1850 nm are more important for the discrimination of sam-
ples. The band from 1600 - 1800 nm could be related to the
first stretching overtone of C-H and is likely associated with
the organic acid composition of lime juice since organic
acids have C-H bonds in their chemical structure. This find-
ing agrees with the wavelength range used previously by
Chen et al. for determining citric acid and malic acid con-
tent in Japanese apricot fruit juices (41). It was also re-
ported by Bai et al. that in the wavelength region between
1400 - 2500 nm the absorptions owning to organic acids
are sufficiently intense enough to be used for organic acids
determination (42). Wavelengths around 1150 nm, 1380
nm, and 1550 nm were proposed by Xie et al. to have im-
portant roles in the calibration model of citric acid content
(43). Furthermore, wavelengths around 1900 nm could be
caused by the vibrational overtone of the C=O and C=OOH
bands (44). Since the first stretching and the combination
overtone of the O-H group are located in the wavelength
region of 1400 - 1500 nm and 1950 - 2100 nm, respectively,
the water content of fruit juices has strong absorption in
these two wavelength ranges that contributes to the sat-
uration of detector (45). Therefore, it is difficult to mea-
sure satisfactory spectra of organic acids in the mentioned
regions (46). Moreover, low-energy light (longer wave-
lengths; spectra above 1900 nm) could not pass through
the lime juice samples (15). Considering these issues, the
mentioned regions were excluded from the benchtop FT-
NIRS spectra for further data analysis since there was no re-
liable information (Figure 1A).

In Figure 1B, variables between 950-1050 nm signif-
icantly contribute to the discrimination of samples by
portable SW-NIRS. As reported by Liu et al., the wavelength
region between 950 - 1000 nm has a distinct effect on the
determination of citric acid in the lemon vinegar samples
(47). This region could be interpreted as being originated
from the second overtone of the v(OH) stretching vibra-
tion (expected at 960 nm) (48). Moreover, the second and
third overtones of O-H groups are present in the 700 - 800
and 900 - 1000 nm regions (45). Therefore, it could be con-
cluded that the NIR absorbance spectrum in the defined
range is affected by water content.

4.3. Principal Component Analysis

The averaged collected spectra of the samples were
subjected to the PCA algorithm with different pre-
processing techniques to check for possible cluster
formations and outliers. SNV transforming of benchtop
FT-NIRS data and SNV in combination with second deriva-
tive (Savitzky-Golay) for portable SW-NIR data resulted
in the best separation of two groups in PCA. The pre-
processed data are presented in Figure 1C and D. Since the
lime juice samples are turbid, SNV correction was applied
to cope with turbidity differences between the samples.

Figure 2A and B depict that the first three principal
components (PCs) accounted for 98 % and 99% of data vari-
ance in benchtop FT-NIRS and portable SW-NIRS, respec-
tively. PCA analysis of spectral data from benchtop FT-NIRS
discriminates the genuine and adulterated lime juice sam-
ples according to their authenticity along with the first PC
(Figure 2A), and the distinction between samples along the
second PC is observed in the scores plot of portable SW-
NIRS (Figure 2B). It can be concluded from unsupervised
statistical analysis that the NIR spectra generated by both
hardware variants contain enough chemical information
to distinguish genuine from adulterated lime juices. Q
residuals and Hotelling T2 distances were calculated per
sensor and per type of sample to identify outliers (49).
Three adulterated samples from FT-IR exceeded their re-
spective 95% threshold and were considered outliers. In
the SW-NIRS measurement, no outliers were identified.

4.4. Partial Least Squares Discriminant Analysis

PLS-DA was used to discriminate samples into two
classes using pre-processed spectral data. For the vali-
dation of data, internal validation (leave-one-out cross-
validation) was applied. During internal validation, the op-
timal number of latent variables was selected to develop an
efficient and robust model and to avoid over-fitting. More-
over, the model was externally validated by applying the
generated model to the test dataset utterly independent
of the training dataset. Quality metrics such as sensitivity
(true positive rate), specificity (true negative rate), and ac-
curacy were calculated following different pre-processing
to evaluate the performance of the generated models on
both benchtop FT-NIRS and portable SW-NIRS data. Fur-
thermore, the area under the ROC curve (AUROC) was esti-
mated to compare different models. Quality metrics in the
training and validation sets of each model, as well as the
number of LVs and the percent of explained variance, are
presented in Table 2.

In the current study, the most accurate classification
models were achieved by the SNV transformation of bench-
top FT-NIRS data and SNV followed by the second derivative
for portable SW-NIRS data, judged from the highest AUROC
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Figure 1. The median NIR spectra (solid lines) and the range between minimum and maximum intensity (shaded areas) obtained from lime juice samples in the benchtop
FT-NIRS (boxed areas are excluded from further evaluation) (A); and portable SW-NIRS (B); SNV transformed spectra of the samples acquired in benchtop FT-NIRS (C); SNV
in combination with second derivative transformed spectra of the samples acquired in portable SW-NIRS (D). FT-NIRS, Fourier-transformation near-infrared spectroscopy;
SW-NIRS, short wave near-infrared spectroscopy; SNV, standard normal variate.

values in the internal validation set. However, the same ac-
curacy was obtained following the MSC transformation of
benchtop FT-NIRS data. MSC and SNV are two popular scat-
ter correction techniques. Both are applied to eliminate
all effects unrelated to the chemical nature of the sample,
such as multiplicative effects related to the particle size of
samples. Since the equations for applying the transforma-
tions have almost the same form, they often produce iden-
tical results (50).

The PLS-DA model generated using the training set
delivered an overall accuracy of 88% (benchtop FT-NIRS)
and 92% (portable SW-NIRS) upon internal validation us-
ing leave-one-out cross-validation. The external validation
set with unseen samples yielded comparable accuracies of
94% of both benchtop FT-NIRS and portable SW-NIRS data,
confirming the capability of these models. Sensitivity de-
pends on TP and FN, which are in the same column of the
confusion matrix. Similarly, the specificity metric depends
on TN and FP, which are in the same column; hence, both

sensitivity and specificity can be used for the evaluation
of classification performance with imbalanced data. Al-
though accuracy is sensitive to imbalanced data, it consid-
ers all predictions and is a good identifier for the overall
effectiveness of the classifier (37). As shown in Figure 3A
and B, the ROC curve plots the TPR (sensitivity) of the model
versus FPR (1-specificity). When the ROC curve reaches the
top left corner, the sensitivity could be very good without
losing specificity. AUROC-value of 0.5 represents a random
decision method, whereas a good method represents an
AUROC-value close to 1 (51). It can be observed from both
curves that AUROC-value of 1 is achieved following estima-
tion of samples, while upon cross-validation, the best mod-
els generated by benchtop FT-NIRS and portable SW-NIRS
dataset produced the AUROC values of 0.87 and 0.95, re-
spectively that indicate the adequate predictive capacity
of generated models in the detection of adulterated lime
juice samples.

From the results of internal and external validations
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Figure 3. The ROC plot of the generated models based on the benchtop FT-NIRS (A); and portable SW-NIRS (B) data. ROC, receiver operator characteristic; FT-NIRS, Fourier-
transformation near-infrared spectroscopy; SW-NIRS, short wave near-infrared spectroscopy; C, calibration; CV, cross-validation.

on the limited sample sets, it can be concluded that both
benchtop FT-NIRS data and portable SW-NIRS data in com-
bination with the chemometrics approach have satisfac-
tory performance in distinguishing citric acid-adulterated
samples from genuine ones. This finding agrees with the
results of our previous study on the efficacy of another
portable NIRS device (Tellspec®, 900 - 1700 nm) for detect-
ing citric acid-adulterated lime juice samples. The gener-

ated model on the Tellspec data was able to classify juices
with an accuracy of 88% in the external validation set (29).
Thus, it seems that NIRS could be considered a real alterna-
tive to the time and reagent-consuming methods for qual-
ity control of lime juice. Besides, portable NIRS has poten-
tial applicability across the fruit juice industry by conduct-
ing on-site sample analysis.
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Table 2. Quality Metrics for the Partial Least Squares Discriminant Analysis (PLS-DA) Models Generated Using the Training and Test Sets of Benchtop Fourier-Transformation
Near-Infrared Spectroscopy (FT-NIRS) and Short Wave Near-Infrared Spectroscopy (SW-NIRS)

Pre-processing
(Number of LVs,
Explained Variance)

Variables
Benchtop FT-NIRS (%) Portable SW-NIRS (%)

Internal Validation
(Training Set)

External Validation
(Test Set)

Internal Validation
(Training Set)

External Validation
(Test Set)

Raw data Sensitivity 53 70 41 64

FT-NIR (3, 100%) Specificity 56 83 67 57

SW-NIR (2, 100%) Accuracy 54 75 50 61

AUROC 0.58 0.49

Smooth Sensitivity 80 80 41 64

FT-NIR (4, 100%) Specificity 67 86 67 57

SW-NIR (2, 100%) Accuracy 75 82 50 61

AUROC 0.71 0.42

1st derivative Sensitivity 73 60 94 100

FT-NIR (3,
99.40%)

Specificity 67 100 67 100

SW-NIR (4,
99.99%)

Accuracy 71 76 85 100

AUROC 0.73 0.80

2nd derivative Sensitivity 67 80 81 100

FT-NIR (3,
99.40%)

Specificity 44 57 56 86

SW-NIR (2,
99.89%)

Accuracy 58 71 72 94

AUROC 0.59 0.82

MSC Sensitivity 80 90 94 73

FT-NIR (3, 100%) Specificity 100 100 67 86

SW-NIR (3, 100%) Accuracy 88 94 85 78

AUROC 0.87 0.84

SNV Sensitivity 80 90 94 73

FT-NIR (3,
99.96%)

Specificity 100 100 67 86

SW-NIR (3,
99.99%)

Accuracy 88 94 85 78

AUROC 0.87 0.84

SNV + 2nd derivative Sensitivity 67 70 88 91

FT-NIR (3, 95.26%) Specificity 56 57 100 100

SW-NIR (3,
99.97%)

Accuracy 63 65 92 94

AUROC 0.66 0.95

4.5. Soft Independent Modeling of Class Analogy

By using the SIMCA technique as a one-class classifi-
cation model, we aimed to objectively classify samples
into “genuine” and “non-genuine or adulterated” samples.
Following the construction of each model, leave-one-out
cross-validation was performed on the training set and
the optimal number of latent variables selected. The per-
centage of correctly assigned samples for the training set,
cross-validation set, adulterant test set, and overall per-
formance of the constructed models following different
pre-processing techniques are presented in Table 3. As
illustrated in Table 3, auto-scaling of both benchtop FT-
NIRS and portable SW-NIRS data resulted in the best per-
formance of the models. In the mentioned models, 100%

of genuine samples were correctly assigned in the cross-
validation set of both benchtop FT-NIRS and portable SW-
NIRS, while 96% and 89% of adulterated samples were cor-
rectly assigned in the test set of benchtop FT-NIRS and
portable SW-NIRS, respectively.

4.6. ComparisonofDiscriminant Analysis to theClassModeling
Approach

According to the accuracy obtained by the PLS-DA
model and overall performance obtained by SIMCA, it
seems that SIMCA (as a class modeling technique) could
be more suitable in the authenticity assessment of lime
juice samples compared to the PLS-DA (as a discriminant
model). The class modeling approach should be adopted
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Table 3. The Results of Soft Independent Modeling of Class Analogy (SIMCA) Developed from Benchtop Fourier-transformation Near-Infrared Spectroscopy (FT-NIRS) and
Portable Short Wave Near-Infrared Spectroscopy (SW-NIRS) Data

Pre-processing (Number of LVs, Explained Variance)
Correctly Assigned Samples (%)

Training Set Cross-Validation Set Adulterated Test Set Overall Performance

Raw data

FT-NIR (2, 100%) 100 100 80 90

SW-NIR (4, 100%) 100 100 75 87.5

Auto-scale

FT-NIR (3, 100%) 100 100 96 98

SW-NIR (4, 100%) 100 100 89 94.5

Smooth

FT-NIR (3, 100%) 100 100 84 92

SW-NIR (3, 100%) 100 100 28 64

1st derivative

FT-NIR (1, 99.50%) 100 93 88 90.5

SW-NIR (2, 99.99%) 100 93 39 66

2nd derivative

FT-NIR (1, 99.50%) 100 93 88 90.5

SW-NIR (1, 99.40%) 100 93 39 66

MSC

FT-NIR (4, 100%) 100 100 80 90

SW-NIR (2, 100%) 100 93 39 66

SNV

FT-NIR (4, 100%) 100 100 80 90

SW-NIR (4, 100%) 100 93 89 91

SNV + 2nd derivative

FT-NIR (1, 98.56%) 100 93 16 54.5

SW-NIR (2, 99.50%) 100 93 0 46.5

when the interest is focused on a single class, and the aim
is to verify the compliance of other samples with the fea-
tures of that target class, while discriminant analysis is the
right choice when two classes are meaningfully defined
(52). Although the ‘best’ classification method does not ex-
ist, PLS-DA is successfully used in ‘omics’ applications such
as metabolomics and genomics, while SIMCA shows more
reliable results in the authentication problems (53). The
main drawback of discriminant methods is that they al-
ways assign a new sample to one of the predefined classes,
even if that sample does not belong to any of those classes
(54).

The results of our study also revealed that the one-class
classification could be considered a suitable approach for
authenticity assessment when there is a particularly small
sample size. One of the most practical consequences of
class modeling is that a model could be constructed with
only data from the target class. This feature is not avail-
able in discriminant methods. When only a few genuine
samples are available, dividing the whole data set (genuine
samples and non-genuine samples) into training and test
leads to training the model on an insufficient amount of
data. In addition, the test set will not contain enough sam-
ples to sufficiently estimate the predictive capability of the

generated models (55).

4.7. Comparison of the Performance of Benchtop FT-NIRS to
Portable SW-NIRS

Although the effective wavelength ranges of benchtop
FT-NIRS and portable SW-NIRS completely differ, both de-
vices successfully classify lime juice samples. This is the
first report comparing the performance of benchtop FT-
NIRS and portable SW-NIRS in detecting lime juice adul-
teration. The outcome of this finding is that with a suit-
able classification model, good accuracies could be ex-
tracted from data, irrespective of the type of NIRS instru-
ment used. Although the predictive performance of the
portable SW-NIRS is lower relative to the benchtop FT-NIRS,
the portable device presents adequate results for use as a
screening technique. Considering the attributes of each
instrument in terms of accuracy, cost, usability, and porta-
bility, both the benchtop FT-NIRS and portable SW-NIRS
demonstrate an excellent analytical tool for on-site food in-
tegrity screening. Although the sample set employed in
this study was relatively small, it fairly revealed the suit-
ability of spectroscopic methods in the detection of this
type of adulteration. However, more precise and robust
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models would need to be generated on a wider range of
lime juice variability for a serviceable application.

Comparing the results of our study to others, Shafiee
and Minaei demonstrated the potential of data mining
combination with a VIS/NIR spectroradiometer (350 - 2500
nm) for evaluation of lime juice quality in terms of nat-
ural or synthetic nature. Based on the obtained results
support vector machine (SVM) proved to be the most ac-
curate classifier as it achieved the highest accuracy (97%)
using the raw spectrum information (15). However, in our
study, almost equal accuracy was obtained using a portable
SW-NIRS. In our previous study, we revealed the capabil-
ity of another portable NIRS (Tellspec®, 900 - 1700 nm)
and chemometrics approach for the discrimination of gen-
uine and citric-adulterated lime juices with the accuracy
of 88% for each PLS-DA and k-NN models (29). In addition,
the feasibility of FT-IR spectroscopy and chemometrics ap-
proach in the detection of adulterated lime juice (prepared
by lime juice concentrates) was revealed in a study con-
ducted by Mohammadian et al. The lime juice samples
were correctly designated to their original groups using
PLS-DA and counter propagation artificial neural networks
(CPANN) maps with an overall accuracy of 87% in the vali-
dation procedure (12).

5. Conclusions

In this study, a novel NIRS method was developed for
detecting citric acid-adulterated lime juices based on the
NIR spectra of genuine and adulterated samples recorded
by benchtop FT-NIRS and portable SW-NIRS. The results
of the current study revealed that benchtop FT-NIRS and
portable SW-NIRS with an appropriate multivariate classi-
fication model could be applied as quick, easy, and low-
cost analytical approaches in the screening of lime juice
samples. According to the accuracy obtained by the PLS-
DA model and overall performance obtained by SIMCA,
it seems that SIMCA (as a class modeling technique) is
more appropriate in the authenticity assessment of lime
juice samples compared to the PLS-DA (as a discriminant
model). Since quality metrics for the benchtop FT-NIRS
and the portable SW-NIRS were satisfactory, SW-NIRS as a
portable device could be considered for future applica-
tions, moving out of the laboratory and on-site screening
of a large number of samples by the food industries and
regulators at various stages of the food supply chain. The
suspected samples could be reconfirmed using confirma-
tory techniques. Although the sample set employed in this
preliminary study was relatively small, the results proved
that portable SW-NIRS is an appropriate method for the
rapid and on-site detection of citric acid-adulterated lime
juice samples. However, further experiments are required
with considerably more samples to confirm the real poten-

tial of this technology and to develop more robust predic-
tion models.
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