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Abstract

Background: The development of platinum-based metal complexes in oncology is limited due to vigorous toxicity and drug
resistance.
Objectives: This work aimed to study the cytotoxic activity and apoptosis induction of ruthenium complexes in a B16F10 cell line
therapy.
Methods: We prepared a series of innovative Ru(II) complexes [Ru(Tzphen)(bpy)(dcbpy)]+2 (S1), [Ru(dcbpy)2(Tzphen)]

+2 (S2),
[Ru(Phen)2(Tzphen)]

+2 (S3), [Ru(Tzphen)(bpy)2]
+2 (S4), [Ru(dmbpy)2(Tzphen)]

+2 (S5) based on 1,10-phenanthroline ligand containing
tetrazole and their anticancer properties investigated by cytotoxicity in vitro, reactive oxygen species, apoptosis with annexin V/PI
stainingmethod, autophagy, and cell uptake.
Results: S1, S2, S3, S4, and S5 complexes showed comparable cytotoxicity activity relative to cisplatin against the B16F10 model.
Moreover, intracellular ROS levels increased due to the presence of the complexes. Among the investigated complexes, the
cells treated with the S5 complex indicated the highest apoptotic percentage (Q3) of 14.9% compared to the controls. The cell
adsorptionof thecomplexesalso showed that theS4andS5complexeshadhigher cell adsorption, better internalization, andhigher
fluorescence light intensity.
Conclusions: The present work provides important guidance for designing and using Ru complexes in cancer therapy.
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1. Background

In recent decades, platinum complexes have been
used extensively in oncology. However, due to the need
for solubility, vigorous toxicity, and drug resistance, the
clinical usage of platinum-based complexes is limited
(1-7). To overcome these problems, many efforts have been
made to develop alternative metal-based compounds
as antitumor candidates. There is much emphasis on
ruthenium complexes as alternative compounds due to
their predictable geometry, including alternative metals
with variable oxidation states, rich photochemical and
photophysical properties, and low toxicity to natural
cells (8-10). The Ru(II) complexes based on polypyridyl
ligands have made great strides in bioactivity due to
their strong immunogenicity and various cytotoxic
properties. Hence, they offer a novel approach for
sketching metal-based antitumor drugs with advanced

activity (11-14). Chen et al. showed that the polypyridyl
ruthenium complexes, including N, N-chelating ligands, a
complex with strong antiproliferative activity, are allowed
to compelmitochondrial-induced and caspase-dependent
apoptosis in human cancer cells (15, 16). Gill et al. showed
that modifying lipophilicity and cell uptake by ligand
modification significantly affected the cytotoxicity and
intercellular targets of the Ru(II) complex (17).

Moreover, heterocyclic compounds have been
used to treat many diseases, such as cancer (18, 19).
Drugs containing heterocyclic rings in their structure,
such as indoles, benzothiazole, camptothecin, and
benzimidazole, are considered for use for anticancer
purposes (20, 21). Tetrazole, as a heterocyclic structure,
has recently been the focus of research, and several
studies have proven its applications in medicine (22).
Tetrazole-containing derivatives have demonstrated
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anti-hypertension, anti-fungal, anti-tuberculosis,
antimalarial, anti-leishmaniasis, anti-diabetic, and
anticancer activities (22-26). Recently, Yang et al. reported
that the rutheniumcomplexes, including tetrazolemoiety,
canprevent cell proliferation in vitro andmaybepotential
candidates for photodynamic therapy (27).

Herein, formore insight into the anticancer activity of
Ru(II) complexes, a series of innovative Ru(II) complexes
based on 1,10-phenanthroline ligand containing
tetrazole substitution, [Ru(Tzphen)(bpy)(dcbpy)]+2 (S1),
[Ru(dcbpy)2(Tzphen)]

+2 (S2), [Ru(phen)2(Tzphen)]
+2 (S3),

[Ru(Tzphen)(bpy)2]
+2 (S4) and [Ru(dmbpy)2(Tzphen)]

+2

(S5) were synthesized based the literature protocols (28,
29) and fully investigated using spectroscopic techniques
(Figure 1). The anticancer properties of the complexes
were researched by cytotoxicity in vitro, reactive oxygen
species, apoptosis method with annexin V/PI staining
method, autophagy, and cell uptake.

Figure 1. The structure of ruthenium complexes used in this study

2. Objectives

The advancement of platinum-basedmetal complexes
in oncology is restricted due to several limitations
and challenges, such as aggressive toxicity and drug
resistance. This research aimed to investigate the cytotoxic
activity and apoptosis-inducing capabilities of ruthenium

complexes using a murine melanoma cell line as a model
system.

3. Methods

3.1. Experimental Section

3.1.1. Materials

RuCl3.3H2O, 4,4’-dimethyl-2,2’-dipyridyl
(dmbpy), ammonium acetate, 2,2-’bipyridine (bpy),
3,4-diaminobenzophenone were purchased from
Sigma Aldrich. 1,10-phenanthroline (phen) and
1,5-diaminonaphthalene were purchased from Merck.
The 2,2’-bipyridine-4,4’-dicarboxylic acid (dcbpy) was
prepared according to the procedures outlined in the
literature (30).

3.1.2. Synthesis

3.1.2.1. Ligand

The 5,6-epoxy-5,6-dihydro-[1,10]phenanthroline
(L1), 1,10-phenanthroline-5-carbonitrile (L2), and
5-(1H-tetrazol-5-yl)-1,10-phenanthroline (Tzphen) were
synthesized according to the literature protocols (28,
31-34). Briefly, L2 (410 mg, 2.0 mmol), NH4Cl (135 mg, 2.5
mmol), andNaN3 (160mg, 2.5mmol) in 10mL of DMFwere
refluxed at 140°C for 48 h. The cooledmixture was poured
into H2O and filtered. The filtrate was acidified to pH = 3.5
with concentrated HCl. After stirring for five hours, the
suspension was filtered. The resulting solid was washed
with H2O (2 × 5 mL) and dried in a vacuum over P2O5 at
room temperature. Yield: 54%. FT-IR (cm-1): 3392 (m), 3069
(m), 1602 (s), 1545 (s), 1418 (w), 867 (m), 727 (w). 1H NMR
(250 MHz, DMSO): δ 9.3 (d, J = 8.5 Hz, 1H), 9.2 (d, J = 8.5 Hz,
1H), 8.8 (s, 1H), 8.6 (d, J = 6.5 Hz ,1H), 8.65 (d, J = 6.5 Hz,1H),
7.9 (t, J = 5.5 Hz, 1H), 7.8 (t, J = 5.5 Hz, 1H). Anal. Calcd for
C13H8N6: C, 56.722; H, 4.032; N, 30.533. Found: C, 56.731; H,
4.041; N, 30.545 (Figure 2).

3.1.2.2. Complexes

The complexes were synthesized according to
literature-described methods (28, 29). The schematic
of their synthesis route is shown in Figure 3. The 1HNMR
and 13CNMR data and spectra are shown in SI.

3.1.3. Characterization

IR spectra were recorded on a Perkin-Elmer 597
spectrometer. 1H NMR and 13C NMR spectra were
recorded using a Bruker 400 MHz spectrometer with
tetramethylsilane (TMS) as the internal standard. The
cyclic voltammetry was measured with a SAMA500
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Figure 2. The synthesis route of Tzphen

electrochemistry system. Ultraviolet-visible (UV-Vis)
absorption spectra were obtained using Ultrospec3100
pro spectrophotometer in CH3CN solution.

3.2. Cell Cytotoxicity

The B16F10 cells were placed in a 96-well plate and
kept in a humid incubator with 5% CO2 and a temperature
of 37°C. They were provided with a complete RPMI-1640

culture medium. Cells were incubated for 24 hours
to adhere to and achieve applicable compliance. The
cells that were attached were examined with varying
concentrations of complexes. The previous culture
medium was replaced with a culture medium containing
MTT 24 to 72 h after incubation and was incubated for
four hours. Eventually, as alluded to, the MTT assay was
applied to investigate cell viability. The same technique
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Figure 3. The synthesis route of complexes [Ru(Tzphen)(bpy)(dcbpy)]+2 (S1) - [Ru(dmbpy)2(Tzphen)]+2 (S5)
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was repeated and compared with and without solvent
complexes. DMSO and Sorenson’s phosphate were added,
and afterward, the absorbance of formazan at 570 nmwas
registered by amicroplate reader.

3.3. Cell Apoptosis Investigation

To assess the apoptosis-inducing capabilities of
disparate complexes, the annexin V-FITC/PI apoptosis
detection kit (Exbio, Czech Republic) was utilized to
investigate cell apoptosis ratios. Lastly, the quantitative
cell apoptosis analyses were conducted by flow cytometry
(FCM) (MACS Quant 10, Miltenyi Biotech GmbH). After
implanting the cells in the plates of 6 wells and overnight
incubation, the top environment of the plate wells was
altered with 2 mL of fresh medium containing IC50

concentration of all remedy groups. The cells were then
incubated for 48 h.

3.4. Reactive Oxygen Species Formation

To determine the facility of the complexes preplanned
in the reactive oxygen species (ROS) creation, B16F10
cells were implanted in 6 well plates for 48 h in the
presence of complexes and H2O2 as a positive control.
The cells were treated with a fluorescent marker,
dichlorodihydrofluorescein diacetate (DCFH-DA) (10
µM). After 2 h of incubation, they were washed twice with
PBS and resuspended in 500 µL PBS. Then, the generated
ROS inside cells was perused by a flow cytometric analysis
(BD Facscalibur, Franklin Lakes, New Jersey, United States)
analyzed by the FL2-H Purchaser Filter (FITC). Also, a high
concentration (HC) reached fromMTT IC50 was selected.

3.5. Cellular Uptake Study

The samples were labeled with RhB as a fluorescent
agent to study their adsorption efficiency. To study cell
uptake, the fluorescent agent of the complexes (0.05 w
/ w RhB to fat) was added, and the RhB depletion was
separated by the above filtration method (Amicon® tube,
30 kDa M Melipour, Germany), and B16F10 cells in the
plates were placed in six wells and incubated for 24 h.
The cells were then treated with RhB-labeled samples with
concentrations in the ranges of 10, 100, 200, 400, 800,
1600, 3200, 6400, and 12800 µg/mL. After incubation for
four h, the residual weaving was replaced with 1 mL of 4%
formaldehyde, fixed for four hours, and scanned by flow
cytometer (BDBX50, Olympus, Japan).

3.6. Fluorescence Microscopic Studies

In addition, the adsorption of the final RhB-labeled
formula was studied using fluorescence microscopic to
obtain fluorescence images; B16F10cellswere implanted in
a multi-chamber slide with a density of 105 2 2 cells. The
slide was left to incubate for 48 hours to allow the cells
to attach. They were fixed for four hours after washing
with PBS and treatment with 4% formalin solution. Then,
the cells were washed again with PBS and incubated with
1µg.mL-1 4,6-diamidino-2-phenylindole (DAPI) and0.01 V/V
Triton X-100 solution for 15 minutes. Finally, fluorescence
pictures were taken using amicroscope with a DAPI filter.

3.7. Quantitative Measurement of Autophagy

Tomeasure autophagic potency, the cells were stained
and analyzed using MDC under the manufacturer’s
convention. After that, the cells were washed three times
to eliminate MDC in PBS and treated after 48 hours of
incubation. The cells were then washed twice with PBS
and stained with 0.05 mmol/L MDC at 37°C for 10 minutes
and were analyzed by fluorescence imaging microscope
to assess the level of autophagy.

4. Results and Discussion

4.1. Synthesis and Characterization

The synthesis of ligands and corresponding complexes
was conducted according to literature methods (28-34).
The structures of the ligands and complexes were
investigated and characterized by the 1H NMR, 13C NMR,
UV-Vis absorption, cyclic voltammetry, and FT-IR. The
results are tabulated in Table 1.

4.2. Assessment of Cytotoxic Activity of Complexes In Vitro

To investigate the cytotoxicity of S1 - S5 complexes,
cancer cells (B16F10, Hela, A549, BEL-7402, SIHA, SGC-7901)
and LO2 cells of human normal liver cells were used.
The IC50 values described in Table 2 indicate the lack
of cytotoxic activity of the ligand against B16F10, A549
BEL-7402, SiHa, SGC-7901, and LO2 cells. Due to the greater
hydrophobicity of the Tzphen sub-ligand than phen and
dpp, the cytotoxic inactivity of S1 - S3 complexes against
A549 and SiHa cell lines is evident. As a result, the S5 and
S4 complexes enter the cells under the same conditions
as the S1 - S3 complexes. The cytotoxicity of S5 and S4
complexes was significant compared to most selected
cancer cells. They demonstrated little cytotoxic activity
against normal hepatocyte LO2 cells. The cytotoxic activity
of S1 - S5 complexes was comparable to that of B16F10
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Table 1. Photophysical and Electrochemical Properties of [Ru(Tzphen)(bpy)(dcbpy)]+2 (S1) - [Ru(dmbpy)2(Tzphen)]
+2 (S5) Complexes

Complex Absorbanceλ (nm) Emissionλmax (nm) Eox (Ru
II /RuIII) (V) Ered

1/2 (V) Egap (eV) EHOMO (eV) ELUMO (eV)

S1 +1.47 -0.995 2.46 -5.69 -3.23

S2 +1.29 -1.03, -1.48 2.32 -5.73 -3.41

S3 456 618 +1.36 -1.30, -1.45 2.29 -6.08 -3.79

S4 447 629 +1.34 -1.31, -1.52 2.26 -6.15 -3.89

S5 460 659 +1.28 -1.13, -1.51 2.19 -6.16 -3.97

cells but less than that of cisplatin as a control under the
sameconditions. As a result, cytotoxicity activity increased
with ligand attachment to metal and formation of metal
complexes; and, due to the moderate cytotoxic effect of
all S1 - S5 complexes on B16F10 cell growth, this cell was
selected for testing.

4.3. Reactive Oxygen Species Generation

To confirm the ROS production within the cells, the
DCFH-DA fluorescent probe was exerted. Figure 4 shows a
five-fold increase inDCF fluorescent intensity compared to
control for S1 - S5 complexes after treatment of B16F10 cells
with 25 mM for 24 hours. Due to the higher production
and lesser utilization of intracellular ROS levels of the S1
complex and, to some extent, S2, the S5 complex likely
causes the highest increase in ROS levels because the
intracellular ROS level depends on the balance of ROS
production and utilization of the complexes. The overall
result suggests that the increase in intracellular ROS levels
is due to the presence of complexes.

4.4. Apoptosis Method with Annexin V/PI Staining Method

Flow cytometry was assessed to evaluate cell apoptosis
induced by S1 - S5 complexes using the annexin V/PI
staining method and morphological evolution of cells
with orange acridine (AO)/ethidium bromide (EB)
impregnated cells. Quantitative results showed that
the complexes could cause apoptosis in B16F10 cells. In
particular, compared to cells treatedwith S1 - S5 complexes,
cells treated with S5 had the highest apoptotic percentage
(Q3) of 14.9% compared to control. This percentage was
9.18%, 11%, 10.7%, and 12.6% for S1 - S4, respectively. In
brief, the cell apoptosis method showed that the effect of
treating B16F10 cells with 25 mM complexes of S1 - S5 for
24 hours could be mainly due to apoptotic features. For
instance, cell composition, nucleation, and chromatin
density are attributed. To evaluate and confirm the claim
that S4 and S5 complexes can increase cell uptake or
transfer, the uptake of these complexes was examined by
flow cytometric analysis (Figure 5).

4.5. Cell Uptake Studies

To evaluate and confirm that S4 and S5 complexes
can increase cell uptake or transfer, the uptake of these
complexes was examined by flow cytometric analysis.
After four hours of incubation, the cells were washed
and imaged with a fluorescence imaging microscope to
detect the intensity of cell uptake. The cell adsorption of
the complexes showed that the S4 and S5 complexes had
higher cell adsorption, and S5 had better internalization
and higher fluorescence light intensity than S4 (Figure 6).

4.6. Autophagy in the B16F10 Cells

The autophagy surface of the B16F10 cells treated
with the S1-S3 complexes was stained using Cadaverine
Monodensil (MDC), a green fluorescent probe, which
labels the vacuolar components of the autophagy
pathway. As shown in Figure 7, the intensity of MDC
fluorescent in B16F10 cells treated with the S1 complex
(170.81) was stronger than that treated with S2 (2.72)
and S3 (3.83) complexes compared to the control. The
intensity of MDC fluorescence increased significantly
as the number of autophagy cells increased, indicating
that the intensity of MDC fluorescence was dependent
on the effects of autophagy and that this effect was a
concentration-dependent approach.

5. Conclusion

In this project, we developed five Ru(II) complexes
based on 1,10-phenanthroline ligand containing tetrazole
substitution, S1, S2, S3, S4, and S5 promoted cancer
treatment. This type of complex can enhance the
generation of free radicals, cytotoxic activity, and also
cell apoptosis. MDC staining display complexes could
induce autophagy, and the intensity of MDC fluorescent
in B16F10 cells treated with the S1 complex (170.81) was
stronger. Moreover, the cell adsorption of the complexes
demonstrated that the S4 and S5 complexes had higher
cell adsorption, and S5 had better internalization and
higher fluorescence light intensity than S4.
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Table 2. IC50 (µM) Values of the Complexes [Ru(Tzphen)(bpy)(dcbpy)]+2 (S1) - [Ru(dmbpy)2(Tzphen)]
+2 (S5) on the B16F10, Hela, A549, BEL-7402, SIHA, SGC-7901 and LO2 Cell

Lines

Complex B16F10 HeLa A549 BEL-7402 SiHa SGC-7901 LO2

Tzphen > 200 75 ± 1.9 > 200 > 200 > 200 > 200 > 200

S1 25.5 ± 1.7 > 200 > 200 > 200 > 200 > 200 > 200

S2 45.3 ± 2.1 36.8 ± 1.3 > 200 > 200 > 200 68 ± 3.2 > 200

S3 38.1 ± 2.5 > 200 > 200 50 ± 1.6 > 200 > 200 > 200

S4 32.6 ± 1.9 45.5 ± 1.5 48.3 ± 1.9 28 ± 2.6 58 ± 3.2 > 200 > 200

S5 28.5 ± 3.1 35.2 ± 2.9 35.2 ± 1.9 18 ± 2.8 > 200 > 200 > 200

cis-platin 25.2 ± 2.3 8.5 ± 0.7 6.2 ± 1.1 13.1 ± 0.9 n.d n.d n.d

Figure 4. Intracellular reactive oxygen species levels in B16F10 cells
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Figure 5. Top, apoptosis in B16F10 cells; bottom, the percentage of apoptotic cells
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Figure 6. Cellular uptake survey: Schema chart of A, [Ru(Tzphen)(bpy)2]
+2 (S4); B, [Ru(dmbpy)2(Tzphen)]

+2 (S5) evaluated by FCM; and C, statistics curve of uptake rates of S4
and S5 analyzed by flow cytometry
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Figure 7. Elevated autophagy in B16F10 cells treated with the [Ru(Tzphen)(bpy)(dcbpy)]+2 (S1) - [Ru(Phen)2(Tzphen)]
+2 (S3) complexes
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