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Abstract

Background: Overexpression of programmed cell death ligand 1 (PD-L1) in tumor cells and subsequent interaction with the pro-
grammed cell death protein 1 (PD-1) in tumor-infiltrating T cells cause an immune evasion of the tumor from cytotoxic T-cells. There-
fore, inhibiting such interaction by a recombinant PD-1 can hinder tumor growth and extend the survival rate.
Methods: The mouse extracellular domain of PD-1 (mPD-1) was expressed in E. coli BL21 (DE3) strain and purified using nickel affinity
chromatography. The binding ability of the purified protein to human PD-L1 was studied using ELISA. Finally, the tumor-bearing
mice were used to evaluate the potential antitumor effect.
Results: The recombinant mPD-1 showed a significant binding capacity to human PD-L1 at the molecular level. The tumor size sig-
nificantly decreased in the tumor-bearing mice after the intra-tumoral injections of mPD-1. Moreover, the survival rate increased
significantly after eight weeks of monitoring. The histopathology revealed the necrosis in the tumor tissue of the control group
compared to the mPD-1 received mice.
Conclusions: Our outcomes propose that interaction blockade between PD-1 and PD-L1 is a promising approach for targeted tumor
therapy.
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1. Background

For evading the host immune response, malignant
tumors have several mechanisms that lead to T-cell defi-
ciency in the distinction of the tumor, including muta-
tions in genes required for antigen processing, impaired
antigen presentation on the tumor surface, and produc-
tion of immunosuppressive proteins that suppress T-cell
activation (1-3). Targeting vital parts of the immune check-
point pathway leads to substantial outcomes in relevant
clinical studies for unleashing reactive T lymphocytes
against tumors (4). This approach mainly aims to restitute
the T-cell responses to fight tumor cells.

Numerous investigations have been focused on pro-
grammed cell death 1 (PD-1) and its ligands (PD-L1 and PD-
L2) interaction as one of the main mechanisms tumor cells
employed to evade the host immune responses (5). PD-1 is
a cell surface receptor expressed on dendritic cells, mono-
cytes, natural killer cells, activated T-cells, and B-cells. It be-

longs to the CD28/CTLA-4 family, which starts an inhibitory
signal in T-cell activation as a costimulatory molecule (6).
PD-L1 (B7-H1) and PD-L2 (B7-DC), the cell-surface glycopro-
teins belonging to the B7 family, have been recognized
as the main ligands by PD-1 (7). After T-cell activation by
antigen-presenting cells, PD-1 expression is also induced on
the T-cell surface. The PD-1/PD-L1 interaction restricts T-cell
proliferation and survival, inhibits effector function like
cytokine release and cytotoxicity, prompts tumor-specific
T cells apoptosis, increases the resistance of tumor cells to
cytotoxic T cells attack, and stimulates the Foxp3+ regula-
tory T cells differentiation from CD4+ T cells (8-10). Interac-
tion of PD-1 on tumor-infiltrating T lymphocytes with the
tumor-expressed PD-L1 also results in an impaired function
of T-cells, elucidating the failure of the immune system to
develop an effective reaction against cancer (11). Suppres-
sion of this pathway has displayed enhancements in T cell
activation and survival of cancer patients (12). According to
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these observations, understanding the physiology of the
PD-1/PD-L1 interaction and inhibition of this interaction via
checkpoint inhibitors (CPIs) have been considered promis-
ing strategies for cancer therapy.

Multiple studies have elucidated that raised soluble
PD-L1 concentration in the patient’s plasma has been asso-
ciated with the worst prognosis. On the other hand, any
post-therapeutic elevation of PD-L1 in the plasma has been
associated with an increase in the survival rate for numer-
ous cancers. Local delivery of the PD-1 gene to the tumor
microenvironment revealed a rise in the tumor-specific
CD8+ T cell immunity and a reduction in tumor growth
(13). Moreover, it can diminish the inhibitory effect of solu-
ble PD-L1 and improve immunotherapies based on mono-
clonal antibodies (14). Thus, elevating the soluble PD-1 level
systemically or locally could have a promising perspective
for cancer immunotherapy.

To evaluate the local effect of PD-1 protein on the PD-
1/PD-L1 interaction in the tumorized-mice model, a recom-
binant murine PD-1 (mPD-1) was prepared. The outcome re-
vealed a PD-1/PD-L1 pathway suppression by recombinant
mPD-1 in terms of tumor size and survival rate in the mice
model.

2. Methods

2.1. Animal and Cell

The animal study was conducted according to the eth-
ical standards of the declaration of Helsinki. C57BL/6 fe-
male mice (4 - 6 weeks) were obtained from the Pasteur In-
stitute of Iran. The mice were kept for one week before the
experiment and fed with free access to water and food un-
der standard conditions. TC-1 cells were cultured in high
glucose Dulbecco’s Modified Eagle Medium supplemented
with 2 mM glutamine, 10 % fetal bovine serum, 20 mg/mL
streptomycin, and 20 U/mL penicillin under 5% CO2 at 37°C.

2.2. Cloning, Expression, and Purification of mPD-1

The extracellular mPD-1 coding sequence (residues 21-
169) was synthesized and cloned into a pET-26b (+) vec-
tor using NdeI and XhoI restriction sites. The recombi-
nant plasmid was transformed into E. coli BL21 (DE3) strain
using the heat shock method. For expression, first, a re-
combinant colony was cultured in an LB medium con-
taining 50 mg/mL kanamycin at 37ºC/200 rpm. For opti-
mization, two different concentrations of isopropyl β- d-1-
thiogalactopyranoside (IPTG), when the OD600nm reached
0.6, was added. In addition, two harvesting times (5 h and
overnight), and expression temperature (28°C and 37°C),
were tested. By optimization, the best protocol for the ex-
pression of the protein was found and used for the culture

of bacteria within recombinant. After incubation, the cells
were centrifuged (8,000 g for 20 min at 4°C) and washed
twice in buffer A (8 M urea, 10 mM Tris, 100 mM NaH2PO4,
pH 8.0). The pellets were lysed using sonication and cen-
trifuged for 4,000 g / 30 min at 4°C. The supernatant was
then applied on nickel affinity column chromatography at
a flow rate of 2 ml/min. After washing the column with
buffer B (8 M urea,100 mM NaH2PO4, 20 mM imidazole,
and 10 mM Tris, pH 6.3), the non-specific proteins were re-
moved. The protein was then eluted with 500 mM imida-
zole in PBS (pH 7) and refolded using dialysis (12 kDa cutoff)
in buffer C (100 mM EDTA in PBS, pH 7.4) after 16 h at 4°C. The
protein expression was evaluated by 12% gel SDS-PAGE fol-
lowed by western blot using rabbit anti-His and goat HRP-
conjugated anti-rabbit IgG as primary and secondary anti-
bodies, respectively.

2.3. ELISA

The 0.1 µg per well of mPD-1 recombinant protein was
coated on plates and incubated for 1h at room tempera-
ture. After three times washing with PBS, the wells were
blocked with 4% skim milk overnight at 4°C. Then, 1 µg
of the hPD-L1 was added to the wells and incubated for 2
h at room temperature. Next, 100 µL rabbit anti-hPD-L1
(1:2000) and 100 µL goat anti-rabbit HRP were added to
the wells after a one-hour interval and three times washing
with PBS. The wells were screened by adding 100µL 3,3′,5,5′-
tetramethylbenzidine (TMB) solution. Finally, the enzy-
matic reaction was stopped using 2N sulfuric acid, and the
absorbance was measured using a spectrometer at a wave-
length of 450 nm.

2.4. In Vivo Tumor Inhibition

C57BL/6 female mice (4 - 6 weeks) were subcutaneously
injected with approximately 3 × 106 TC-1 cells. These mice
were utilized as stock. After the tumor establishment,
the stock mice were sacrificed, and the tumor was dis-
sected into 3 mm3 pieces and transplanted into the 10 mice.
The control group (n = 5) received 150 µL PBS, while the
test group (n = 5) received 100 µg mPD-1 subcutaneously
around the tumor at one-week intervals. The treatment
was continued for eight weeks, and the tumor size and
mortality were monitored. The tumor size was measured
once a week using a caliper and the following equation (15);
V = L×W2 ×0.52, where V is the volume, L is the length, and
W is the width of the tumor.

A histological investigation was also employed to eval-
uate tumor tissue necrosis. The paraffin sections of tumor
tissues were deparaffinized, rehydrated, and stained with
hematoxylin and eosin for histopathology.
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Figure 1. Schematic figure of the extracellular domain of mpd-1 cloned in pET-26b(+) with double digestion by the NdeI and XhoI restriction enzyme.

2.5. Statistical Analysis

A two-tailed unpaired t-test was used for statistical
analysis, and a p-value less than 0.05 was considered a
significant difference between the groups. Curve fittings
and regressions were conducted using GraphPad Prism 7
(GraphPad Software, Inc., La Jolla, CA, USA).

3. Results

3.1. mPD-1 Recombinant Expression

The mPD-1 coding sequence was cloned into pET-26b
(+) expression vector using XhoI and NdeI cloning sites
(Figure 1) and transformed into E. coli BL21 (DE3). Enzy-
matic digestion was conducted to confirm the cloning pro-
cedure (Figure 2). The expression was optimized based
on IPTG concentration, temperature, and incubation time
(Figure 3). The best expression occurred after 5 h by adding
0.3 mM IPTG at 28ºC. Recombinant mPD-1 was purified by
nickel affinity chromatography under denaturing condi-
tions. After purification, SDS-PAGE and western blot re-
vealed a band at 16.9 kDa, which matches the size of recom-
binant mPD-1 (Figure 4). The expression yield was about 2
mg/L.

3.2. Binding of Recombinant mPD-1 to Human PD-L1

The binding potency of recombinant mPD-1 with hu-
man PD-L1 was assessed using ELISA. The outcomes dis-
played that the recombinant mPD-1 could bind to human
PD-L1 (Figure 5).

3.3. Tumor Implantation and In Vivo Study

Tumorized C57BL/6 mice treated with mPD-1 for eight
weeks at one-week intervals showed a decline in tumor size
when compared to the PBS-received group (Figure 6A). Af-
ter eight weeks, the mean tumor volume in the control
and test groups was 938.6 and 281.23 mm3, respectively,
which indicated the efficiency of mPD-1 on tumor growth
suppression. From weeks 5 to 8, the difference in the tu-
mor size was statistically significant (P < 0.05). The tumor
size in two mice was randomly displayed for the control
and test groups in Figure 6B. Mice in the treatment group

Figure 2. Confirmational digestion. pET26b plasmid containing mPD-1 extracellular
domain gene digested with NdeI and XhoI.

showed a higher survival rate than those in the control
group (Figure 6C). From the 4th week, the mice in the con-
trol group began to die, and at the end of the 8th week, all
mice died, whereas only one mouse died in the test group.
Furthermore, hematoxylin and eosin staining exhibited
higher necrosis within the tumor in the control group (Fig-
ure 7A) compared to the test group (Figure 7B).
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Figure 3. Protein expression optimization. M, protein marker; C-, before IPTG induction; 1, 0.3 mM IPTG, 28°C, overnight incubation; 2, 0.3 mM IPTG, 28°C, 5h incubation; 3, 1
mM IPTG, 28°C, 5 h incubation; 4, 1 mM IPTG, 28°C, overnight incubation; 5, 0.3 mM IPTG, 37°C, overnight incubation; 6, 1 mM IPTG, 37°C, overnight incubation.

4. Discussion

PD-1 consists of a cytoplasmic domain that binds to the
scaffolding and signaling molecules, a transmembrane do-
main, and a single extracellular domain (16). In the interac-
tion of PD-1 with homogeneous ligands, PD-L1 (B7-H1) and
PD-L2 (B7-DC), the extracellular domain plays a vital role
(17). Myeloid cells, B lymphocytes, and activated T mainly
express PD-1 molecules. The interaction of PD-1/PD-L1 or PD-
1/PD-L2 prevents B- and T-cell proliferation and inhibits the
secretion of cytokines (18). Therefore, targeting the PD-
1/PD-1 ligand interaction is considered a promising strat-
egy for generating immunotherapy against various malig-
nancies and some chronic virus infections.

The FDA approved three anti-PD-1 antibodies, including
Cemiplimab, used for metastatic cutaneous squamous cell
carcinoma treatment, Nivolumab, and Pembrolizumab,
both used for metastatic melanoma and non-small cell
lung cancer (19). Despite their remarkable clinical out-

comes through suppression of the PD-1/PD-L1 interaction,
the application of monoclonal antibodies is currently re-
stricted due to improper pharmacokinetics, poor tissue
penetration, heterogeneous intra-tumoral distribution,
and high cost of production and administration. Some
of these advantages are generally attributed to their large
size (20-22). Moreover, antibody therapy is accompanied
by immune-related adverse events (irAEs) due to unwanted
interactions between an antibody and immune system
components (23). Therefore, instead of using antibodies,
PD-1 or PDL-1 molecules can inhibit them and obtain thera-
peutic effects to inhibit cancer.

Although the mouse and human PD-L1 proteins have
less than 70% sequence similarity, the extracellular IgV do-
mains of both proteins are 100% identical in the amino
acid sequence (24). This proposes that the mouse extracel-
lular domain of PD-1 may interact with both mouse and hu-
man PD-L1. Here, we have elucidated that the extracellular
domain of recombinant mouse PD-1 can interacts with hu-
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Figure 4. SDS-PAGE (A) and western blot (B) analysis of purified mPD-1. M, protein marker; 1-3, purified mPD-1 and 4, western blot analysis of purified protein with anti His taq
antibody.

man PD-L1 in vitro. This is appropriate for functional inves-
tigations of mPD-1 in the mouse model, which can be ex-
tended to human clinical studies. Regarding the PD-1 in-
hibition by monoclonal antibodies that could strongly im-
prove the therapeutic efficiency of tumors, in this study,
we explored whether the recombinant mPD-1 protein has a
similar effect (25). The outcomes exhibited that the tumor
growth was efficiently suppressed in the mice treated with
mPD-1 recombinant protein.

PD-1 and its ligand interactions, regulation, and ex-

pression pattern enrich our knowledge about how co-
inhibitory and costimulatory molecules have been em-
ployed via cancer cells for immune evasion. Recently,
the soluble forms of PD-L1 (sPD-L1) and PD-1 (sPD-1) have
been detected in the plasma of cancer patients, and subse-
quently, several studies have been conducted (26, 27). Gen-
erally, these studies have been focused on prognostic and
predictive values. Numerous investigations have shown
that raised expression of sPD-L1 and sPD-1 may predict the
worst prognosis in cancer patients (28, 29). Soluble forms
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Figure 5. Binding analysis of mPD-1 to human PD-L1 using ELISA (* P-value = 0.002).

may be expressed to preserve immune evasion and periph-
eral self-tolerance (30). An increase in the expression of
sPD-L1 or sPD-1 can disrupt this balance and improve T-cell
activation by interrupting the PD-1/PD-L1 interaction. These
kinds of effects are detected in clinical investigations. The
level of each molecule can decrease or increase via ther-
apeutic intervention. For example, a rise in sPD-1 expres-
sion at the post-therapeutic stage is related to enhanced
results. Moreover, an increase in sPD-L1 level is linked with
the worst consequence and reduced efficiency of anti-PD-
1 monoclonal antibodies (31, 32). However, the increased
level of sPD-1 was related to the enhanced efficiency of
Nivolumab as an anti-PD-1 monoclonal antibody (33). Since
the interaction between sPD-1 and its ligands can disrupt
the PD-1/PD-L1 pathway, sPD-1 may be employed as a ther-
apeutic approach for disrupting PD-L1 interactions in the
same style as monoclonal antibodies. Several in vitro and
in vivo investigations have elucidated the effective stim-
ulation of antitumor immunity and reduction in cancer
growth that occurred with an elevated sPD-1 level in the tu-
mor microenvironment (13).

Similar to our study, in 2008, Zhang et al. showed that
the administration of PD-1 protein could prevent tumor
growth in mouse models. In that study, human PD-1 pro-
tein was used, while we used the mouse type of this pro-
tein. The results of Zhang’s study are in high agreement
with the results of the present study and emphasize the

ability of PD-1 protein as a tumor therapeutic candidate
(34). Mouse PD-1 shares 64% sequence identity with its hu-
man ortholog, and mouse PD-1 binds in vitro to both hu-
man and mouse PD-L1 (35). The main obstacle in apprais-
ing anti-PD-1 therapeutics in syngeneic mouse tumor mod-
els is the low homology (61% identity) among the extra-
cellular domains of mouse and human PD-1 (36). Thus,
mouse PD-1 can be a promising candidate for studying
PD-1 inter-species differences in humans and mice. Inter-
species investigations propose an incompatibility among
some human and mouse proteins (37). It is unidenti-
fied whether inter-species differences in the PD-L1 struc-
ture and sequence would allow for mouse-human cross-
applications (24). Recently, the recombinant mouse PD-
1–human Fc chimera fusion protein has been employed to
study the PD-1 blockade effect on the primary and recall an-
tibody responses and cross-reaction (38).

On the other hand, prior investigations have revealed
that glycosylation is not essential for PD-1 binding activity
(39). Our outcomes also showed that bacterially expressed
recombinant mPD-1 protein could interact with PD-L1 in
vitro, and this interaction can block the PD-1/PD-L1 pathway
in vivo. This bacterial expression system is available and
cheap and can be utilized as a low-cost medication for can-
cer therapy (40).

4.1. Conclusions

The effect of PD-1 protein was shown in inhibiting can-
cerous mass in tumor-bearing mice. Considering that
mouse PD-1 protein can identify human PDL-1 protein, the
results can be generalized to humans. Our study suggests
that the recombinant mPD-1 protein can be a potential can-
didate for tumor therapy.
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Figure 6. Inhibitory effect of tumor growth by recombinant mPD1 in mice model. A, Tumor volume change within eight weeks of tumor challenge (the difference in the 5th
to 8th weeks was statistically significant (P < 0.05)). B, Tumor mass in mice receiving recombinant mPD-1 (above) and PBS (below). C, The mice survival rate after the tumor
challenge in the test and control groups.

Figure 7. Hematoxylin and eosin staining from tumor mass which revealing more tumor necrosis in the control group (A) compared to the test group (B).
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