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Abstract

Background: Drug resistance in breast cancer is an unsolved problem in treating patients. It has been recently discussed that
lysosomes contribute to the invasion and angiogenesis of cancer cells. There is evidence that lysosomes can also cause multi-drug
resistance. We analyzed this emerging concept in breast cancer through computational and systems biology approaches.
Objectives: We aimed to identify the key lysosome-related genes associated with drug-resistant breast cancer.
Methods: All genes contributing to the structure and function of lysosomes were inquired through the Human Lysosome Gene
Database. The prioritized top 51 genes from the provided lists of Endeavour, ToppGene, and GPSy as prioritization tools were se-
lected. All lysosomal genes and 12 breast cancer-related genes aligned to identify the most similar genes to breast cancer-related
genes. Different centralities were applied to score each human protein to calculate the most central lysosomal genes in the human
protein-protein interaction (PPI) network. Common genes were extracted from the results of the mentioned methods as a selected
gene set. For Gene Ontology enrichment, the selected gene set was analyzed by WebGestalt, DAVID, and KOBAS. The PPI network
was constructed via the STRING database. The PPI network was analyzed utilizing Cytoscape for topology network interaction and
CytoHubba to extract hub genes.
Results: Based on biological studies, literature reviews, and comparing all mentioned analyzing methods, six genes were intro-
duced as essential in breast cancer. This computational approach to all lysosome-related genes suggested that candidate genes
include PRF1, TLR9, CLTC, GJA1, AP3B1, and RPTOR. The analyses of these six genes suggest that they may have a crucial role in breast
cancer development, which has rarely been evaluated. These genes have a potential therapeutic implication for new drug discovery
for chemo-resistant breast cancer.
Conclusions: The present work focused on all the functional and structural lysosome-related genes associated with breast cancer.
It revealed the top six lysosome hub genes that might serve as therapeutic targets in drug-resistant breast cancer. Since these genes
play a pivotal role in the structure and function of lysosomes, targeting them can effectively overcome drug resistance.
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1. Background

Breast cancer has a second-degree mortality rate
among women aged 45 to 55 (1). Depending on the stage
of breast cancer, one out of eight women would indeed
require treatment such as chemotherapy, tissue removal,
radiotherapy, and hormone therapy (2). Despite the

multispectral etiology of breast cancer, less information
has been provided regarding the biochemical aspects of
its progression. The metastatic ability of cancer cells by
resistance to chemotherapy challenges its therapeutic
management. The power of cancerous cells to deviate
apoptosis processes through mutation or epigenetic al-
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ternations (3) brought the urgent need for personalized
medicine to exclusively administer a specific drug based
on the genetic profile of patients (4). Although there is
no consensus about the underlying mechanism of cancer
metastatic progression, the lysosome components and
their activities within cancer cells have recently drawn
much scientific attention (5).

Lysosomes play roles in cell phagocytosis, endocytosis,
autophagy, and apoptosis (6, 7). It has been recently dis-
cussed that lysosomes contribute to cancer cell invasion,
angiogenesis, and drug resistance (5). Notably, the lyso-
some membrane in cancerous cells is weaker than in nor-
mal cells. Since this defect can result in apoptotic suscep-
tibility, it can be a vital targeting strategy in developing
an efficient cancer therapy (8). Achieving this goal needs
comprehensive knowledge about the involved genes in ei-
ther lysosomal biogenesis or autophagy processes. Cur-
rently, the Coordinated Lysosomal Expression and Regu-
lation (CLEAR) gene network, along with over 500 target
genes of transcription factor EB (TFEB), has been recog-
nized in the biogenesis and function of lysosomes and au-
tophagy (9, 10). Addressing an ideal therapeutic target
needs enough knowledge concerning the exact signaling
pathways of the lysosomal process (11, 12). Experimental
studies on multifactorial diseases are time-consuming and
costly, but they can also poorly validate involved genes.
The application of high-throughput bioinformatics tools
and computational analysis can provide important infor-
mation about exclusive candidate genes and proteins in ei-
ther biological or disease processes (13).

The uncontrolled growth of cancer cells under harsh
conditions leads to the depletion of nutrients and ag-
gregation of damaged proteins and organelles. As a re-
sult, lysosomes and their enzymes, through autophagy,
catabolism, growth, and recycling programs, provide nu-
trients for other cancer cells’ further development and
survival (14). Lysosomes have been widely studied in tu-
mors’ chemoresistance in cancer cells by exocytosis. The
storage of chemotherapy drugs in the lysosomes has also
been mentioned as a lysosome-dependent drug resistance
mechanism (4). Since systems biology approaches iden-
tify the regulatory role of the master gene for lysosomal
biogenesis (TFEB), this gene network is known as the co-
ordinated lysosomal expression and regulation (CLEAR),
consisting of genes involved in lysosomal autophagy flux
(8). Moreover, previous experimental studies identified
that TFEB promotes the transcription of several lysoso-
mal genes by direct binding to specific E-box sites at their
promoters. The results of microarray data, unbiased ge-
nomic and expression meta-analysis, and deep sequencing
of TFEB chromatin immunoprecipitate (ChIP-seq) revealed
a control system by which TFEB coordinates the expression
of genes involved in the early and late steps of lysosomal

biogenesis (9). TFEB targets 500 - 800 genes, many of which
involve lysosomal biogenesis and autophagy. Lysosomes
would be considered the Achilles’ heel of cancer cells (8).

Gene prioritization is a computational approach for
complex diseases that inputs candidate genes and applies
several algorithms to rank them. A list of ranked genes
will be introduced in the output. Genes with high rank-
ing have the most importance and role in causing the dis-
ease (15). One of the ways to identify essential genes that
play a vital role in diseases is to analyze the human protein-
protein interaction network (HPPIN) and centrality mea-
sures. Centrality is the most critical parameter for identify-
ing the gravity of each gene/protein as a node in networks
(16).

Meanwhile, PPIs play a regulatory role in many cell-
signaling networks associated with "cancer traits," as some
PPIs strongly affect cell signaling (17). Another way to help
researchers track genes essential in the etiology of diseases
is to look for similarities between the studied genes and
the marker genes associated with each condition. Scarce
data clarify the role of lysosomal genes in drug resistance
to breast cancer. To predict novel genes as hall markers of
breast cancer, a total of 435 genes involved in the biogene-
sis and functional structure of lysosomes were profiled as
the contributors to breast cancer development. Hence, the
characterization of genes participating in lysosomal bio-
genesis and function is critical in drug-resistant breast can-
cer treatment.

2. Objectives

The current study aimed to identify the key lysosome-
related genes associated with drug-resistant breast cancer.

3. Methods

3.1. Identification of Lysosomal Genes

Structural and functional lysosomal genes were iden-
tified in the Human Lysosome Gene Database (Lyso-
some.unipg.it). The chosen genes from datasets were re-
lated to the lysosomal encoding proteins that provided
information about miRNA-gene interactions and targeted
genes of the CLEAR network by TFEB binding motif and
binding sites. The filter algorithm used in this study was
miRTarBase, and default data of CLEAR and TFEB binding
motif of The Human Lysosome Gene Database were uti-
lized. Four hundred thirty-five genes were identified as in-
put candidates for gene prioritization, HPPIN analysis, and
similarity measures. The project workflow, including data
preparation, applied tools, analysis, and validation, is pre-
sented in Figure 1.
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Figure 1. Workflow of methodology in this research
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3.2. Gene Prioritization by ToppGene, GPSy, and Endeavour

Three software packages conducted gene prior-
itization according to the data source, popularity,
and year. The Endeavour web tool is available at
https://endeavour.esat.kuleuven.be/. Data from multi-
ple heterogeneous sources were collected according to
sequence data, expression data, functional annotations,
PPI networks, text mining data, regulation information,
chemical and phenotype information, and a priori prob-
abilities. The computational approach of the Endeavour
web tool, as the basic machine learning technique, was
performed to score and rank the candidate genes that
were ultimately merged with other data sources based
on an order statistic. The algorithm behind Endeavour
for prioritizing genes consisted of three steps. First, the
algorithm trained a model of the biological process of
interest. The user provided the seed genes. Every model
has a sub-model based on the user-selected data source.
Then, the algorithm used the model made in the previous
step to score the candidate genes. In the last step, the
ranked lists based on different data sources were merged
with statistical methods to reach a single global ranking.

The gene set prioritization by Endeavour was per-
formed according to cross-validation benchmarks and
administered the "gold standard." The prioritized genes
were validated using human phenotype ontology, accord-
ing to a time-stamped benchmark that provides the clos-
est genes to prospective validation. The Endeavour effi-
ciency for gene scoring and prioritization had been ap-
proved previously (18). The ToppGene tool prioritizes genes
based on functional similarity with the list of training
genes publicly available at https://toppgene.cchmc.org/
(19). The GPSy tool, as online software, was applied fur-
ther to prioritize genes to predict the function of con-
served developmental processes like meiosis, gametogen-
esis, and sex differentiation, which is publicly accessible at
http://gpsy.genouest.org (20).

Twelve genes with approved roles in the process of
breast cancer had been selected as training genes (21, 22).
To ensure the accuracy of analysis, the three top ones of
12 (TP53, BRCA1, and BRCA2) were imported into 435 genes
from the lysosomal Gene Database. Since all three genes
were located at the top of the ranking, the accuracy of
administered tools was confirmed. Common genes were
scored by the sum of scores of all methods, then genes with
scores more than the median score of all common genes
were selected. Finally, the top 51 genes common among the
three software were selected.

3.3. Most Similar Lysosomes-related Genes to Breast Cancer
Hallmark Genes

The Smith-Waterman alignment performs among all
435 lysosomal genes and 12 breast cancer-related genes.

The third quantile of all alignment scores was used as
a threshold, and all the lysosomal genes with alignment
scores above this threshold were reported as the most sim-
ilar genes to breast cancer-related genes.

3.4. Most Central Lysosomal Genes in Human PPI Network

A human PPI network (HPPIN) is a graph in which the
nodes are human proteins (HPs), and the edges show their
interaction. We extracted 288,989 experimental interac-
tions between 20,748 HPs (shown in Appendix 1). Differ-
ent centralities, including degree (connectivity), neighbor-
hood connectivity, shortest paths, closeness centrality, be-
tweenness centrality (16, 23), and diversity of predators,
were applied (24) to score each HP. In the human-virus PPI
network, for each HP, each of the virus families that inter-
acts with it is called a predator. For each HP, the mean evo-
lutionary distance of its predators multiplied by the num-
ber of its predators is considered its diversity of predators
(DP) score (16). The top 100 lysosomal genes with the high-
est score were chosen for each of these centralities. Finally,
genes with at least two centralities were selected as the
most central lysosomal genes.

3.5. Extraction of Genes Common in the Output of All Three
Methods

Common genes were extracted from analysis results
of prioritization, similarity, and centrality methods. The
Venn diagram was drawn using ’ggVennDiagram’ pack-
ages in R. These common genes were considered the se-
lected gene set for subsequent analysis.

3.6. Gene Ontology (GO) Preformation by WEB-based Gene Set
Analysis Toolkit (WebGestalt) as Functional Enrichment

The GO enrichment analysis of the common gene set
in the protein network was performed using WebGestalt
(http://www.webgestalt.org/) (25). For basic parameters
options, Homo sapiens, network topology-based analysis
(NTA) method, and PPI BioGrid as a functional database
were selected as suitable parameters. The network re-
trieval & prioritization method was used to construct a
network for all common gene sets. The TOP method was
performed to rank GO terms according to the adjusted p-
value. Significant top GO terms were selected.

3.7. Gene Ontology (GO) Functional Annotation Analysis by
DAVID

The DAVID tool analyzed the functions of the selected
gene set as the GO terms. It is a popular functioning web
tool that can functionally annotate and cluster data sets of
genes with high success (26, 27). Gene ontology analysis
was carried out by the default categories of DAVID tools, in-
cluding disease, functional categories, GO, pathways, and
protein domains.

4 Iran J Pharm Res. 2022; 21(1):e130342.



Shiralipour A et al.

3.8. KEGG Database Enrichment Analysis with KEGG Orthology
Based Annotation System (KOBAS)

KOBAS (http://kobas.cbi.pku.edu.cn/home.do/) (28)
evaluated the selected gene set based on KEGG database
enrichment analysis. Both the KEGG pathway and KEGG
disease databases were included in the evaluation. While
the Hypergeometric test/Fisher’s exact test was applied as
statistical analysis, Benjamini and Hochberg were selected
as the FDR correction method.

3.9. Protein-Protein Interaction (PPI) Network Construction and
Topology Network Interaction Analysis and Hub Gene Selection

The selected common genes and 12 training genes were
administered as input data to construct a PPI network us-
ing the STRING database (http://string-db.org/) (29). To
create a PPI, Homo sapiens strains were selected. The
"add more nodes to current network" option in the string
database was selected to increase the number of related
proteins and grow interactions. Totally 79 proteins were in-
volved in the PPI network. The minimum interacted score
was considered with 0.400 confidence. The K-means clus-
tering was used to better understand protein interactions
in the network, as it was categorized into four clusters ac-
cording to the number of nodes. The constructed PPI net-
work was imported into the Cytoscape software platform
to be analyzed and visualized (30, 31). The topologic param-
eters like network centralization and clustering coefficient
were performed with a network analyzer to show the im-
portance of nodes. Hub genes were extracted and analyzed
with the Cytohubba plugin.

4. Results

4.1. Selection of Candidate Genes and Prioritization

Four hundred thirty-five genes with structural and
functional roles in the lysosomes were selected according
to Human Lysosome Gene Database (LGDB). Imported lyso-
somal genes were selected based on proteomics studies
and extracted from Reactome, Uniprot archive, KEGG, and
Gene Ontology database, as well as literature reviews and
systems biology approach. All 435 selected genes were pri-
oritized using Endeavour, ToppGene, and GPSy web tools.
For a list of training genes, we found 12 genes that pre-
vious studies had approved as the most related genes to
breast cancer. The selected signature of genes was im-
ported into a database analysis tool as training genes, in-
cluding BRCA1, BRCA2, TP53, PTEN, CASP8, FGFR2, LSP1, MAP3K1,
CHEK2, ATM, BRIP1, and PALB2 (21). Each prioritization algo-
rithm ranked the candidate genes based on their signifi-
cance. Ultimately, the top 51 genes that were common in
all three administered tools were selected and prioritized.

4.2. Identification of Most Similar Lysosomes Genes to Breast
Cancer Genes and Most Central Lysosomal Genes

Eighty-four lysosomal genes with alignment scores
above median alignment scores and all 12 breast cancer-
related genes were selected as the most similar to breast
cancer genes. Figure 2A shows these normalized align-
ment scores. As shown, 132 lysosomal genes were present
at least in two centralities and reported as the most cen-
tral lysosomal genes. For each of these 132 genes, Figure 2B
illustrates the centralities in which that gene is central.

4.3. Identification of Lysosomal Genes in All Three Methods

As shown in the Venn diagram of Figure 2C, 17 genes
were in the results of all three methods as follows: MTOR,
PRF1, FGFR3, TLR9, CLTC, GJA1, HLADRB1, NBR1, HSPA8, DNM2,
EGF, LRP1, PSAP, ENPP1, MYO7A, AP3B1, and RPTOR

4.4. Gene Ontology Functional Enrichment of Candidate Genes

The functional enrichment of the selected gene set
was analyzed through WebGestalt software. The process
was performed according to NTA (network topology-based
analysis) methods. The functional database of the se-
lected 17 genes was evaluated with PPI-BioGrid, which con-
firmed the selected gene set as highly involved in the reg-
ulation of cellular response to heat (adjusted P-value =
0.02), antigen processing, and presentation (adjusted P-
value = 0.03), and cellular response to starvation (adjusted
P-value = 0.05). The threshold for P-value was 0.05. The
significance of adjusted P-values was obtained through
Bonferroni-Hochberg false discovery rate correction (Ap-
pendices 2 and 3).

DAVID web server Gene Ontology analysis enriched pri-
oritized genes in eight annotation clusters. The most criti-
cal Gene Ontology terms are described in Appendix 4.

The KOBAS server performed the enrichment of 17
genes for all normal and disease KEGG pathways. The out-
put of KOBAS software is based on the P value and Cor-
rected P-value. In this study, the P-value of less than 0.05
was considered statistically significant. The results showed
a significant enrichment in the endocytosis pathways (P-
value = 0.00000347; corrected P-value = 0.000279), check-
point pathway in cancer (P-value = 0.00000827; corrected
P-value = 0.000333), and autophagy (P-value = 0.0000982;
corrected P-value = 0.00158). The results indicated that
the top selected genes are involved in cancer development
(Figure 3).

4.5. PPI Network and Topological Analysis

The PPI network construction using the STRING
database was performed for 17 selected common genes
and 12 training genes. Four distinct clusters were ob-
served, which were highly interconnected. The network
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Figure 2. A, Normalized alignment scores among 84 lysosomal genes and 12 breast cancer genes; B, Most central lysosomal genes and the number of centralities reported as
central; C, Venn diagram from the output of gene prioritization, similarity, and centrality methods

consisted of 79 proteins with 636 connectors, revealing
a high degree of functional association of clusters with
malignancy (Figure 4). The STRING network was analyzed
using Cytoscape. The topologic characteristic of the PPI
network was determined using Network Analyzer. The
network coefficient clustering was 0.613, indicating the

connection of adjacent nodes. This parameter measures
nodes’ importance in the network and their ability to
form clusters. A network clustering coefficient always
ranges between 0 and 1. As the value of this parameter
approaches 1, it shows the ability of nodes to create clus-
ters (32). Furthermore, network centralization was 0.499.

6 Iran J Pharm Res. 2022; 21(1):e130342.
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Figure 3. Enrichment of 17 selected genes by KOBAS based on KEGG pathway and disease. The P-value of less than 0.05 was considered statistically significant. Each row
represents an enriched function, and the length of the bar represents the enrich ratio, which is calculated as "input gene number"/ "background gene number." The color of
the bar represents different clusters. For each cluster, the top five with the highest enrich ratio will be displayed if there are more than five terms.

Network centralization as a fundamental network concept
is a simple and widely used index of network connectivity
distribution. Centralized networks have scores close to
1, whereas decentralized networks are characterized by
having a score close to 0 (33).

4.6. Identification of Hub Genes and Biological Significance

Hub genes of the PPI network were determined using
the CytoHubba plugin in Cytoscape software. The results
were extracted using all 12 methods in the tool. It is demon-
strated that some top 17 prioritized genes were also hub
genes. The hub genes were analyzed using four calculating
methods (betweenness, degree, clustering coefficient, and
eccentricity) (Figure 5A - D).

Ultimately, based on biological studies, literature re-
views, and comparing all mentioned analyzing methods,
PRF1, TLR9, CLTC, GJA1, AP3B1, and RPTOR were introduced as
essential genes in breast cancer. The analyses of these six

genes suggest that they may have a crucial role in the devel-
opment of breast cancer, which has rarely been evaluated.

5. Discussion

The present study adds to the growing evidence that
implicates the essential roles of the lysosomal genes in
drug resistance and human cancer progression. We intro-
duced a computational approach utilizing systems biol-
ogy methods such as prioritization tools, enrichment web
servers, network analyzer software, and computational bi-
ology methods to calculate the centrality of human PPI net-
works and measure gene similarity. As a result, 17 top genes
were identified, including mTOR, PRF1, FGFR3, TLR9, CLTC,
GJA1, HLA-DRB1, HSPA8, EGF, LRP1, MYO7A, ENPP1, PSAP, NBR1,
AP3B1, DNAM2, and RPTOR, which play roles in the cellular
response to starvation, autophagy, endocytosis pathways,
and cancer development. Furthermore, the selected gene
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Figure 4. STRING database generating the PPI network using selected and training protein names as queries separated into four k-means clusters.

set PPI analysis revealed four main clusters highly associ-
ated with cancer development. Finally, six rarely evaluated
genes, PRF1, TLR9, CLTC, GJA1, RPTOR, and AP3B1, were identi-
fied with the leading potential roles in breast cancer devel-
opment and drug resistance.

The mammalian cells target rapamycin (mTOR) to reg-
ulate eukaryotic cell metabolism and growth with envi-
ronmental inputs, such as growth factors and nutrients
(34). mTOR directly or indirectly regulates the phosphory-
lation of at least 800 proteins. The mTOR pathway regu-
lates the translation of proteins associated with drug resis-
tance, controlling cell cycle progression and apoptosis and
thereby contributing to cancer cell drug resistance (35). RP-
TOR regulatory associated protein of mTOR complex 1 op-
erates as a scaffold for recruiting mTORC1 substrates and

is an essential procedure for mTOR activating (36). The RP-
TOR upregulation has a role in the resistance of renal can-
cer cells to PI3K-mTOR inhibition (37). The previous experi-
mental study showed that RPTOR mRNA expression corre-
lates with higher breast cancer tumor grade (38). Another
study suggested that RPTOR mediates, at least partially, re-
sistance to EGFR inhibition in triple-negative breast can-
cer cells (39). mTOR-induced cancer drug resistance to au-
tophagy defects opens a therapeutic window for treating
otherwise therapy-refractory tumor patients (40). Lyso-
somes are essential components contributing to chemore-
sistance by the mTORC1 axis and are implicated in develop-
ing drug resistance (41). Interestingly, our results demon-
strated that RPTOR is the hub gene involved in lysosome
function in breast cancer biology.

8 Iran J Pharm Res. 2022; 21(1):e130342.
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Figure 5. The constructed PPI network by Cytoscape. Hub genes were identified by the cytoHubba plugin. A, Hub genes were chosen based on the betweenness method; B, Hub
genes were chosen based on the Degree method; C, Hub genes were chosen based on the Clustering coefficient method; D, Hub genes were chosen based on the Eccentricity
method.

Mutations in the PRF1 gene are associated with various
human diseases and across 19 different cancer types. Per-
forin is encoded by PRF1 and forms membrane pores that
allow the release of granzymes and subsequent cytolysis of
target cells. Perforin plays an essential role in host immu-
nity and could be an attractive therapeutic target in cancer
(42, 43).

Under hypoxic conditions, several chemical sub-
stances are released, activating toll-like receptors (TLRs),
thus inducing various pathophysiological responses,
like tumorigenesis. TLR9 leads to the activation of NF-κB
and mitogen-activated protein kinases (MAPKs), which

then influence the release of NO and pro-inflammatory
cytokines. The most potent activator of angiogenesis
in tumors is hypoxia. Activated TLR9 upregulates the
inhibitors of apoptosis, such as Bcl-xL, cFLIP, and surviving,
reducing the chemosensitivity of cancer cells (44, 45). In
a study, TLR9 mRNA and protein expression were higher
in HR-negative than in HR-positive breast cancers. In addi-
tion, TLR9 expression increases with rising grades in both
breast cancer and ovarian neoplasm. TLR9 is also directly
associated with poor differentiation of breast and ovarian
cancers. Overexpression of TLR9 through the stimulation
of hypo-methylated DNA contributes to the migration

Iran J Pharm Res. 2022; 21(1):e130342. 9
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of cancer cell lines (46). TLR9 may be a novel target for
chemosensitizing cancer cells.

The clathrin heavy chain (CLTC) gene has high expres-
sion in all cells and plays a pivotal role in membrane traf-
ficking and mitosis. As an oncogene with different expres-
sion levels in breast cancer, its elevation in urinary sam-
ples of patients could be a biomarker of breast cancer. It
could distinguish breast cancer from the other types of
cancer with a 94.3% accuracy (47). Also, the mammalian
AP3 adapter complex has been shown to associate with
clathrinid through the interaction of the appendage do-
main of the AP3B1 protein with the amino-terminal do-
main of CLTC (48). Our computational and systems biology
analysis revealed CLTC and Ap3B1 as hub lysosomal genes
highly involved in breast cancer.

Researchers indicated that connexins, consisting
of Cannexin 43 (GJA1) and GJB2, were overexpressed in
metastatic lesions of cancer patients and promoted can-
cer cell migration and adhesion. Connexin would be a
cancer biomarker for prognosis and therapeutic targets
for inhibiting metastasis and chemoresistance (49). The
functional analyses demonstrated the GJA1 gene encoding
Connexin 43 (Cx43) and the importance of Cx43 in drug
resistance. An experimental study showed highly upregu-
lated GJA1 in cisplatin-resistant ovarian cancer cells. (50).
Finally, we focused on the relationship between lysosomal
genes and drug resistance in breast cancer treatment
and introduced the top six hub genes. Although previous
studies have shown the role of some genes introduced
in cancer drug resistance, our research emphasizes the
critical role of all these genes in breast cancer chemoresis-
tance. Since these genes play a pivotal role in the structure
and function of lysosomes, targeting them can effectively
overcome drug resistance. However, the current research
results should be further validated through in vitro and in
vivo studies to confirm the critical role of these genes in
drug-resistant breast cancer.

5.1. Conclusions
In summary, growing evidence implicates the essential

roles of lysosomes in drug resistance of human cancers.
The present work focused on all functional and structural
lysosome-related genes associated with breast cancer biol-
ogy. Our approach found the top six essential lysosome
hub genes, including PRF1, TLR9, CLTC, GJA1, AP3B1, and RP-
TOR, which could be significantly involved in drug resis-
tance. Lysosome targeting in cancer is a promising strat-
egy to overcome chemoresistance and could lead to inno-
vative therapeutic approaches.
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