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Abstract

Background: Chinese hamster ovary (CHO) cells are the widely used mammalian cell host for biopharmaceutical manufacturing.
During cell cultures, CHO cells lose viability mainly from apoptosis. Inhibiting cell death is useful because prolonging cell lifespans
can direct to more productive cell culture systems for biotechnology requests.
Objectives: This study exploited a CRISPR/Cas9 technology to generate site-specific gene disruptions in the caspase-3 gene in the
apoptosis pathway, which acts as an apoptotic regulator to extend cell viability in the CHO cell line.
Methods: The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 system. The guide
RNAs targeting the caspase-3 gene were designed, and vectors containing sgRNA and Cas9 were transfected into CHO cells that ex-
pressed erythropoietin as a heterologous protein. Indel formation was investigated by DNA sequencing. Caspase-3 expression was
quantified by real-time PCR and western blot. The effect of editing the caspase-3 gene on the inhibition of apoptosis was also inves-
tigated by induction of apoptosis in manipulated cell lines by oleuropein. Finally, the erythropoietin production in the edited cells
was compared to the control cells.
Results: The caspase-3 manipulation significantly prolongation of the cell viability and decreased the caspase-3 expression level of
protein in manipulated CHO cells (more than 6-fold, P-value < 0.0001). Manipulated cells displayed higher threshold tolerance to
apoptosis compared to the control cells when they were induced by oleuropein. They show a higher IC50 than the control ones (7271
µM/mL Vs. 5741 µM/mL). They also show a higher proliferation rate than the control cells in the presence of an apoptosis inducer
(P-value < 0.0001). Furthermore, manipulated cell lines significantly produce more recombinant protein in the presence of 2,000
µM oleuropein compared to the control ones (P-value = 0.0021).
Conclusions: We understood that CRISPR/Cas9 could be effectively applied to suppress the expression of the caspase-3 gene and
rescue CHO cells from apoptosis induced by cell stress and metabolites. The CRISPR/Cas9 system-assisted caspase-3 gene ablation
can potentially increase erythropoietin yield in CHO cells.
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1. Background

Chinese hamster ovary (CHO) cell lines are favorably
utilized for the production of recombinant therapeutics
protein (1, 2). Metabolic stresses in CHO cell lines usually
cause the induction of apoptosis during the production
of heterologous protein (3). The induction of apoptosis

leads to reduce viability and production of protein (4, 5). It
leads to the accumulation of contaminating cellular frag-
ments, diminished culture time, and decreased product
and quality (6). Cell death is a significant issue to be dealt
with because it affects the viable cell density, product quan-
tity, and quality (7). It is essential to prolong the culture’s
longevity (viable culture lifespan) to reach a cost-effective
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level of industrial production (7). It is valuable to block
apoptosis in culture to facilitate an extended culture life-
time and increase yield. Because apoptosis is genetically
controlled, genetic engineering of key and regulator genes
in the apoptosis cascade could be used to prevent or post-
pone it (6).

Among regulators of apoptosis, caspases are endopro-
teases that catalyze the breaking of the peptide bond (8, 9).
They show a critical function in apoptosis regulation com-
prising induction, transduction, and amplification of sig-
nals; suppressing caspase activation is a beneficial strategy
to inhibit apoptosis and increase protein production in
the recombinant CHO (rCHO) cell line (7). Caspase-3 plays
a fundamental role in apoptosis and is critical to cellular
commitment to irreversible apoptotic cell death (10). Inhi-
bition of the caspases-3 expression is one of the approaches
for increasing cell viability in the production industry.

Some strategies can be used for genetic engineering
to extend bioprocess function and create biologically ac-
tive and stable proteins (11). The clustered, regularly
interspaced short palindromic repeats/CRISPR-associated
protein 9 (CRISPR/Cas9) system opens new avenues in
gene editing and manipulation. The most usage of the
CRISPR/Cas9 system is the modification and manipulation
of DNA. The main advantage of CRISPR technology is the
ability to target and cut specific genome regions by spe-
cific guide RNA (12). This tool is easy to design, cost-
effective, and more efficient than previous genetics of nu-
cleases, including zinc finger nucleases (ZFN) and tran-
scription activator-like effector nuclease (TALEN). It is a
simple genome editing system because only one nucle-
ase and a single guide RNA (sgRNA) are used (13). One of
the most remarkable things about CRISPR technology is its
rapid development. CRISPR/Cas9 system has been applied
for CHO genome engineering by knocking out genes corre-
lated to the product yield and quality (14).

Oleuropein is the most noticeable polyphenol compo-
nent of olives plants (15, 16). It provokes apoptosis by sup-
pressing the PI3K/AKT signaling pathway and activating
caspases. A recent study has shown that oleuropein also in-
duces apoptosis via the activation of caspases in HepG2 cell
line (17).

2. Objectives

In this study, we used the rCHO cell line expressing hu-
man erythropoietin for manipulating the caspase-3 gene.
By targeting the caspase-3 gene using the CRISPR/Cas9 sys-
tem, we tried permanently to inhibit the expression of the
caspase-3 protein (Figure 1). Decreasing caspase-3 expres-
sion can inhibit apoptosis and increase cell viability and

density. We induced apoptosis by using different concen-
trations of oleuropein in manipulated CHO cell lines. Fi-
nally, the amount of erythropoietin produced in the pres-
ence and absence of oleuropein was measured at the ma-
nipulated and control cell lines.

3. Methods

3.1. In Silico Analysis

Information relevant to the caspase-3 gene was con-
veyed to the STRING server (https://string-db.org/) to gen-
erate the gene network. Knockout of the target gene and
its pathway were checked. The protein-protein interaction
network was drawn, and the effect of the caspase-3 gene on
the apoptosis pathway and disrupts this network was ob-
served.

3.2. Plasmid Construction and gRNA Design

Plasmid pLenti-U6-sgRNA-SFFV-Cas9-2A-Puro contains
U6 and SFFV promotor, sgRNA, Cas9, 3′LTR, and 5′LTR plas-
mid was purchased from an abmgood company (abm-
good, Canada). sgRNAs were designed against the caspase-
3 gene in rCHO by the online tool Optimized CRISPR De-
sign (http://crispr.mit.edu/), and the sgRNAs with rarer off-
target positions were selected for further investigation (18,
19). sgRNA sequences are listed in Table 1.

3.3. Cell Culture and Transfection

Recombinant CHO adherent cells producing erythro-
poietin were obtained from the production and research
complex of the Pasteur Institute of Iran. The rCHO was
cultured in DMEM/F-12 medium in T-25 cm2 vented cap tis-
sue culture flasks, supplemented with 10% FBS, and incu-
bated in a humidified chamber at 37°C with 5% CO2. A
total of 1×103 cells were transfected with the designed
plasmid. Transfections were carried out by ScreenFect A
plus (Wako, Japan) according to the manufacturer’s in-
structions. After successful transfection and antibiotic
selection, Puromycin–resistant cells detached by trypsin,
and the single clones were isolated by serial dilution in
DMEM/F-12 (20% FBS).

3.4. DNA Extraction

The cells were harvested and pelleted by centrifuga-
tion in a 1.5 mL tube and resuspended on 100µl PBS buffer.
Then, Genomic DNA was extracted by DNG-PlusTM reagent
according to the manufacturer’s instructions (Sinaclon,
Iran).
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Figure 1. A schematic illustration of gene manipulation for increasing the yield of the cell line.

Table 1. The Sequence of sgRNAs

No. Sequence Direction Mismatch Position

1 Target 1: GTC-GGT-AAG-AAC-GGC-ACA-GC 3′→5′ 0 6572-6591

2 Target 2: ACT-AGG-GAC-CGA-CTT-TAT-CG 5′→3′ 0 1247-1266

3 Target 3: GAT-TTT-CCT-TAC-AAC-CGT-GG 3′→5′ 0 4037-4056

3.5. PCR Amplifications and Sequencing

PCR amplification was done by master mix (Thermo
Scientific, USA) and specific caspase-3 primers. PCR prod-
ucts were electrophoresed in agarose gel and visualized by
DNA safe stain. The purified PCR products were sequenced
3130XL genetic analyzer (Applied Biosystem, USA).

3.6. Real-time PCR

Whole RNA was obtained from the cell pellets using
RNX-plusTM solution (Sinaclon, Iran). Complementary
DNA (cDNA) was synthesized from 700 ng of extracted RNA
with Moloney murine leukemia virus reverse transcriptase
and random hexamer primers by the Viva cDNA kit (Vivan-
tis, Malaysia). Gene expression levels of caspase-3 were eval-
uated and normalized against GAPDH genes. The 2-∆∆Ct

method was used to calculate the relative fold gene expres-
sion.

3.7. Cell Proliferation Assay

The manipulated and control cell lines were cultured
at 0.5 × 106 densities. The cell density was determined by
counting and using an Improved Neubauer haemocytome-
ter (20, 21), and viable cells were distinguished from dead
cells by the Trypan blue dye exclusion method.

3.8. Induction of Apoptosis and MTT Test

Around 5,000 cells from the manipulated and control
cell lines were seeded into 96-well plates in DMEM/F-12 in
triplicate. After overnight incubation, the medium from
each well was removed and replaced with a medium con-
taining different concentrations (500, 1,000, 2,000, 4,000,
and 8,000 µM/mL) of oleuropein (Sigma-Aldrich, USA) for
24 h and 48 h. All cell lines were incubated in a 0.5 mg/mL
MTT reagent at 37°C for four hours. Then, the medium was
discarded, and purple formazan crystals were dissolved by
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adding 150 µl isopropanol per well. In the end, the ab-
sorbance of the colored solution was recorded at 570 nm
wavelength by a microplate reader (22, 23).

3.9. Western Blot

Manipulated and unmanipulated rCHO cells were
lyzed and loaded on an SDS-PAGE gel (12%) and transferred
to the PVDF membrane (Bio-Rad, USA). Then, they were
incubated with anti-caspase 3 (Cat No: ab184787, Abcam,
USA) and anti-beta actin antibodies (Cat No: ab8227; Ab-
cam, USA) for one hour at RT. Successively, membranes
were washed three times and incubated to buffer, includ-
ing goat anti-rabbit IgG H&L (HRP). The expression of pro-
teins was normalized by β-actin. Densitometry of bands
was done by the Gel Analyzer Version 2010a software (NIH,
USA)

Measurement of Erythropoietin: Manipulated and un-
manipulated rCHO cell lines producing recombinant hu-
man erythropoietin (EPO) were grown in T-flasks. After one
day of culture, the FBS medium was replaced with a serum-
free production medium (with and without 2,000 µM
oleuropein). The concentration of EPO secreted into the
culture media was assessed by an EPO ELISA Kit (antibodies-
online, Germany) according to the manufacturer’s guide-
lines at T = 0, T = 24, T = 48, T = 72, and T = 96.

3.10. Statistical Analysis

Statistical analysis was done by GraphPad Prism soft-
ware (GraphPad Software). Comparisons of caspase-3 gene
expression, viability, and EPO production between treated
and untreated cell lines were evaluated by the Student’s t-
test (two groups) or a t-test analysis of variance (ANOVA).

4. Results

The Caspase-3 is well-known as an executioner caspase
in the apoptosis pathway. By the STRING database, the
Caspase-3 apoptotic regulating gene network of the Chi-
nese hamster (Cricetulus griseus) was drawn up. There was a
minimum interaction score of 70% (high confidence) and
a maximum of 50 genes that could interact (Figure 2).

After successful transfection and antibiotic selection,
single clones were isolated by serial dilution in DMEM/F-
12 (20% FBS). Ninety individual clones were picked up and
sequenced by the dideoxy terminal method. All the DNA
sequences were aligned with control by Clustal online
tool (http://www.ebi.ac.uk/Tools/msa/clustalo/). The site of
cleavage and sequence alignment of control and some
sequence-manipulated clones are shown in Figure 3.

For evaluating cell growth and density, 500,000 cells
were seeded in a T-25 flask and counted after 72 h. Figure 3

shows viable cell density between the control cells and the
manipulated cell lines (clone-62). Significant differences
in the viable cell density were observed between the two
groups (the control and clone-62) (142%, P-value < 0.0017).

RT-PCR with sequence-specific primers confirmed that
caspase-3 expression was decreased 2.7-fold at the mRNA
level in the edited cell line (clone-62) compared to the con-
trol cell line (P-value < 0.0005) (Figure 3E).

The Western blot method confirmed the reduced ex-
pressions of caspase-3 by the CRISPR/Cas9 system (Figure
4). β-actin was used as an internal control for normaliz-
ing protein expression. Western blot analysis of clone-62
showed a more than 6-fold reduction in the caspase-3 ex-
pression gene compared to the control (P-value < 0.0001).

The viability of the manipulated clone cells (clone-62)
and the control ones was evaluated in the presence of dif-
ferent concentrations of apoptosis inducers (500, 1,000,
2,000, 4,000, and 8,000µM/mL oleuropein) after 24 h and
48 h incubation (Figure 5A-B). As shown in figure 5, the ma-
nipulated cell exhibited resistance to apoptosis in the pres-
ence of oleuropein after 24 (A) and 48 (B) hours of incuba-
tion and confirmed by MTT assay.

For evaluation of the resistance to apoptosis of the
edited cell line, the manipulated and control cell lines were
treated with 500, 1,000, 2,000, 4,000, and 8,000µM/mL of
oleuropein for 24 and 48 hours, and IC50 was calculated
(Figure 5C-D). The IC50 of manipulated cells was higher
than control cells (7271 µM/mL Vs. 5741 µM/mL) after 48 h.

To investigate the knockdown of caspase-3 on the ex-
pression of EPO, the amount of erythropoietin produced
in the manipulated cell line (Clone-62) and the control
cell line was measured by the ELISA method. The results
showed production of EPO in the manipulated cell line
(clone-62) is higher than in the control ones (Figure 5). This
increase in the production of EPO is significantly higher
in clone-62 in the presence of 2,000 µM oleuropein com-
pared to the control one after 96 hours.

5. Discussion

Growing request for therapeutic proteins obligates the
development of cost-effective technologies and policies for
high-quality and quantity expression systems in the bio-
pharmaceutical industry (11). CHO cell lines are generally
used as the mammalian host because of their safety for hu-
man usage (12). CHO cells must be propagated in big biore-
actors at high density and concentrations to respond to the
market’s demands in large-scale production. Hence, im-
proving this kind of expression system is of great commer-
cial benefit (24).

The byproducts (lactate and ammonia) accumulate
during the cell cultures in bioreactors. They have led to the
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Figure 2. The result of STRING analysis of caspase-3 in Cricetulus griseus.

induction of apoptosis and declined cell viability and den-
sity in bioreactors. Several approaches, such as nutrient
feeding, anti-apoptotic chemicals, and genetic engineer-
ing, have been applied to prolong cell viability (25). The
engineering of anti-apoptosis has been one of the major
research fields in cell line improvement for protein pro-
duction. So, it is of meaningful value to increase the con-
centration of viable cells by down-regulating or prevent-
ing apoptosis in culture via suppressing cell death, expand-

ing culture lifetime, and boosting cell-specific productiv-
ity by holding cellular activity (26, 27). Overexpression of
some anti-apoptotic genes (Mcl-1, 30Kc6, Bcl-2, Bcl-w, Aven,
and E1B-19K) and down-regulation of pro-apoptosis genes
expression (Bax, Bak, and Bok) in mammalian cells have
been studied to increase recombinant protein production
(27). Zhang et al. reported an 82% increase in the produc-
tion of antibodies in CHO cells co-transfected with Bcl-xl
and a 34% increase by co-transfected with Mcl-1 (28).
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Figure 3. (A) PCR product sequencing of the control cell line by Sanger sequencing, and (B) edited cell line (clone-62) containing AATC insertion, (C) Different individual
single-cell PCR product alignments. Clone 62 showed the insertion of four nucleotides after breaking repair. (D) viable cell density. Comparison between the manipulated
CHO cells (clone-62) and the control ones after 72 h. Results represent the mean of three analyses, and error bars show the standard deviation (P-value < 0.0017). (E) Expression
of caspase-3 gene in manipulated cell lines (clone-62) compared to the control ones.
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Figure 4. Evaluation of caspase-3 protein expression by western blot. (A) Caspase-3 protein decreased in clone-62 (individual manipulated cell) compared to control. (B) The
expression level of caspase-3 protein in manipulated cell (clone-62) by CRISPR/Cas9 system has decreased 6.4-fold compared to the control.

Different anti-apoptotic plans have been examined.
For example, many efforts have been made by gene knock-
down using small interfering RNAs (siRNAs) (4) and mi-
croRNAs (mRNAs). However, significant problems such
as off-targeting, temporary inactivation of gene function
(29), and generation of gene knockouts prohibited these
methods (30). The silencing effect was relatively unstable
in many of the isolated cell lines. Shen et al. showed that
siRNA inhibition confers a 32% reduction of PDK1 mRNA
level, and it needs multiple selection rounds for the high
degree of gene knockdown (31). Many knockdown lines
lost their RNAi effect on gene expression during routine
subculture (4), and a high level of gene knockdown may
require several selection steps (31). Moreover, the neces-
sity to present a reporter gene (GFP or luciferase) is not a
favorite for developing cell lines used in the industry (32).
For the first time, Han and Rhee have shown that exosomes
derived from CHO cells can decrease apoptosis during the
cell culture when supplemented with the culture medium
(33). However, this method requires additional work and
materials. Cost et al. showed complete and permanent Bax
and Bak protein elimination by ZFN in CHO without affect-
ing cell growth (34). Figueroa et al. demonstrated that the
expression of anti-apoptosis protein increased viable cell
concentration, but the engineered cells showed a reduc-
tion in growth rate (35).

The caspase knockdown trials in CHO cells generally
led to minor improvements in viable cell concentration

or viability of up to 40% (36). Apoptosis resistance had
been presented by gene inhibition of Casp-3 and Casp-7 to
overcome apoptosis in CHO cells (by CRISPRi) (3). Some
inhibitors of specific caspase have been assessed, but in
large-scale cultures might make them unaffordable be-
cause of the cost. Quieting of caspase-3 utilizing the anti-
sense expertise is another strategy for inhibiting apop-
tosis, significantly suppressing apoptosis, and extending
the culture lifespan. However, this method did not trans-
late into improved volumetric yield because of the loss of
metabolic capacity due to changes in the membrane of the
mitochondria (10). The advantage of caspase-3 inhibition is
that paths of apoptosis signaling converging on some im-
portant executioner genes can be hindered concurrently
(25).

Editing the genome by CRISPR/Cas9 is helpful for estab-
lishing genome-engineered cells (24, 30). It has become
a progressively significant view of cell line manipulation
for developing the production of recombinant proteins
(13). In comparison to other nucleases, zinc finger nucle-
ases (ZFN), and transcription activator-like effector nucle-
ases (TALEN), the CRISPR/Cas9 system is significantly more
accessible and more specific (29, 37, 38). Furthermore, a re-
cent study showed that CRISPR/Cas tool has far fewer off-
target than RNAi (39).

The variety, flexibility, effectiveness, and simplicity of
CRISPR systems that may be applied have indeed devel-
oped cell engineering (12) and the ability to address many
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Figure 5. Cell viability assessment of manipulated cell lines (clone-62) and control. The viability was measured in the presence of different concentrations of apoptosis
inducers, oleuropein, after 24 h (A) and 48 h incubation (B). Comparison of the IC50 value in the presence of 500, 1,000, 2,000, 4,000, and 8,000 µM/mL of oleuropein. (C)
IC50 value of control and manipulate cell line (clone-62) at T = 24 h, and (D) IC50 value of control and manipulate cell line (clone-62) at T = 48 h. Erythropoietin production,
Control cell line, and clone-62 (manipulated cell) in the medium without oleuropein (E), and in the presence of 2,000 µM/mL oleuropein (F).
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target sites with multiple gRNAs simultaneously (40). It is
an attractive tool for genome editing for academic and in-
dustrial groups (41). The CRISPR/Cas system is more flexi-
ble than ZFNs and TALEN, which apply RNA-based DNA tar-
geting (42). Some studies have shown the excellent func-
tion of CRISPR/Cas9 in CHO with knockouts or insertion
of genes, targeting to influence the product quantity and
quality of yields (32). Xiong et al. found that CRISPRi can
successfully repress Bak and Bax genes and rescue CHO
cells from apoptosis (3). Shen et al. enhanced recombinant
protein production by CRISPRi in CHO cells without imped-
ing cell growth (14).

The CRISPR/Cas9 method is precise in principle, but in
reality, not so much. It can make mutations elsewhere in
the genome, known as “off-target” variation. Various on-
line programs have been created and effectively applied
to apply and guess off-target attachment in silico (43) and
minimize the possibility of off-target genome disruption
(44). Third-party alignment tools are introduced to find
off-target sites such as BWA and Bowtie (45). Shortening
the length of gRNA to less than 20 bases has a significant
effect in reducing off-targe. Fu et al. showed that truncated
gRNAs could reduce some off-target by 5000-fold without
affecting on-target genome editing efficiencies (46). Of
course, gRNA with less than 15 nucleotides are not safe be-
cause they have loss-of-function and specificity (47). In ad-
dition to the off-target, other consideration such as poly-
morphism, delivery method, and ethics should also be con-
sidered.

In this project, we display the effective manipulation
of caspase-3 by CRISPR/Cas9 to create a modified rCHO cell
line on a laboratory scale with long viability. These cells
are more resistant to adverse environmental conditions.
Their IC50 was higher than control cells and also showed
more cell proliferation in the presence of apoptotic induc-
ers. We also used the scratch wound healing proliferation
assay to detect cell proliferation in the presence of oleu-
ropein (a stimulant of apoptosis) in high-density condi-
tions (data not shown). Results showed that cell density
was significantly increased by manipulating the caspase-
3 gene even in the presence of apoptotic stimuli (142%, P-
value = 0.0017). The high-level production of recombinant
proteins is directly correlated with a high density of cells.
The density of cells is closely tied to cell environmental con-
ditions. By manipulating apoptotic genes in unfavorable
conditions and the presence of an apoptotic inducer, re-
combinant protein-producing cell lines can produce more
culture yield. This suggests that the inhibition of apopto-
sis in the manipulated cells allowed them to keep their ac-
tivity of cells for an extended time to permit cell growth
and production of EPO protein. Our results display that
CRISPR/Cas9 system is a suitable tool for rCHO cell engi-

neering and proposes a substitute system for ZFN, TALEN,
and siRNA. These data collectively warrant the potential of
CRISPR/Cas9 for CHO cell engineering and lead to devel-
oped culture viability and host yields.

5.1. Conclusions

The cost-effective production of recombinant proteins
in the industry is one of the Health system’s priorities.
However, the production of recombinant proteins on an
industrial scale is costly. As a result, we need to opti-
mize production to produce them cost-effectively. Manip-
ulation of the host cell genome is one of the most effec-
tive ways in this regard. There is less need to add expen-
sive substances and molecules in the production process
to prevent apoptosis in these methods. In addition, the
CRISPR/Cas9 method produces stable cell lines. Many stud-
ies have shown that stable cells can produce recombinant
proteins by reducing the expression of apoptosis-inducing
factors. Extended culture lifetime and viability can be
translated into developing recombinant protein quantity
and quality. These cells produce the recombinant proteins
with more intensity and at a longer time, reducing the
product’s cost.
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