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Abstract

Background: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are 2 common liver diseases that
currently lack effective treatment options.
Objectives: This study aimed to investigate the effect of lipopolysaccharide (LPS)-stimulated adipose-derived stem cells (ADSCs) on
NAFLD treatment in an animalmodel.
Methods:MaleWistar rats were fed a high-fat diet (HFD) to induce NAFLD for 7 weeks. The rats were then categorized into 3 groups:
Mesenchymal stem cell (MSC), MSC + LPS, and fenofibrate (FENO) groups. Liver and bodyweightweremeasured, and the expression
of genes involved in fatty acid biosynthesis, β-oxidation, and inflammatory responses was assessed.
Results: Lipopolysaccharide-stimulated ADSCs were more effective in regulating liver and body weight gain and reducing liver
triglyceride (TG) levels compared to the other groups. Treatment with LPS-stimulated ADSCs effectively corrected liver enzymes,
includingalanineaminotransferase (ALT) andaspartateaminotransferase (AST), and lipid factors, including low-density lipoprotein
cholesterol (LDL-C) andhigh-density lipoprotein cholesterol (HDL-C) values, better than treatmentwithboth FENOandMSCs. ADSCs
+ LPS treatment significantly decreased transforming growth factor β (TGF-β) and genes associated with inflammatory responses.
Additionally, there was a significant reduction in reactive oxygen species (ROS) levels in the rats treated with ADSCs + LPS.
Conclusions: Lipopolysaccharide-stimulated ADSCs showed potential in alleviating NAFLD by reducing inflammatory genes and
ROS levels in HFD rats, demonstrating better results than treatment with ADSCs and FENO groups alone.
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1. Background

Nonalcoholic fatty liver disease (NAFLD) is a prevalent,
long-standing liver injury estimated toaffect 20% to 30% of
the population in Europe and theUSA (1, 2). However, there
is currently no effective treatment for NAFLD, increasing
the risk of developing nonalcoholic steatohepatitis
(NASH), cirrhosis, and liver cancer (3). The onset of
NAFLD is associated with genetic and environmental
factors, such as being overweight, having high blood
pressure, aging, and having an elevated triglyceride
level (4). Nonalcoholic fatty liver disease can arise from
liver insulin resistance, lipotoxicity, impaired glucose
homeostasis, accumulation of reactive oxygen species

(ROS), and chronic inflammation, playing a crucial role in
its progression (5, 6). As NAFLD worsens, it may progress
to NASH, which is characterized by an increase in the
secretion of cytokines contributing to inflammatory
responses, such as IL-6, IL-1β, and tumor necrosis factor α
(TNF-α) (7). Tumor necrosis factor α, a pro-inflammatory
mediator, is released from adipose tissue and liver cells,
such as hepatocytes and Kupffer cells, and promotes
glucose uptake by repressing glucose transporter type 4
(GLUT4) expression. It also stimulates lipolysis, leading to
an increase in free fatty acids (FFAs) by suppressing the
expression of adipocyte genes (8, 9). Furthermore, NAFLD
canworsen and develop into hepatic fibrosis by activating
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the Kupffer cells. Given the lack of effective treatments
for NAFLD and NASH, there is a pressing need to develop
new therapeutic strategies (10). The complex role of IL-6
in liver disease is associated with increased susceptibility
to liver damage, stimulation of hepatocyte apoptosis, and
promotion of insulin resistance, thereby contributing
to the development of liver fibrosis (11). In addition,
upstream mediators, such as transforming growth
factor β (TGF-β), IL-6, and IL-1β (which are dependent
on TNF-α), are implicated in the development of liver
fibrosis (12, 13). The imbalance of these factors may lead
to the development of hepatic fibrosis. Transforming
growth factor β1 is the primary contributing factor in the
development of hepatic fibrosis, as it activates hepatic
stellate cells and promotes the production of extracellular
matrix proteins (14, 15).

The role of peroxisome proliferator-activated
receptorsalphaandgamma(PPARα/γ) in lipidandglucose
metabolismmakethempotential targets for the treatment
of NAFLD (16). Peroxisome proliferator-activated receptors
alpha is a crucial transcription factor that regulates genes
involved in fatty acid β-oxidation in the peroxisome and
mitochondria, thus playing a role in hyperlipidemia.
One important gene affected by PPARα is carnitine
palmitoyltransferase I (CPT-1α), which is involved in
the pathogenesis of NAFLD. On the other hand, PPARγ
promotes adipogenesis and enhances the uptake of fatty
acids into adipocytes while overexpressing genes related
to fatty acidmobilization (17, 18). However, because PPARγ
stimulates fatty acid and glucose accumulation in cells
rather than consumption, it is necessary to target the
activity of these 2 factors together to treat metabolic
diseases such as fatty liver (19, 20).

The sterol regulatory element binding protein-1c
(SREBP-1c) is a key player in the metabolism of FFAs,
induction of lipogenesis (by regulating several lipogenic
genes), and inflammatory responses (21). Evidence
suggests that SREBP-1c is an important factor in
upregulating the expression of its downstream genes,
such as fatty acid synthase (FAS) and acetyl-CoA
carboxylase (ACC), contributing to the accumulation
of FFAs in the liver (22).

Fenofibrate (FENO) is a first-line medication
commonly used to lower triglyceride levels. It acts as
a nuclear receptor agonist of PPARα, contributing to
the regulation of carbohydrate and lipid metabolism,
induction of lipoprotein lipase activity, and clearance of
lipoprotein remnants. However, it may also increase the
excretion of cholesterol from bile, which can increase the
risk of developing gallstones (23).

Mesenchymal stem cells (MSCs) are long-lived
cells with self-renewal capability, and they represent

an optimistic treatment strategy for NAFLD (24).
Mesenchymal stem cells can be obtained from a variety
of sources, including bone marrow, adipose tissue, and
umbilical cord. Among them, adipose-derived stem
cells (ADSCs) have gained attention for their potential
to directly or indirectly repair various tissues (25).
Adipose-derived stem cells can also improve NAFLD by
enhancing the expression of genes involved in fatty
acid oxidation while suppressing genes involved in
adipogenesis, thus helping to alleviate both NAFLD and
metabolic syndrome (26, 27).

Lipopolysaccharide (LPS), a component of
gram-negative bacterial cell walls, is likely to stimulate
cells that contribute to inflammatory responses (such as
macrophages and neutrophils) and pro-inflammatory
factors (such as IL-1β, IL-6, and TNF-α) through its
immune receptor (toll-like receptor 4 (TLR4)) (28). Recent
studies suggest that LPS-stimulated MSCs may release
anti-inflammatory cytokines during inflammation (29).

2. Objectives

Due to the high prevalence of NAFLD worldwide and
the absence of effective treatments, finding a remedy for
this disease is crucial. To address this, we conducted a
study to investigate the effects of LPS-stimulated MSCs on
the histological and metabolic characteristics of Wistar
rats with fatty livers induced by a high-fat diet (HFD).
Additionally, we examined the molecular mechanisms
underlying the actions of LPS-stimulated MSCs by
evaluating the expression of lipid regulatory-related
genes.

3. Methods

3.1. Preparation of the High-Fat Emulsion

The adoption of a high-fat emulsion diet-induced
NASH, and its composition are detailed in Table 1. The
emulsion was prepared according to the description
provided by Zou et al. (30). The emulsion was composed
of 75% fat, 9% carbohydrates, and 14% whole milk powder
as a source of protein to provide energy. The emulsionwas
kept at 4°C and thoroughly mixed and heated in a water
bath at 42°C daily prior to use.

3.2. Isolation and Cultivation of ADSCs

The inguinal adipose tissues of 7-week-old rats were
isolated, and the blood vessels and lymph nodes were
removed. The adipose tissues were then washed with
phosphate-buffered saline (PBS) twice, chopped into small
pieces, and transferred to a centrifuge tube (50 mL)
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Table 1. TheMacronutrientCompositionandCaloricContentof aHigh-FatEmulsion

High-Fat Emulsion Components Amount

Corn oil (g) 400

Saccharose (g) 150

Totalmilk powder (g) 80

Cholesterol (g) 100

Sodiumdeoxycholate (g) 10

Tween 80 (g) 36.4

Propylene glycol (g) 31.1

Vitaminmixture (g) 2.5

Cooking salt (g) 10

Mineralmixture (g) 1.5

Distilledwater (mL) 300

Total energy (kcal/L) 4342

containing 1% type I collagenase. The tubeswere incubated
at 37°C for 60 minutes, after which DMEM-low glucose
medium supplemented with 10% FBS was added. The
digested tissues were centrifuged for 15 minutes at 1500
rpm, and the resulting cells were cultured in culture flasks
(25 cm) (25).

3.3. Induction of ADSCs with LPS

To investigate the effect of LPS on the differentiation
of ADSCs, different dilutions of LPS were prepared by
dissolving them in serum-free DMEM. Adipose-derived
stemcellswere thenpretreatedwithLPSat a concentration
of 1 µg/mL (31). After removing LPS, the cells were cultured
in either serum-free or inducing medium to perform
differentiation assays and evaluate their differentiation
potential.

3.4. DiFFerentiation Assays of ADSCs

Adipose-derived stem cells from passages 3 - 5 were
used for all experiments. Osteogenic and adipogenic
differentiation of ADSCs was induced by culturing
them in BN 0012.4 and BN 0012.5 media, respectively,
following the manufacturer’s instructions (Bioidea,
Tehran, Iran). For osteogenic differentiation, ADSCs were
seeded at a density of 20 000 cells/mL and cultured
in the osteogenic medium for 3 weeks. Similarly, for
adipogenesis differentiation, ADSCs were cultured in
the adipogenic medium for 21 days. The cells were then
observed and analyzed using a confocal microscope.

3.5. Ascertaining the ADSC Surface Markers

For flow cytometry analysis, ADSCs from the third
passage were trypsinized with 0.025% trypsin and

0.02% EDTA, washed twice with PBS, and then stained
with fluorochrome-conjugated monoclonal antibodies
following the manufacturer’s protocol. Specifically,
FITC-conjugated mouse anti-human antibodies were
used for CD34 and CD45, while PE-conjugated mouse
anti-human antibodies were used for CD44 and CD105 (all
antibodies were obtained from eBioscience, San Diego, CA,
USA). The stained cells were analyzed using a BD FACSLyric
instrument (Becton Dickinson, San Diego, CA, USA), and
approximately 20 000 events were recorded for each
sample. The resulting data were analyzed using FlowJo
software.

3.6. Animals and Experimental Design

This animal-based experiment was conducted
using 200- to 220-g adult male rats obtained from the
Experimental Animal Center at Ahvaz Jundishapur
University of Medical Sciences. The rats were placed in
quarantine for 1 week to acclimatize to the environment
before the commencement of experiments. During
the experiment, the rats were kept in open cages in a
disinfected environment with 25 ± 3°C temperature and
55% ± 8% humidity and a 12-hour light-dark cycle.

The Ethics Committee of Ahvaz JundishapurUniversity
of Medical Sciences approved the experiments and
confirmed that they were conducted in accordance with
the established regulations for animal research. Initially,
40 rats were randomly selected and divided into 2 groups:
Thenormal controlgroup (n=8)and thehigh-fat emulsion
group (n = 32). Throughout the experiment, all animals
followed a standard diet.

The high-fat emulsion group received a daily oral
gavage of high-fat emulsion (10 mL/kg) and had access to
drinkingwater containing 18% saccharose to induceNASH,
and thenormal control group received0.5% CMC solution.
After 7 weeks, 2 rats from the normal control group and
4 rats from the high-fat emulsion group were randomly
selected and sacrificed to evaluate the progression
of NAFLD/NASH. Once a successful high-fat-induced
model was confirmed by analyzing their livers in the
pathology laboratory, the pharmacological treatments
were administered for 6 weeks, starting in the eighth
week. The animals that were fed high-fat emulsion were
then divided into 4 groups: (1) the high-fat emulsion
group (n = 7) that received only high-fat emulsion; (2)
the FENO group (n = 7) that received high-fat emulsion
+ FENO (100 mg/kg of body weight); (3) the transduced
MSC group (n = 7) that received high-fat emulsion + 1.5
million transduced MSCs dissolved in 0.1- to 0.2-mL PBS
injected intraperitoneally (IP); and (4) the LPS-stimulated
MSC with high-fat emulsion (MSC + LPS) group (n = 7)
that received high-fat emulsion + LPS-stimulated MSCs
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(100 mg/kg of body weight). After treatment, the rats
were fasted for 24 hours and injected with a high dose
of ketamine-xylazine. Blood samples were collected, and
their livers were washed with normal saline and weighed
to calculate the liver index (liver weight/body weight ×
100). Small sections of liver tissue were frozen in liquid
nitrogen (-180°C) for gene expression analysis, while
larger pieces were submerged in a 10% formalin solution
for histopathological investigation.

3.7. Biochemical Measurements

Liver enzymes (including alanine aminotransferase
(ALT) and aspartate aminotransferase (AST)), high-density
lipoprotein cholesterol (HDL-C), and low-density
lipoprotein cholesterol (LDL-C) lipid profileswere assessed
using the Roche 6000 autoanalyzer.

3.8. Gene Expression Investigation

The expression of genes, such as IL-6, IL-1β, TNF-α,
TGF-β, and monocyte chemoattractant protein 1 (MCP-1),
was examined using real-time polymerase chain reaction
(PCR). Total RNA was extracted from frozen liver tissue
using RNA kits (Yekta Tajhiz, Iran) following the protocol.
Reverse transcription was carried out using PrimeScript
RT reagent kits (Amplicon, USA). Real-time PCR was
performed using an ABI Applied Biosystems’ QuantStudio
3 Real-Time PCR System. The mRNA expression levels
were normalized to the expression of glyceraldehyde
3-phosphate dehydrogenase (GAPDH) as an internal
standard. Relative quantification was performed using
Applied Biosystems software. The primer sequences were
designed and then bought by SinaClon Company in Iran
(Table 2).

3.9. Histopathological Examination

Liver tissue samples were dehydrated using gradient
alcohol and embedded in paraffin wax. Hepatic steatosis
and inflammation were assessed by staining 6- to 7-µm
thick sections with hematoxylin and eosin (H&E) and
Masson trichrome staining methods. A skilled liver
pathologist examined the histopathological changes, and
the severity of steatosis, inflammation, and fibrosis was
evaluatedusing theNASHactivity score (NAS), as described
by Kleiner et al. and Liang et al. (32, 33).

3.10. Statistical Analysis

Statistical analysis was conducted using GraphPad
Prism version 9 (GraphPad Software, USA). A 1-way analysis
of variance (ANOVA) was used to compare the data,
followed by a Tukey post hoc test. P values less than 0.05
were considered statistically significant.

Table 2. Primer Sequences Used for Gene Expression Analysis: The Amount
of Each Gene Was Normalized to the Amount of Glyceraldehyde 3-Phosphate
Dehydrogenase

Gene Forward Primer Reverse Primer

SREBP-1c TCTTGACCGACATCGAGACAT CCTGTGTCTCCTGTCTCACC

FAS CCCGGACCCAGAATACCAAG TCTTCAAGTCACACGAGGTG

ACC TTAAGGGGTGAAGAGGGTGC CACTTCCAAAGACCTAGCC

PPARγ CGAGTGTGACGACAAGGTGA ACGCTTCTTCAATCTGTCTG

PPARα TGGTGCATTTGGGCGTATCT CACGAGCGCTAAGCTGTGA

CPT-1α AGCCCTGAGACAGACTCACA ATCACGAGGGTCCGTTTTCC

IL-1β TGCCACCTTTGACAGTGATG TGATGTGCTGCTGCGAGATT

IL-6 CCAGTTGCCTTCTTGGGACT TGCCATTGCACAACTCTTTC

TNF-α ATGGGCTCCCTCTCATCAGT GCTTGGTGGTTTGCTACGAC

NOX1 AGGCTCCAGACCTCCATTGA AAGGCAAGGCAGTTCCGAG

NOX2 GGCATTCGTAGTACAGCTCA ATTGGTCCTCGGGAGTCAGA

NOX4 TGGCCAACGAAGGGGTTAAA ACACAATCCTAGGCCAACA

TGF-β1 CTGCTGACCCCCACTGATAC GGGGCTGATCCCGTTGATT

GAPDH CTCTCTGCTCCTCCCTGTTC CGATACGGCCAAATCCGTTC

Abbreviations: SREBP-1c, sterol regulatory element binding protein-1c;
FAS, fatty acid synthase; ACC, acetyl-CoA carboxylase; PPARγ ,
peroxisome proliferator-activated receptors gamma; PPARα, peroxisome
proliferator-activated receptors alpha; CPT-1α, carnitine palmitoyltransferase
I; TNF-α, tumornecrosis factorα; NOX1,NADPHoxidase 1; TGF-β1, transforming
growth factorβ1; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

4. Results

4.1. Determination of the Phenotypes of ADSCs

To ascertain the phenotypes of ADSCs, an evaluation
was conducted in the laboratory to examine their
surface marker expression and differentiation potential,
according to the guidelines provided by the International
Stem Cell Association (34). Adipose-derived stem cells
were obtained from the third passage after isolation
from adipose tissue and displayed fibroblast-like cells
capable of adhering to flasks. Over the course of 21 days,
ADSCs were cultivated in an adipogenic differentiation
medium, and oil red O was used to induce adipogenic
differentiation, allowing for the visualization of lipid
droplet accumulation (Figure 1A). Additionally, the cells
were stained with alizarin red to determine if they had
differentiated into osteoblasts, which would be shown
by an increase in calcium deposition (Figure 1B). Flow
cytometry analysis was performed to determine the
specific surface markers of ADSCs, revealing that they
were positive for CD44 and CD105 (which are MSC surface
markers) and negative for CD45 and CD34 (which are
hematopoietic stem cells and monocyte-macrophage
markers), respectively (Figure 1C).
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Figure 1. Immunophenotyping and differentiation potentials of adipose-derived stem cells (ADSCs). A, oil red O staining of ADSCs, intracellular lipid accumulation-stained
bright red in adipocytes at day 21; B, alizarin red S staining of ADSCs, calciumdeposition-stained bright orange-red in osteocytes at day 21; C, flow cytometry analysis of surface
markers shows that ADSCs express CD44 and CD105––but CD34 and CD45 in a downregulatedmanner.

4.2. Making a Comparison of Body Weight and Liver Index
Following Treatment

Regarding Figure 2, it is noted that there were no
significant changes in body weights at the start of the
experiment. However, rats fed with a high-fat emulsion
for 12 weeks exhibited significant increase in body weight
(P < 0.001; Figure 2A), liver weight (P < 0.01; Figure 2B),
and liver triglyceride (P < 0.001, Figure 2C) compared to
the normal control group. Over the subsequent 6 weeks,
the increase in body weight was normalized by treatment
with FENO as standard therapy (P < 0.001; Figure 2A),
MSCs (P < 0.01; Figure 2A), and LPS-stimulated MSCs (P
< 0.001; Figure 2A). Moreover, liver weight and liver
triglyceridewere significantly reducedby FENO,MSCs, and
LPS-stimulatedMSCs (P< 0.01, 0.05, 0.01 and P< 0.01, 0.05,
0.05, respectively; Figure 2B and C).

4.3. The Effect of FENO and ADSC Treatment on Liver Enzymes
and Lipid Profiles in the NAFLDModel

In this study, the biomarkers of liver injury (such as
ALT and AST) and lipid factors (includingHDL-C and LDL-C)
were evaluated to assess the effects of various treatments
on NAFLD. The results showed that feeding rats a high-fat
emulsion led to significant increases in ALT (P < 0.001;
Figure 3A), AST (P < 0.0001; Figure 3B), and LDL-C (P < 0.01;
Figure 3D), while HDL-C levels decreased (P < 0.01; Figure
3C) compared to the normal control group. However,
treatment with FENO led to a decline in ALT (P < 0.01;
Figure 3A), AST (P < 0.001; Figure 3B), and LDL-C (P < 0.01;

Figure 3D), as well as an increase in HDL-C levels (P <

0.01; Figure 3C) compared to the high-fat emulsion group.
Similarly, treatment with MSCs resulted in a reduction
in serum levels of ALT (P < 0.05; Figure 3A), AST (P <

0.01; Figure 3B), and LDL-C (P < 0.05; Figure 3D) but
did not significantly modify the elevated level of HDL-C.
Furthermore, stimulationwith LPS enhanced the effects of
MSCtreatmentonthereductionof ALT (P< 0.01; Figure3A),
AST (P < 0.001; Figure 3B), and LDL-C (P < 0.01; Figure 3D),
as well as an increase in HDL-C levels (P < 0.05; Figure 3C).

4.4. Regulation of Lipid-Related Gene Expression Following
FENO and ADSC Treatment

The study found a significant increase in the
expression levels of hepatic mRNA genes involved in
fatty acid biosynthesis, namely SREBP-1c (P < 0.001; Figure
4A), FAS (P < 0.01; Figure 4B), and ACC (P < 0.001; Figure
4C), as well as genes with important roles in fatty acid
β-oxidation, such as PPARγ and CPT-1α (P < 0.001; Figure
4D and F) and PPARα (P < 0.0001; Figure 4E), following an
HFD in the high-fat emulsion group. The FENO treatment
resulted in a reduction in the levels of SREBP-1c, FAS,
and ACC (P < 0.01; Figure 4A, B, and C) and PPARγ (P <

0.001; Figure 4D) while inducing an upward trend in
the expression levels of PPARα (P < 0.001; Figure 4E)
and CPT-1α (P < 0.01; Figure 4F). The MSC treatment had
varying effects on the expression levels of these genes.
Specifically, the expression levels of SREBP-1c and ACCwere
not significantly reduced compared to FAS and PPARγ
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Figure 2. A, body weight gain; B, liver weight; and C, liver triglyceride in the high-fat-induced NASHmodel before and after treatment with FENO andMSCs. Themean and SD
(n = 8) values are provided. Significant differences betweenHFD andCONare indicated by ** P< 0.01; *** P< 0.001, and significant differences betweenHFD and other groups
are indicated by # P< 0.05; ## P< 0.01; ### P< 0.001; D, histopathological analysis of theNASHmodel after therapywith FENO,MSCs, andMSCs + LPS. Typical images of×
100-magnified HE-stained liver tissue from various treatment groups. Abbreviations: NASH, nonalcoholic steatohepatitis; FENO, fenofibrate; MSCs, mesenchymal stem cells;
HFD, high-fat diet; CON, control; LPS, lipopolysaccharide; HE, hematoxylin and eosin; ND, normaldiet.

that decreased (P < 0.05 and P < 0.01, respectively; Figure
4B and D). On the other hand, the LPS-stimulated MSC
treatment led to significant downturns in SREBP-1c and
FAS (P < 0.01; Figure 4A and B), as well as ACC (P < 0.05;
Figure 4C) and PPARγ (P < 0.001; Figure 4D). Conversely,
the expression levels of PPARα (P < 0.001; Figure 4E)
and CPT-1α (P < 0.05; Figure 4F) increased following the
LPS-stimulatedMSC treatment.

4.5. Reduction of Oxidative Stress and Related Gene Expression
after the FENO and ADSC Treatment

The data presented in Figure 4 compares gene
expression levels involved in oxidative stress between
the HFD and the control groups, as well as between the
FENO andMSC groups, compared to the high-fat emulsion
group. In the high-fat emulsion group, there was a
substantial increase in the expression levels of NADPH
oxidase 1 (NOX1), NOX4, and ROS (P < 0.0001; Figure 5A,
C, and D) and NOX2 (P < 0.01; Figure 5B). In contrast, the
FENO treatment led to a significant reduction in NOX1,
NOX4, and ROS levels (P < 0.001; Figure 5A, C, and D) and
NOX2 (P < 0.01; Figure 5B). Similarly, the MSC treatment
resulted in a decline in the expression levels of NOX1,
NOX4, and ROS (P < 0.01; Figure 5A, C, and D) and NOX2

(P < 0.05; Figure 5B). Notably, stimulation of MSC with
LPS caused a considerable decrease in the levels of NOX1,
NOX4, and ROS (P < 0.001; Figure 5A, C, and D) and NOX2
(P < 0.01; Figure 5B).

4.6. Reductionof InflammatorymRNAExpressionFollowing the
FENO and ADSC Treatment

Regarding the analysis of hepatic mRNA expression
of pro-inflammatory genes, including IL-6, TNFα, and
TGF-β (P < 0.001; Figure 6B, C, and D) and IL-1β (P < 0.01;
Figure 6A), a significant increase was observed in the
high-fat emulsion group. The FENO treatment resulted in
a substantial reduction in the mRNA expression level of
IL-1β, IL-6, and TNF-α (P < 0.01; Figure 6A, B, and C) and
TGF-β (P < 0.001; Figure 6D). Moreover, in the high-fat
emulsion group treated with MSC, the mRNA expression
levels of IL-6 and TNF-α (P < 0.05; Figure 6B and C)
decreased compared to IL-1β and TGF-β, but no significant
reductionwas observed in their expression levels. Notably,
significant decreases were observed following MSC
stimulation with LPS, whereby the expression levels of
IL-6 and TGF-β (P < 0.01; Figure 6B and D), IL-1β (P < 0.05;
Figure 6A), and TNF-α (P < 0.001; Figure 6C) noticeably
decreased.
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Figure 3. The values represent the mean and SD of 7 rats. An ANOVA and Tukey-Kramer multiple comparison tests were used to examine differences between the groups.
SignificantdifferencesbetweenHFDandCONare indicatedby ** P< 0.01; *** P< 0.001; **** P< 0.0001, andsignificantdifferencesbetweenHFDandothergroupsare indicated
by # P < 0.05; ## P < 0.01; ### P < 0.001; #### P < 0.0001. Abbreviations: ANOVA, analysis of variance; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HFD, high-fat diet; CON, control; FENO, fenofibrate; MSC,mesenchymal stem cell; LPS;
lipopolysaccharide.

5. Discussion

Nonalcoholic fatty liver disease is a complex disorder
with a multi-hit pathophysiology and is considered one
of the systemic diseases where the deposition of fat
in the liver is the initial contributing factor (4). The
increasing prevalence of NAFLD can be attributed to
lifestyle changes, such as unhealthy eating habits and

high rates of obesity, regardless of excessive alcohol
consumption (3). Consequently, lifestyle modification is
currently the primary therapy for patients with NAFLD.
Additionally, other factors contributing to this disease
include oxidative stress and inflammatory responses,
playing critical roles in the progression of NAFLD to NASH
and liver fibrosis. If left untreated, NAFLD can lead to liver
cancer and liver failure (35).
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Figure 4. Gene expression levels pertaining to lipid-related genes. Using quantitative real-time PCR, hepatic mRNA levels were measured and normalized to GAPDHmRNA
expression. The values are shownas themean and SDof fold changes compared to the CON. AnANOVA and Tukey-Kramer testswere used formultiple comparisons to evaluate
between-group differences. Significant differences between HFD and NC are indicated by **P< 0.01; *** P< 0.001; **** P< 0.0001, and significant differences between HFD
and other groups are indicated by # P< 0.05; ## P< 0.01; ### P< 0.001; #### P< 0.0001. Abbreviations: SREBP-1c, sterol regulatory element binding protein-1c; FAS, fatty
acid synthase; ACC, acetyl-CoA carboxylase; PPARγ , peroxisome proliferator-activated receptors gamma; PPARα, peroxisome proliferator-activated receptors alpha; CPT-1α,
carnitine palmitoyltransferase I; CON, control; HFD, high-fat diet; FENO, fenofibrate; MSC, mesenchymal stem cell; LPS, lipopolysaccharide; PCR, polymerase chain reaction;
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; ANOVA, analysis of variance.

Mesenchymal stem cells have emerged as a promising
therapy due to their ability to regenerate and repair
damaged tissue. Furthermore, the stimulation of MSCs
with LPS has been reported to increase the production of
anti-inflammatory cytokines during inflammatory states.
In light of these findings, we stimulated MSCs with LPS
and compared them tounstimulatedMSCs. Recent studies
suggest that MSCs have the potential to downregulate
inflammatory genes, such as IL-1β, TNF-α, and IL-6, as well
as to reduce the levels of ROS (31, 36).

In the current investigation, a NAFLD rat model
induced by HFD was employed to assess the efficacy
of LPS-stimulated MSCs compared to FENO, a widely
used hypolipidemic drug for dyslipidemia treatment.
Fenofibrate, a PPARα agonist, is one of the drug targets for

NAFLDdue to its contribution tomitigating inflammation,
glucose, and lipid homeostasis. This drug promotes
hepatic lipid oxidation, resulting in a reduction in hepatic
triglyceride levels (37). Fenofibrate is known to improve
lipoprotein remnant clearance by reducing LDL synthesis
and mildly elevating HDL levels (38). In the current
investigation, rats fed an HFD exhibited elevated liver
triglyceride levels and liver weight due to hepatic lipid
accumulation. Our findings suggest that LPS-stimulated
MSCs may enhance the activity of PPARs, a group of
transcription factors that regulate lipid metabolism. The
AMP-activated protein kinase (AMPK)-PPAR pathway is a
crucial player in lipid metabolism. According to our
results, FENO activates this pathway by inhibiting the
activity of SREBP-1c, FAS, ACC, and PPARγ while elevating
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Figure5. Geneexpression levelsof oxidative stress in response toMSCgroup (MSC,MSC+LPS) treatment. Usingquantitative real-timePCR,hepaticmRNA levelswereevaluated
and normalized to GAPDHmRNA expression. The values are given as the mean and SD of fold changes compared to the normal control group. An ANOVA and Tukey-Kramer
multiple comparisons tests were used to examine between-group differences. Significant differences between HFD and NC are indicated by ** P< 0.01; **** P< 0.0001, and
significant differences between HFD and other groups are indicated by # P< 0.05; ## P< 0.01; ### P< 0.001. Abbreviations: NOX1, NADPH oxidase 1; ROS, reactive oxygen
species; CON, control; HFD, high-fat diet; FENO, fenofibrate; MSC,mesenchymal stem cell; LPS, lipopolysaccharide; MSC,mesenchymal stem cell; LPS, lipopolysaccharide; PCR,
polymerase chain reaction; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; ANOVA, analysis of variance.

the expression levels of PPARα and CPT1.

Acetyl-CoA carboxylase is an important enzyme
involved in both fatty acid synthesis and oxidation in
hepatic cells. As a downstream target of AMPK, ACC is
regulated by phosphorylation, and its expression level is

reduced upon AMPK activation. This leads to a decrease
in fatty acid biosynthesis while increasing the expression
levels of PPARα and CPT-1, ultimately promoting fatty acid
oxidation. On the other hand, SREBP-1c, FAS, and ACC are
involved in denovo lipogenesis and fatty acid biosynthesis
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Figure 6. Gene expression levels of pro-inflammatory cytokines and TNF-α in response to MSC group (MSC, MSC + LPS) treatment. Using quantitative real-time PCR, hepatic
mRNA levels were evaluated and normalized to GAPDH mRNA expression. The values are given as the mean and SD of fold changes compared to the CON. An ANOVA and
Tukey-Kramer multiple comparisons tests were used to examine between-group differences Significant differences between HFD and NC are indicated by ** P < 0.01; *** P
< 0.001, and significant differences between HFD and other groups are indicated by; ## P < 0.01; ### P < 0.001. Abbreviations: CON, control; HFD, high-fat diet; FENO,
fenofibrate; MSC, mesenchymal stem cell; LPS, lipopolysaccharide; TNF-α, tumor necrosis factorα; MSC, mesenchymal stem cell; LPS, lipopolysaccharide; PCR, polymerase
chain reaction; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; ANOVA, analysis of variance.

(39, 40).

According to the findings reported by Prasad et al,
the suppression of inflammatory responses was found to
alleviate fibrosis development in an HFD-induced NAFLD
model (41). Lipid accumulation is known to initiate an

inflammatory response and contribute to the progression
of NAFLD to NASH and liver fibrosis. This process is
thought to be associated with an increase in ROS levels,
which can be mediated through the expression of NOX
enzymes, including NOX1, NOX2, and NOX4. Furthermore,
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the induction of an inflammatory state can activate MSCs
and recruit macrophages to the site of inflammation,
which may lead to an exacerbated immune response via
the release of MCP-1.

Inflammatory gene expression, including IL-1β, IL-6,
TNF-α, and TGF-β, is intricately involved in the progression
of NAFLD (42). Tumor necrosis factor α expression, for
example, is thought to contribute to the progression
of NAFLD to NASH by inducing molecules involved in
lipid and glucose metabolism, inflammatory factors, and
fibrosis in hepatocytes. Additionally, TNF-α stimulates
TGF-β expression, a critical factor that plays a significant
role in the processes of inflammation and fibrogenesis
(43). Recent studies have shown that PPARα agonists,
such as FENO, have the potential to decrease TNF-α
and TGF-β expression in animal-based experiments, thus
ameliorating thedamagecausedbyNASH.However, due to
thenumerouschemical sideeffectsof FENO, it ispreferable
to pursue new approaches to treat dyslipidemia (44).

In the in vivo study conducted by Xu et al, the
synergistic effects of liraglutide and human umbilical
cord MSCs on the inflammatory pathway in rats fed
a high-fat and high-sucrose diet were investigated.
The findings revealed that the combination therapy
significantly reduced ALT and AST levels, improved liver
histopathology, and alleviated liver inflammation by
downregulating TLR4, nuclear factor kappa B (NF-κB), IL-6,
and TNF-α while enhancing antioxidant activity. Notably,
both MSCs and LPS-stimulated MSCs attenuated the
production of pro-inflammatory cytokines, such as IL-6
and TNF-α, leading to a reduction in liver inflammation.
Furthermore, the levels of liver enzymes, including ALT
and AST, were significantly reduced (45). In a recent
animal-based study conducted by Li et al. in 2021, an
HFD-induced model of NAFLD was used to investigate
the effects of MSCs on the biosynthesis, β-oxidation, and
inflammatory pathways. This was achieved by examining
the expression levels of several key genes, including
IL-1β, IL-18, PPARα, CPT-1, ACC, and SREBP. The findings
of this investigation demonstrated that MSC treatment
effectively modulated the expression of these genes,
thereby influencing the aforementioned pathways (46).
The present study similarly reveals comparable results,
with statistically significant outcomes observed in certain
instances.

In 2021, Shen and colleagues investigated
the expression of IL-1β, TNF-α, IL-6, IL-10, heme
oxygenase-1(HO-1), nuclear factor erythroid 2-related
factor 2 (Nrf2), and ROS levels in rats fed an HFD. They
demonstrated that MSCs could regulate the changes
in inflammatory gene expression and focused on the
antioxidant response by examining Nrf2/H0-1 (36).

However, our study shows a greater decrease in both
ROS and inflammatory gene expression, which may be
attributed to the regulation of NF-κB, as it exerts more
significant effects.

5.1. Conclusions

Mesenchymal stem cells stimulated with LPS
exhibit a significant reduction in the expression of
inflammatory genes, including IL-1β and IL-6, and ROS
levels, potentially mediated by the NF-κB pathway.
Moreover, the induction of MSCs with LPS results in
more robust effects. Additionally, the histopathological
assessment indicated that the MSC treatment could
ameliorate NAFLD-induced damages, comparable to the
effects of FENO, a widely used PPARα agonist drug.
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