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Abstract

Background: The rise of antibiotic resistance has become a major concern, signaling the end of the golden age of antibiotics.
Bacterial biofilms, which exhibit high resistance to antibiotics, significantly contribute to the emergence of antibiotic resistance.
Therefore, there is an urgent need to discover new therapeutic agents with specific characteristics to effectively combat
biofilm-related infections. Studies have shown the promising potential of peptides as antimicrobial agents.
Objectives: This study aimed to establish a cost-effective and streamlined computational method for predicting the antibiofilm
effects of peptides. This method can assist in addressing the intricate challenge of designing peptides with strong antibiofilm
properties, a task that can be both challenging and costly.
Methods: A positive library, consisting of peptide sequences with antibiofilm activity exceeding 50%, was assembled, along
with a negative library containing quorum-sensing peptides. For each peptide sequence, feature vectors were calculated, while
considering the primary structure, the order of amino acids, their physicochemical properties, and their distributions. Multiple
supervised learning algorithms were used to classify peptides with significant antibiofilm effects for subsequent experimental
evaluations.
Results: The computational approach exhibited high accuracy in predicting the antibiofilm effects of peptides, with accuracy,
precision, Matthew’s correlation coefficient (MCC), and F1 score of 99%, 99%, 0.97, and 0.99, respectively. The performance level of
this computational approach was comparable to that of previous methods. This study introduced a novel approach by combining
the feature space with high antibiofilm activity.
Conclusions: In this study, a reliable and cost-effective method was developed for predicting the antibiofilm effects of peptides
using a computational approach. This approach allows for the identification of peptide sequences with substantial antibiofilm
activities for further experimental investigations. Accessible source codes and raw data of this study can be found online (hiABF),
providing easy access and enabling future updates.
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1. Background

In recent decades, there have been significant changes
in the nature of infectious diseases. According to a
study by Batoni et al., infections that were prevalent
until the mid-twentieth century were characterized by
sudden onset, responsiveness to antibiotic treatment,
well-defined pathogenic mechanisms, and the ability
to isolate pathogenic agents from infected tissues.
However, today, infections are characterized by chronic

progression, resistance to antimicrobials, unknown
pathogenic mechanisms, and the potential involvement
of normal flora microorganisms (1).

Bacterial biofilms play an important role in the
emergence of antibiotic resistance, as biofilm-producing
bacteria exhibit higher resistance to almost all available
antibiotics compared to planktonic bacteria (2). The
ability of biofilms to form on various surfaces, including
tissues and medical devices, poses a significant challenge
in healthcare systems (2). Biofilm formation involves
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three stages, including adhesion through weak and
reversible long-range interactions, maturation through
the production of extracellular polymeric substances
(EPS) that maintain structural integrity, and dispersal
through cell detachment and colonization of nearby sites
(3). Generally, biofilm is a complex and dynamic system,
distinguished by its formation process, the presence
of EPS, and a unique distribution of molecules, such
as nutrients and oxygen, resulting in a heterogeneous
structure in terms of temporal and spatial organization
(1). Figure 1A demonstrates a schematic representation of
biofilm formation.

It is known that in biofilms, bacteria develop resistance
mechanisms through reduced diffusion and sequestration
of antimicrobials by EPS, slow growth rates, and the
presence of dormant cells, known as persister cells
(4). Given the importance of these specific features in
the development of antibiofilm (ABF) agents, utilizing
nature-based therapeutics, such as peptides, is a practical
approach to addressing the rise of antibiotic resistance
(5). Ideal ABF agents should possess characteristics,
such as rapid killing ability, effectiveness in various
environments, the ability to penetrate EPS, and synergistic
interactions with other conventional or non-conventional
antimicrobial agents (1).

Antimicrobial peptides (AMPs), also known as host
defense peptides (HDPs), are found in all forms of life,
including bacteria, plants, vertebrates, and invertebrates
(6). They demonstrate a broad range of antibacterial (ABP),
antifungal, antiviral, anticancer, antiparasitic, and ABF
effects and are classified based on their activity (7). It
has been shown that ABF agents have some characteristics
of ideal ABF agents. In this regard, Raheem and Straus
conducted an all-inclusive review of ABF mechanisms of
action (8). Antibiofilm agents primarily target bacterial
membranes and are attracted to their negatively charged
surfaces through electrostatic interactions. Meanwhile,
other mechanisms of action have been reported for
ABFs, such as the inhibition of the stringent response
signaling nucleotide, ppGpp (9). The stringent response
plays a crucial role in the development and maintenance
of biofilms in both Gram-positive and Gram-negative
bacteria (8). Figure 1B and C illustrate these two main
mechanisms of action of ABF agents.

Factors, such as high efficiency, simplicity of
synthesis, short market entry time, and well-understood
mechanisms of action, have made ABF biomolecules
attractive candidates for drug development. However, it
is important to address challenges, such as enhancing
specificity to avoid side effects when developing ABF-based
drugs (10). The optimal characteristics of peptides for
targeting planktonic bacteria may not be the same as those

required for combating bacteria in a biofilm (1). Therefore,
a thorough understanding of the key characteristics of
peptide sequences that are essential for their ABF effects
can significantly enhance their performance.

In the field of drug development, there has been a
growing interest in the utilization of artificial intelligence
algorithms, particularly machine learning and deep
learning approaches (11). These approaches offer several
advantages over experimental methods, including
cost-effectiveness and time-saving capabilities, which
can help reduce certain burdens (12). Given the need to
automate repetitive data processing and analysis tasks
in drug discovery research, the integration of machine
learning techniques capable of identifying patterns in
large datasets has become essential.

Machine learning techniques have been applied to
predict various peptide activities, including anticancer,
antimicrobial, hemolytic, and ABF activities (13-16).
In this regard, Sharma et al. used a positive library
consisting of 80 ABF peptides, as well as a negative library,
consisting of quorum-sensing peptides (QSPs), which
play an auto-inducing role in biofilm development in
Gram-positive bacteria without an ABF activity. They
trained support vector machine (SVM) and Weka-based
systems, achieving a maximum accuracy of 95.24% and
a Matthew’s correlation coefficient (MCC) of 0.91 on the
training dataset (17). Additionally, Gupta et al. selected
178 ABF peptides as the positive library and randomly
generated peptide sequences from the Swiss-Prot database
as the negative library. Their SVM-based model exhibited
an accuracy of 97.18% and an MCC of 0.84 on the validation
dataset (18). Moreover, Fallah Atanaki et al. developed
SVM and random forest-based models, with positive and
negative libraries consisting of 178 and 88 ABF peptides
and QSPs, respectively. Their SVM-based model exhibited
an accuracy of 95% and an MCC of 0.89 (16).

Overall, the abovementioned studies all play a
significant role in the recognition and prediction of
the ABF effects of peptides. Nevertheless, analyzing
the ABF activity of peptides is an important goal that
should have been taken into account in these studies.
Therefore, the focus of the present study was to gain
a comprehensive understanding of the structure and
properties of highly active antibiofilm (hiABF) peptides.
For this purpose, a machine learning-based method
with improved performance was developed. A positive
library was assembled, consisting of experimentally
validated peptide sequences with ABF activity exceeding
50%. Also, a negative library was constructed using QSPs.
Features based on physicochemical properties, amino
acid composition, sequence order, and the distribution
of physicochemical properties were calculated to create a
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Figure 1. Biofilm formation steps (A); two main mechanisms of action of antibiofilm (ABF) agents include membrane-lytic peptides (B); and interference with ppGpp signaling
process (C)

feature space.

2. Objectives

In the present study, compositional and characteristic
analyses focused on three categories, and comparisons
were made between hiABFs and QSPs, between hiABFs
and antibacterial peptide sequences (ABPs), and between
hiABFs that act on preformed biofilms and those that
inhibit biofilm formation. Additionally, the positional
preference of amino acids at the N and C terminals of
hiABFs was analyzed, although this privileged information
was not used for training the models. To the best of our
knowledge, this combination of features was used for the
first time in the present study to map peptide sequences
to numeric feature vectors, with a focus on peptides

exhibiting ABF activity more than 50%. In this study,
a computational approach was developed to accurately
predict the ABF effects of peptides with a high level of
accuracy. This approach can help address the challenges
and expenses of designing peptides with significant ABF
effects, and the findings can lead to the development of
new therapeutic agents to combat antibiotic resistance.

3. Methods

3.1. Dataset Collection

The BaAMPs database, which is publicly accessible, was
used to prepare peptides with ABF effects for the positive
library (19). Peptide sequences with ABF activity exceeding
50% were selected by browsing the database based on
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activity. It is worth noting that the BaAMP database
was last updated in 2014. To broaden the dataset, an
extensive analysis of 394 results from the Web of Science
was conducted in the period of 2014 - 2022, using the
methodology and keywords outlined by Di Luca et al.
(19). The analysis resulted in the identification of peptide
sequences with an ABF activity of 50% or higher.

Moreover, the APD3 database was evaluated with
the same approaches (20). Sequences with high ABF
activity, which were not separated in the initial database,
as well as relevant articles, were added to the positive
library. Finally, the positive library was prepared with
183 peptide sequences with an ABF activity exceeding
50%. To construct the negative library, peptide sequences
that acted as inducers in the quorum-sensing process of
Gram-positive bacteria were used. The method presented
by Wei et al. was employed to prepare a negative library,
containing 198 QSPs (21). Duplicated sequences and
sequences containing non-standard amino acid residues,
modifications, or indefinite residues were excluded
from both positive and negative libraries. A flowchart
illustrating the steps of library preparation and classifier
design is presented in Figure 2.

To mitigate bias, the data were randomly divided into
three datasets of training, validation, and independent
test sets. Overall, 75% of data were used for model training,
48 sequences were used for validation, and 48 sequences
were set aside as the independent test set.

3.2. Peptide Feature Extraction and Encoding

The conversion of peptide sequences into numerical
vectors was performed to construct the feature spaces
for supervised learning-based models. In this study,
four classes of features were calculated, including amino
acid composition, amino acid order, physicochemical
properties, and distribution. The features, along with
their respective numbers, are presented in Table 1. All the
features were obtained using the python-based packages,
including iFeatureOmega and modlAMP (22, 23).

Amino acid composition (AAC) refers to the frequency
of each of the 20 natural amino acids in a peptide sequence
(24). The formula for calculating AAC is presented in
Equation 1:

(1)AAC (i) =
aa (i)

L
× 100

Where aa(i) is the frequency of each standard amino
acid residue, and L represents the peptide length.

Dipeptide composition (DPC) refers to the frequency of
dipeptides in a given peptide sequence and is calculated
based on Equation 2 (22):

Table 1. The List of Feature Vectors in Each Category and the Number of Features in
Each Class

Feature Class Feature Name Number of
Calculated Features

AAC AAC and DPC 420

Distribution CTD, CKSAAP, CKSAAGP,
and GAAC

1900

Order QSOrder, PAAC, and
APAAC

90

Physicochemical
properties

Globaldesc and
PepDESC

56

Abbreviations: AAC, amino acid composition; DPC, dipeptide composition;
CTD, composition transition and distribution; QSOrder, quasi-sequence order;
PAAC, pseudo amino acid composition; APAAC, amphiphilic pseudo-amino
acid composition.

(2)D (r, s) =
Nrs

N − 1
; r, s ε {A,C,D, . . . , Y }

Where Nrs represents the number of times the
dipeptide rs appears in the sequence, and N represents the
total number of dipeptides. Variables r and s can be any of
the 20 standard amino acids.

The composition transition and distribution (CTD)
is a feature that indicates the distribution patterns of
amino acids with specific structural or physicochemical
properties in peptide sequences (25). Attributes, such
as hydrophobicity, normalized van der Waals volume,
polarity, polarizability, charge, secondary structure, and
solvent accessibility, are considered in the calculation of
CTD. Generally, amino acids are classified into three groups
(1, 2, and 3), based on their properties. For example,
peptides can be classified into three groups of coil, helix,
and strand, based on their secondary structure (22).

Composition (C) is determined according to Equation
3 which calculates the percentage of each group in the
peptide sequence (25). Transition (T) is calculated based on
Equation 4 which determines the frequency of transitions
from one group to another. Distribution (D) describes the
distribution of each attribute in peptide sequences. Five
distribution-related descriptors are calculated based on
the positional percentage of residues at five key points:
The first (0%), 25%, 50%, 75%, and 100% of the sequence
(16). In Appendix 1, amino acid attributes and divisions are
presented.

(3)C =
N(c)

N
; c ε {1, 2, 3}

Where N is the length of the sequence, and N(c) is the
number of c in the encoded sequence.

(4)Tcr =
Ncr +Nrc

N − 1
; cr ε {(1, 2) , (1, 3) , (2, 3)}

Where Ncr and Nrc are the numbers of dipeptides
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Figure 2. A flowchart of library preparation and classifier design stages

encoded as cr and rc, respectively, and N is the length of
the sequence.

CKSAAP-CKSAAGP: CKSAAP represents the frequency
of dipeptide composition, separated by k amino acid
residues (26). CKSAAGP, developed by Chen et al., calculates
the frequency of group composition of amino acid pairs,
separated by k residues, such as aliphatic-aliphatic or
aliphatic-aromatic pairs (22). In this study, the values of k
were considered to be 1, 2, and 3.

GAAC: To calculate GAAC, a total of 20 standard amino
acids are divided into five classes of aliphatic, aromatic,
positive, negative, and uncharged. The frequency of each
of these five classes is calculated based on Equation 5 (24):

(5)Gci =
Nci

N
; ci ε {c1, c2, c3, c4, c5}

Where Nci is the quantity of amino acids in class ci, and
N is the length of peptide sequences.

Quasi-sequence order (QSOrder), pseudo amino acid
composition (PAAC), and amphiphilic pseudo-amino
acid composition (APAAC): To encode peptides

comprehensively, it is important to consider both
positional and compositional information of amino
acids due to their importance in protein and peptide
sequence analyses. Two popular methods for encoding
amino acid information include QSOrder and PAAC,
developed based on research by Chou (27, 28). In addition
to composition and order, APAAC also incorporates the
hydrophilic and hydrophobic properties of amino acids
(29). Appendix 2 depicts a schematic presentation of
the order and composition of a peptide sequence with a
length of N.

Physicochemical properties: Globaldesc utilizes
functions for calculating various physicochemical
properties of peptide sequence, including length, charge,
charge density, molecular weight, isoelectric point,
Boman index (30), instability index (31), aliphatic index
(32), aromaticity (33), and hydrophobic ratio (34). Instead
of atom-based properties, Zimmerman et al. proposed
the Amino-Acid scale (AA-scale), where the side chain
of amino acid is assigned a specific value based on its
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properties. These values are then processed to obtain the
final descriptive value for the entire molecule (35). The
PepDESC class uses Moreau-Broto correlation functions
with variable sliding sequence windows to compute
property-based descriptors, such as bulkiness, flexibility,
and transmembrane propensity (23). The complete list of
global and peptide descriptors is presented in Appendix 3.

3.3. Dataset Preprocessing

Before training the models, the datasets were
preprocessed to remove variables that were duplicated,
had missing values, or had zero variance. All datasets were
normalized according to Equation 6 (15):

(6)X =
(x− xmin)

(xmax − xmin)

Where x is the value of each calculated feature in a
dataset.

3.4. Feature Selection

Feature selection is a crucial procedure for building a
prediction model by selecting a relevant subset of features
while avoiding redundant and irrelevant variables that
can negatively affect learning approaches (24). This study
applied filter- and wrapper-based methods for creating
the feature space. Multicollinearity (MC) was addressed
based on a correlation cutoff point of 0.75. Highly
correlated features were eliminated, while non-redundant
descriptors were retained (36). To select smaller subsets of
features, fit them to the model, and remove the weakest
features until the final number of features was achieved,
recursive feature elimination with cross-validation
(RFECV) was employed (15). The SelectKBest method was
also utilized to select the best K features with the highest
impact on the model’s classification performance (37).
Additionally, t-distributed stochastic neighbor embedding
(t-SNE), a dimensionality reduction technique, was applied
to visualize the selected features using the scikit-learn
0.24.1 library in Python (37, 38).

3.5. Machine Leaning Model Architecture

A total of 13 binary classifiers were evaluated, including
logistic regression, K-nearest neighbor, decision tree,
random forest, gradient boosting classifier, AdaBoost
classifier, linear discriminant analysis, quadratic
discriminant analysis, näıve Bayes classifier, and SVMs
with different kernels, using 10-fold cross-validation on
the training and validation datasets. Generally, the K-fold
cross-validation method is proper when positive and
negative libraries are balanced. In this study, a 10-fold
cross-validation approach was employed, considering the

size of positive and negative libraries associated with each
model (39-47).

Based on the classifier performance, five models
yielding superior outcomes were selected for further
analysis. Feature selection methods were applied,
and a vector space was constructed. To fine-tune the
hyperparameters of the model, a grid search with
cross-validation (GridSearchCV) was conducted on
the top five models. The GridSearchCV systematically
explores all possible combinations of parameters for a
given algorithm and evaluates their impact on the model
performance. The combination yielding the best outcome
is considered optimal (48). In the present study, all
algorithms were implemented using the Python package
scikit-learn 0.24.1 (37).

3.6. Performance Metrics

Accuracy, precision, recall or sensitivity, specificity,
F1 score, MCC, Cohen’s kappa statistic (CK or κ), and the
area under the receiver operating characteristic curve
(AUC-ROC) are all indicators of model performance.
The ROC curves, which are based on the sensitivity
and specificity of the model, provide valuable graphic
representations of the performance of binary classifiers
(49). The following Equations 7-13 were utilized to calculate
the aforementioned metrics:

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)Precision =
TP

TP + FP

(9)Sensitivity (recall) =
TP

TP + FN

(10)Specificity =
TN

TN + FP

(11)F1 score = 2× Precision×Recall
Precision+Recall

MCC

=
(TP × TN)− (FP × FN)√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)

(12)

(13)κ

=
2× (TP × TN − FP × FN)

(TP + FP )× (FP + TN) + (TP + FN)× (FN + TN)

Where true positives (TP) stands for true positive,
which refers to peptides that have ABF effects and are
correctly predicted by the model. True negatives (TN)
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represents true negative, indicating peptides with no ABF
effects that are correctly classified by the model. False
positives (FP) denotes false positive results, representing
peptides with ABF effects that the model incorrectly
classifies as ABF peptides. False negatives (FN) signifies
ABF peptides that the model incorrectly classifies as
non-ABF peptides. F1-score considers both precision and
recall and calculates their harmonic mean. Matthew’s
correlation coefficient is a metric that remains unaffected
by unbalanced datasets. It is the only binary classification
rate that yields a high score when the binary classifier
accurately predicts the majority of both positive and
negative data instances. Also, κ, similar to MCC, considers
all four categories of the confusion matrix, including TP,
TN, FP, and FN. These two metrics share similarities, with
both having a minimum value of -1 for the worst prediction
and a maximum value of +1 for the best prediction (50).

4. Results and Discussion

4.1. Compositional and Positional Analyses

A comparison of AAC between hiABFs and QSPs
was conducted in this study, the results of which are
shown in Figure 3A. It can be observed that hiABFs
exhibited a higher abundance of positively charged
amino acids, such as arginine (R) and lysine (K), as well
as amino acids with hydrophobic side chains, including
leucine (L), tryptophan (W), and valine (V), compared to
QSPs. Appendix 4 in the supplementary file provides a
classification of amino acids, based on their side chain
properties. Twenty standard amino acids were categorized
into five groups based on their properties. The aliphatic
group was composed of G, A, V, L, M, and I amino acids,
while the aromatic group consisted of F, Y, and W amino
acids. The positive charge group included K, R, and H
amino acids, while the negative charge group comprised
D and E amino acids. Also, the uncharged group included
S, T, C, P, N, and Q amino acids. The distribution of these
groups between hiABFs and QSPs is presented in Figure 3B.

The bacterial membrane contained a significant
number of negatively charged components, which made
it favorable for interactions with positively charged
peptides through cation-pi interactions. In this regard,
Segev-Zarko et al. demonstrated that a high frequency
of leucine (L) and lysine (K) in peptide sequences could
enhance their ABF effects (51). Positional preference
analyses were conducted for a comprehensive assessment
of peptide sequences, exhibiting high ABF activity. The
analysis focused on the first five positions of both N and
C termini. Sequences with a length exceeding 10 residues
were selected from hiABF and QSP datasets. Figure 4A and
B depict the results of positional preference analysis.

In hiABFs, the N-terminal positions were
predominantly occupied by arginine (R) and lysine
(K), followed by hydrophobic amino acids, including
leucine (L) and isoleucine (I). In QSPs, the first position
was predominantly occupied by the uncharged and polar
amino acid, serine (S), along with negatively charged
amino acids, including aspartate (D) and glutamate (E).
Serine also exhibited dominance in the third and fifth
positions, while glycine (G) and leucine (L) were more
frequently observed in the second and fourth positions.

In the C-terminus of hiABFs, arginine (R) and lysine
(K) were the most preferred residues in all five positions.
In contrast, in QSPs, the first to fourth positions were
predominantly occupied by nonpolar amino acids,
including phenylalanine (F), alanine (A), leucine (L),
and glycine (G). In the fifth position, positively charged
residue lysine (K) was predominant. In this regard, a study
by Rydberg et al. focused on three peptide sequences,
which were exclusively composed of arginine (R) and
tryptophan (W). Their findings revealed that an increase
in the frequency of arginine in both N-terminus and
C-terminus of peptides led to a significant reduction
in their cytotoxicity against CHO cells compared to the
sequence with a high frequency of tryptophan (W) in the
N-terminal position (48).

The ABF peptides have been found to be effective in
preventing biofilm formation through the inhibition of
the stringent response molecule, ppGpp (11). In a study by
Jiale et al., it was discussed that the interaction between
the 1018M peptide and ppGpp was influenced by specific
amino acids, with valine (V) and arginine (R) playing a
crucial role in this interaction (52). Moreover, Shang et al.
demonstrated that ABF peptides containing tryptophan
residues could disrupt quorum sensing and effectively
inhibit biofilm formation in multidrug-resistant
Pseudomonas aeruginosa. These peptides also exhibited
synergistic effects when combined with antibiotics, such
as ceftazidime and piperacillin (53).

For further investigation, a comparison was made
between hiABFs and peptide sequences with only ABP
effects and less than 25% ABF activity, as reported in
DRAMP 2.0 and BaAMP databases (54). Appendix 5
presents a comparison of amino acid frequencies. The
analysis revealed that the frequency of lysine (K), leucine
(L), arginine (R), and tryptophan (W) in hiABFs was
significantly higher than ABP peptides, which lacked
ABF activity or exhibited no significant activity. This
analysis highlighted the significance of lysine (K),
leucine (L), arginine (R), and tryptophan (W) residues
in interactions with bacterial membranes and other
mechanisms involved in biofilm development, such as
quorum sensing and ppGpp.
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Figure 3. A, comparison of amino acid composition (AAC) between highly active antibiofilms (hiABFs) and quorum-sensing peptides (QSPs); B, the figure demonstrates the
distribution of aliphatic, aromatic, positively charged, negatively charged, and uncharged amino acids in hiABFs and QSPs.

An intriguing compositional analysis was conducted
to compare peptide sequences that were experimentally
validated to have over 50% activity against preformed
biofilms (24 hours old) with sequences that influenced
biofilm formation when microbial cells were exposed to
them for 3 - 24 hours. The categorization of preformed and
formation groups was based on the method described by
Di Luca et al. (19). Based on the results, it was observed
that the formation group exhibited a higher frequency of
tryptophan (W), valine (V), and arginine (R), compared to
the preformed group. The AAC analysis for both groups
is depicted in Appendix 6. The increased prevalence of
W, V, and R amino acids in ABF peptides that function
during the formation stage is probably attributable
to the enhancement of interactions between peptide
sequences and ppGpp or quorum-sensing molecules. The
physicochemical properties, including charge, charge
density, hydrophobic ratio, PI, aliphatic index, aromaticity,
Boman index, and instability index of hiABFs and QSPs,
were calculated; the statistical results are presented in
Figure 5.

The mean positive charge of hiABFs was found
to be higher than that of QSPs. A higher positive
charge facilitates electrostatic interactions between
peptide sequences and the negatively charged target
membrane. As mentioned earlier, optimization strategies
employed to enhance the antimicrobial performance of
peptides against planktonic cells may not be applicable
to peptides with ABF activity. Alginate is one of the major
polysaccharides in the biofilm architecture of P. aeruginosa
and other pulmonary pathogens (1). Stark et al. suggested
that increasing the hydrophobicity of cationic peptides

could enhance their antibacterial effects (55). However,
Benincasa et al. found that when peptide sequences
were exposed to an environment containing alginate,
an increase in hydrophobicity could lead to peptide
aggregation and subsequent deactivation (56). Figure
5 illustrates a comparison of hydrophobicity between
hiABFs and QSPs, revealing that hiABFs exhibited lower
hydrophobicity compared to QSPs.

Moreover, when comparing hiABFs with ABPs, it was
observed that the mean Eisenberg hydrophobicity for
hiABFs with an experimentally confirmed high ABF activity
was -0.19, while for ABPs, it was 0.11. In an experimental
study focusing on IDR-1018 and 1018M peptides against
methicillin-resistant Staphylococcus aureus (MRSA), it was
found that 1018M peptides inhibited biofilm formation,
whereas IDR-1018 did not influence biofilm formation.
Interestingly, the 1018M peptide exhibited significantly
lower hydrophobicity compared to IDR-1018, with its
hydrophobic ratio being 25% lower than that of IDR-1018
(52).

Appendix 7 illustrates the comparison results of charge
between ABP and ABF peptides. The analysis demonstrated
that the average positive charge of ABF sequences was
higher than that of antibacterial sequences. This higher
positive charge in ABF peptides can be interpreted
from another perspective. The biofilm matrix is known
to contain extracellular DNA (eDNA) as a prominent
component (3). It has been proposed that eDNA plays
a critical role in maintaining the structural integrity of
biofilms (1). In a study by Mulcahy et al., the chelator-like
properties of eDNA were reported (57). Positively charged
ABF peptides exhibited a strong affinity for interacting
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Figure 4. The sequence logos of the first five positions of N and C termini in A, highly active antibiofilms (hiABFs); and B, quorum-sensing peptides (QSPs). The size of residues
is proportional to their propensity.

with eDNA within the biofilm matrix. This interaction
had the potential to saturate the cation-binding capacity
of eDNA and potentially disrupt the eDNA-mediated
resistance mechanisms of bacteria in the biofilm state (1).

The dipeptide compositional analysis between hiABFs
and QSPs highlighted several prominent dipeptide
combinations, including RR, KK, RW, RI, IR, LL, LK, KL, KI,
and RV, which were found to be the most abundant DPCs
in hiABFs. The analysis of dipeptide compositions revealed
the notable occurrence of charged and hydrophobic
motifs in ABF peptides with significant ABF effects.
This observation aligns with the findings reported by
Bose et al., which emphasized that these dipeptide

combinations reflected the amphipathic characteristics of
ABFs (58). Figure 6 provides a comparative illustration of
dipeptide compositions between hiABFs and QSPs, further
elucidating the distinguishing patterns and frequencies
of di-peptides in these peptide categories.

4.2. Feature Selection andModel Performance Evaluation

The performance of all 13 binary classifiers was
assessed on both training and validation datasets, using
10-fold cross-validation. This process was repeated
50 times to ensure the robustness of the results. The
cross-validation score, which is a reliable metric for
evaluating the model performance on unseen data, was
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Figure 5. Comparison of physicochemical properties between highly active antibiofilms (hiABFs) and quorum-sensing peptides (QSPs)

Figure 6. Dipeptide composition (DPC) in comparison between highly active antibiofilms (hiABFs) and quorum-sensing peptides (QSPs)

utilized for model selection. To gauge variability in
performance, the standard deviation of cross-validation
scores was computed and considered during the model
selection process. Appendix 8 provides a summary of the
overall performance of all models. The comparison of

models in terms of accuracy is illustrated in Appendix 9.

Among the classifiers, the model based on SVM,
random forest, and logistic regression demonstrated
superior performance compared to the other classifiers.
The logistic regression model achieved an accuracy of 99%
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on the training set and 93% on the validation set. Also,
the random forest model achieved an accuracy of 99% on
the training set and 94% on the validation set. Based
on the findings, SVM models with different kernels (RBF,
poly, and linear) showed comparable performance, with
an overall accuracy of 98% on the training set and 93%
on the validation set. Considering their high accuracy
and consistent performance, classifiers, including logistic
regression, random forest, and SVM, were selected for
further optimization and analysis.

In the feature space optimization process, both
filter-based and wrapper-based methods were employed.
First, an MC analysis was conducted with a threshold of
0.75, resulting in the elimination of 230 highly correlated
features from the initial feature space. The SelectKbest
method was then applied, exploring various K values,
ranging from 50 to 200. However, the best results were
obtained when K was set at 100. Finally, recursive feature
elimination, cross-validated (REFCV) was performed on the
selected models. Figure 7A presents the t-SNE visualization
of the feature-selected data.

The perplexity parameter was set at 5.0, and the
learning rate parameter was set at 200, based on empirical
observations and experimentation to obtain significant
visualizations. The perplexity parameter in t-SNE plays
a crucial role in determining the effective number of
neighbors considered for each data point during the
dimensionality reduction process (38). In the resulting
t-SNE plot, clear separation between data points is not
readily apparent. Despite the lack of distinct clusters, the
selected classifiers were able to exploit subtle patterns and
interact with feature combinations that were not visually
discernible in the t-SNE plot. These classifiers successfully
learned complex decision boundaries, enabling accurate
predictions even in scenarios where the data points were
not well-separated within the low-dimensional space. The
performance of the optimized models, including the
results of hyperparameter tuning and feature selection
methods, was evaluated using 10-fold cross-validation
on the validation set. The results of analysis, which
considered different feature spaces, are presented in Table
2.

In Figure 7B, the ROC curves for models with superior
performance are displayed. These curves were plotted
using the Orange 3.33.0 Python package (59).

Diverse metrics were used for the analysis and
comparison of model performance. The numbers
of positive and negative libraries were 183 and 198,
respectively. Consequently, the dataset sizes were
comparable and almost balanced, enabling the use
of accuracy as a criterion for assessing the model
performance. To mitigate the potential for overly

optimistic reporting of model performance, the MCC
value was also taken into consideration. Equation 12
demonstrates that MCC yields a high score only when
the binary classifiers perform well in all categories
of the confusion matrix, including TP, FN, TN, and FP,
proportionally adjusted to the size of positive and
negative libraries (41). Table 2 presents the results of
analysis based on the MCC value, which demonstrate the
strong performance of classifiers in predicting the high
ABF activity of peptide sequences.

4.3. Model Performance on the Independent Test Set

Table 3 displays the performance of the optimized
classifiers on the independent test set.

The high ABF activity of peptide sequences can be
predicted with high accuracy and precision using the
optimized models, based on logistic regression, random
forest, and support vector machine (RBF kernel) trained on
the proposed feature space. The logistic regression-based
model achieved an accuracy of 98.9% and a precision of
97.6%, while the random forest-based model achieved an
accuracy of 98.9% and a precision of 99%. The SVM-based
model, with an RBF kernel, achieved the highest accuracy
(99%) and precision (99%). Compared to similar models,
BIOFIN utilized SVM and random forest-based classifiers
on different amino acid compositions and reported an
accuracy of 97% and an MCC of 0.83 (20). The frequency
of amino acids was employed by dPABBs in combination
with SVM and Weka algorithms, resulting in accuracy and
MCC values of 95.2% and 0.91, respectively (19). Fallah
Atanaki et al. developed an SVM-based model that achieved
an accuracy of 95% and an MCC of 0.89 (16). The model
was trained separately with each feature set. All feature
sets exhibited good potential for distinguishing between
hiABFs and QSPs, except for AAC. However, the composition
of all groups yielded better results.

4.4. Conclusions

In recent decades, the characteristics of infections
have undergone fundamental changes, primarily due
to antibiotic resistance caused by bacterial biofilms.
Consequently, a significant emphasis has been placed
on developing antimicrobial agents that can address
the challenges posed by antibiotic resistance. Peptides
have emerged as a promising class of antimicrobial
biomolecules, with ABF peptides showing remarkable
potential in eradicating preformed biofilms or inhibiting
biofilm formation. Meanwhile, experimental methods
for designing and synthesizing ABF peptides can be
cumbersome. Therefore, development of computational
methods to streamline this process has become
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Table 2. The Performance Metrics for the Selected Classifiers with Tuned Hyperparameters

Model Hyperparameters Method of Feature
Selection

Accuracy Precision MCC CK F1-Score AUC-ROC

Logreg
C’: 1000, ’penalty’: ’l2’,
’solver’: ’newton-cg’, ’tol’:
0.01

MO (75%) 0.98 0.97 0.958 0.958 0.98 0.973

REFCV 0.99 0.99 0.986 0.986 0.99 0.993

SelectKbest 0.982 0.98 0.965 0.965 0.98 0.982

RFC

’min samples leaf’: 2,
’n estimators’: 500,
’max depth’: 8,
’max features’: ’sqrt’

MO (75%) 0.982 0.98 0.965 0.965 0.98 0.982

SelectKbest 0.97 0.97 0.947 0.944 0.97 0.972

REFCV 0.97 0.97 0.9375 0.9375 0.97 0.9688

SVM rbf ’C’: 100, ’gamma’: 0.001
MO (75%) 0.985 0.99 0.971 0.979 0.99 0.98

SelectKbest 0.97 0.975 0.944 0.942 0.97 0.973

SVM poly
’C’: 0.1, ’degree’: 2,
’gamma’: 1

MO (75%) 0.98 0.96 0.958 0.958 0.98 0.978

SelectKbest 0.98 0.98 0.953 0.958 0.98 0.948

SVM lnr ’C’: 0.1, ’gamma’: 1

MO (75%) 0.98 0.99 0.972 0.972 0.99 0.986

REFCV 0.99 0.99 0.976 0.979 0.99 0.99

SelectKbest 0.96 0.96 0.916 0.916 0.96 0.957

Abbreviations: Logreg, logistic regression; RFC, random forest classifier; SVM, support vector machine; MCC, Matthew’s correlation coefficient; CK, Cohen’s kappa
statistic; AUC-ROC, area under the receiver operating characteristic curve; REFCV, recursive feature elimination, cross-validated.

Figure 7. The t-distributed stochastic neighbor embedding (t-SNE) visualization of feature-selected data (A); the ROC curve illustrates the ability of the selected classifier to
distinguish between highly active antibiofilms (hiABFs) and quorum-sensing peptides (QSPs).

indispensable. The application of machine learning and
artificial intelligence in drug discovery and development
has gained significant attention due to its advantages.
Consequently, there has been a rapid increase in the
number of studies utilizing these techniques for peptide
prediction and design. In this study, the advantages of
multiple machine learning algorithms were utilized
to create a computational platform for predicting the
high ABF effect of peptide sequences. The focus was on
ABF peptides with significant activity due to a lack of

research incorporating significant ABF activity in their
datasets and model development. The dataset gathering
process involved the inclusion of peptide sequences
with ABF activity equal to or higher than 50%. As for
the negative datasets, QSPs were utilized. Duplicated
sequences, sequences containing non-standard amino
acid residues, and sequences with any modifications or
indefinite residues were excluded from the datasets. The
feature space was created by calculating features based
on physicochemical properties, amino acid composition,
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Table 3. The Performance of Optimized Models on the Independent Test Set

Model Accuracy Precision MCC CK F1-score AUC-ROC

Logreg 0.989 0.976 0.979 0.979 0.988 0.999

RF 0.989 0.99 0.979 0.972 0.99 0.988

SVM

RBF 0.99 0.99 0.979 0.979 0.98 0.99

Polynomial 0.96 0.96 0.917 0.917 0.96 0.958

Linear 0.98 0.99 0.876 0.876 0.942 0.936

Abbreviations: Logreg, logistic regression; RF, random forest; SVM, support vector machine; MCC, Matthew’s correlation coefficient; CK, Cohen’s kappa statistic; AUC-ROC,
area under the receiver operating characteristic curve.

order, and their distribution. Filter- and wrapper-based
feature selection methods were employed to construct
the feature space. A range of binary classifiers with
10-fold cross-validation was used to identify models
with superior performance, which were subsequently
optimized by adjusting their hyperparameters using
GridSearchCV. Among the selected models, those based on
logistic regression, SVM, and random forest demonstrated
better performance on both training and validation
datasets in terms of accuracy, precision, and MCC.
The model performance and the created feature space
were evaluated on an independent test set to predict
highly active ABF properties. The model achieved 99%
accuracy, 99% precision, and an MCC of 0.979. Overall, an
in-depth analysis of the structure, composition, amino
acid preferences, and relationship with the mechanism
of action in hiABFs can greatly facilitate the design
of peptide-based therapeutics. While computational
methods play a crucial role in streamlining the drug
design and development process, it is important to
acknowledge that there is a long way ahead before
computer algorithms can lead to the development of
FDA-approved drugs.
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Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
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