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Abstract

Background: Scar is an unpleasant skin lesion that occurs following deep wounds or burns. The application of local triamcinolone
is a common treatment for scar treatment and prevention, which should be repeated several times in conventional dosage forms.
An effort has been made here to provide a prolonged triamcinolone dermal delivery by microneedle technology, which can also be
used for wound closure.
Objectives: This study aimed to develop a long-lasting polylactic acid (PLA) microneedle patch for the prolonged release of
triamcinolone acetonide (TrA) that could potentially be used for closure of wound edges and scar prevention and treatment.
Methods: In this study, 3% and 10% TrA-containing polymeric microneedles were fabricated using the micro molding-solvent casting
method. Optical microscopy, X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), and differential
scanning calorimetry (DSC) were used for the characterization of microneedles. Mechanical strength was evaluated using a
compression test and methylene blue staining. Additionally, the insertion depth was determined by histopathological sectioning
of human skin samples and also insertion into Parafilm®M as a skin model. The in vitro drug release profile of the microneedles was
studied over 34 days, and the kinetic model was determined. The ex-vivo skin permeation of TrA was studied using a Franz-diffusion
cell.
Results: The TrA-containing PLA microneedles were fabricated with a uniform structure without any failure, deterioration, or loss
of needles. Fourier-transform infrared spectroscopy and differential scanning calorimetry showed no interaction between TrA
and PLA, and no effect on crystallinity and thermal behavior of TrA on polymer was detected. Microneedles showed appropriate
mechanical properties, which were able to penetrate to about 900 - 1000µm depth. Release profile from the whole body of 10% and
3% microneedle fitted to Higuchi model with cumulative amounts of 625 µg and 201.64 µg over 34 days. Release from the needles
followed zero-order kinetic with cumulative amounts of 30.04µg and 20.36µg for 10% and 3%, respectively, for 34 days. Permeation
was calculated to be 17 µg/day for 10% TrA-containing microneedle.
Conclusions: The results suggested that suitable PLA microneedles containing TrA with prolonged release behavior can be
successfully constructed with the solvent casting method.
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1. Background

Scars are aberrant tissues that occur during the
wound-healing process due to the excessive formation
of the connective tissue as a result of continuous local
inflammation and infection (1, 2). Hypertrophic scar
and keloid are the main types of scars. Pain, itching,
restriction in movement, and cosmetic aberrant are

the major symptoms of scarring that severely affect
the lives of patients and have physical, psychological,
and social consequences (3, 4). Several therapeutics
are effective in down-regulating scar formation, which
is mainly related to their anti-inflammatory effect.
Intralesional corticosteroids (5), fluorouracil (6),
interferon (7) injections, light and laser therapy (8),
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and cryotherapy (9) are the most prevalent methods
for scar management. Among these, intraregional
corticosteroid injection is the most widely used approach
(10). However, this encounters some limitations, such as
pain and frequent administration for a long time with a
need for injection by professional healthcare (10, 11). Scar
prevention might be helpful during wound healing using
conventional transdermal formulations (cream, lotion,
gel, and ointment); however, this might not be effective
for mature scars due to poor penetration.

Microneedle is a novel dermal or transdermal drug
delivery system that physically bypasses physiological
barriers. The effectiveness of microneedles in wound
healing, tissue regeneration, and scar treatment has
been confirmed in several studies (12, 13). Microneedles
can be loaded with different therapeutic agents that
promote wound healing and treat scars (14, 15). Moreover,
microneedles act as mechanical stimulators for collagen
deposition and reorganization (12) and reduce the stress
of the microenvironment, which helps down-regulate scar
formation (16).

In terms of drug delivery, microneedles have been
categorized as hollow, coated, and dissolving. Due
to safety issues, dissolvable microneedles, which are
made of fast-dissolving polymers, have attracted the
most attention. However, these microneedles release
the cargo in a bolus; nevertheless, the polymer dissolves
and cannot modulate the release kinetics (17). Recently,
swellable and biodegradable microneedles have been
designed for controlled release and long-time therapeutic
transportation, which is especially interesting for the
treatment of chronic cases (18, 19).

The present study aimed to develop a novel,
long-lasting, controlled-release triamcinolone acetonide
(TrA) microneedle based on polylactic acid (PLA) through
a micro-molding solvent casting method. Polylactic
acid is a biodegradable and biocompatible polymer
widely used in biomedical applications, especially in
controlled-release scopes (20). Triamcinolone acetonide
is an anti-inflammatory drug that is widely used for
scar treatment (21) and sometimes for the prevention of
recurrence after scar excision surgery (21, 22).

The physicochemical properties of TrA-loaded
controlled-release microneedles were characterized
by optical microscopy, X-ray diffraction analysis
(XRD), differential scanning calorimetry (DSC), and
Fourier-transform infrared spectroscopy (FT-IR).
Furthermore, mechanical properties were examined
by evaluating the height reduction percentage after
mechanical loading and methylene blue staining. The
insertion depth of microneedles was evaluated by
the histological sectioning of skin after microneedle

treatment and quantified by Parafilm®M as a skin
simulator. Afterward, TrA content and uniformity of
its distribution, in-vitro release profile, and kinetic of
release were determined. Ultimately, the ex-vivo study was
conducted to determine TrA permeation through the skin.

2. Methods

2.1. Materials

Poly (lactic acid) (PLA) was obtained from Chemiekas
GmbH (Austria). Triamcinolone acetonide (TrA) was
purchased from Iran Daru Co. Dichloromethane (DCM),
and high-performance liquid chromatography (HPLC)
grade acetonitrile and methanol were obtained from
Merck (Germany).

2.2. Microneedles Fabrication

The fabrication of TrA/PLA microneedle patches is
shown in Figure 1. Initially, 3% and 10% w/w (in polymer)
of TrA solutions in DCM were prepared. Then, an
appropriate amount of PLA was added and constantly
stirred by magnetic stirring. Appropriate PLA content
for the construction of microneedles with solvent casting
method was previously developed and optimized to be
25% w/v (23). After complete dissolution, the polymeric
solution was poured into a polydimethylsiloxane (PDMS)
micro-mold and centrifuge (CELECTA LAB, TL220, China)
at 4000 rpm for 40 minutes. Each mold had 81 square
cross-section pyramidal shape with 1660µm height, 24µm
tip diameter, and base width of 436µm.

After drying for 24 hours at room temperature, the
microneedles were removed from the molds and dried
completely in a vacuum desiccator until reaching a
constant weight. A microneedle patch without TrA was
also fabricated and was used as a control.

2.3. Morphological Study of Microneedle Patch

The microneedles were visualized by a light
microscope (Ceti, Medline Scientific, UK) and imaged
with a digital camera (DFK MKU130, Source Imaging,
Germany) to determine the geometrical parameters.

2.4. Fourier-Transform Infrared Spectroscopy (FT-IR)

Polylactic acid and triamcinolone acetonide
interactions were studied using an ATR-FTIR spectrometer
(Avatar 380, Thermo Nicolet, USA) in a region of 600 - 4000
cm-1 for plain, 10% TrA containing microneedle and TrA.

2 Iran J Pharm Res. 2024; 23(1):e138857.
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Figure 1. Schematic illustration of triamcinolone containing polylactic acid microneedle patch construction process

2.5. Differential Scanning Calorimetry (DSC)

Microneedles were evaluated in terms of thermal
and crystallinity behavior using DSC (DSC-60, Shimadzu,
Japan) as described in a previous work (23). Briefly, the
samples were heated (in an aluminum pan) from 0 to
200°C, then held at 200°C for 5 minutes, further cooled
to 0°C and kept at this temperature for 5 minutes, and
subsequently heated to 200°C. Each step was conducted
at a 10°C/min rate under a nitrogen atmosphere with a
40 mL/min flow rate. Glass transition temperature (Tg),
melting point (Tm), and degree of crystallinity (χc) were
calculated from the second heating scan. The percentage
of crystallinity was determined by Equation 1, while w is
the fraction of PLA in composite and ∆Hm is the melting
enthalpy. The ∆H0

m is the enthalpy of melting for 100%
crystalline PLA and is determined to be 93.7J/g (24).

%χc = ∆Hm

w∆H0
m

× 100

2.6. X-ray Diffraction Analysis (XRD)

The crystalline state of TrA in fabricated microneedles
was studied by X-ray diffraction (’X’Pert PRO MPD,
PANalytical Company, The Netherlands) at 25°C with a
Cu-Kα source at 40 mA and 40 KV; the samples were
scanned at 2°-80°, and step time was 38 seconds.

2.7. Mechanical Properties of Microneedle Patches

The mechanical strength of the microneedle patches
was studied by Brookfield texture analyzer (CT3, USA) in
compression mode (25). Briefly, each microneedle was
compressed between the fixed and moving parts of the
instrument at a constant speed of 0.02 mm/s to reach
a force of 32 N and held for 30 seconds. The height of
the needles before and after compression was determined,
and height reduction was calculated (26).

2.8. Insertion Ability of Microneedles

In-vitro insertion ability was conducted on
full-thickness skin samples (female subjects aged 40
- 45 years), which were separated during cosmetic
surgery. The underlying fatty layer was removed, and
the samples were stored at -20°C until use. Skin samples
were thawed at room temperature before experiments.
Furthermore, TrA-loaded patches were manually pressed
onto skin samples for 30 seconds. After removing the
microneedle, the insertion site was immediately stained
with 0.4% methylene blue solution. The excess stain was
removed with an alcohol swab, and the punctured skin
was photographed. To visualize the insertion depth, the
inserted skin was fixed in 10% formalin, and histological
sections were prepared and stained with hematoxylin and
eosin (H&E) (27).

The validated Parafilm®M model, as a simulant of
human skin, was used to intuitively investigate the depth
of insertion. Ten layers of Parafilm®M were superimposed
and placed on dental wax as support (28). Subsequently,
the microneedle was applied manually for 30 seconds.
After peeling off the microneedle, the number of holes in
each layer of Parafilm®M was determined. The percentage
of holes created in each layer was calculated by dividing
the number of holes by the total number of needles.
Considering a thickness of 127 µm for each layer, the
insertion depth was calculated.

2.9. Drug Analysis

The concentration of TrA was determined using
reverse-phase HPLC (Knauer, Germany) equipped with a
stainless-steel column (RP18 column, 5 µm particle size,
250 mm × 4.6 mm i.d., PerfectSil Target) for separation
and ultraviolet (UV) detector at 254 nm. The mobile phase
was a mixture of 55:45 (v/v) water:acetonitrile, and the flow
rate was adjusted to 1 mL/min (29). The limit of detection
(LOD) and limit of quantification (LOQ) were measured to
be 0.07 and 0.09µg/mL, respectively.

Iran J Pharm Res. 2024; 23(1):e138857. 3
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2.10. Drug Content and Uniformity

To determine the TrA content, each microneedle patch
(n = 3) was completely dissolved in DCM by sonication
for 10 minutes. Methanol was then added to precipitate
the polymer. Subsequently, the mixture was centrifuged
at 12000 rpm for 10 minutes, and the supernatant
was collected and analyzed by HPLC (30). Finally, the
percentage of TrA recovery was calculated.

To study the uniformity of TrA distribution in an
individual microneedle patch, each patch was divided into
3 pieces, and the percentage of TrA recovery in each part
was determined as discussed.

2.11. In-vitro Drug Release and Kinetic Studies

To investigate the release from the whole body of the
microneedle, each microneedle patch was placed in 50
mL of phosphate-buffered saline (PBS) containing 0.02%
Tween 80 (31) and transferred to a shaking incubator
(JTSDL40, JALTAJHIZ, Iran) (50 rpm) at 37 ± 1°C. At
predetermined times until 72 hours, 1 mL of release
medium was removed and immediately replaced with
fresh buffer (at 37°C). The release medium was completely
replaced with fresh buffer in other sampling times.

To study the release from needles alone, firstly, each
microneedle patch was passed through a single layer
of Parafilm®M, and the baseplate was sealed completely.
Subsequently, each patch was floated on the surface of a 4
mL release medium while the needles were in contact with
an aliquot (32). Release medium was sampled as previously
described. Triamcinolone acetonide concentration in the
sampling aliquots was analyzed using HPLC.

To study the mechanism of release of TrA from
the whole body of microneedles and needles alone,
the obtained release data were analyzed using
zero-order, first-order, cylinder-type Fickian, and Higuchi
mathematical models.

2.12. Ex-vivo Skin Permeation

Ex-vivo permeation experiments were performed on
the full-thickness dorsal skin of male Sprague-Dawley
rats. At first, the rats were anesthetized and sacrificed.
Subsequently, the back region was trimmed and excised.
Then, the adherent fat was removed, and the samples were
stored in aluminum foil at -20°C until use. After thawing
for 2 hours at room temperature, the microneedles were
manually applied to the skin samples for 30 seconds.
The samples were fixed between the donor and receptor
compartments of Franz-diffusion cells. The receptor
chamber was filled with 3 mL of buffer and placed at
37 ± 0.5°C with stirring. At each predetermined time,
1 mL of receptor medium was removed and replaced

with the same volume of fresh buffer. The cumulative
amount of permeated TrA was plotted as a function of time
after HPLC analysis of TrA content. Permeation studies
used microneedles and an O/W cream, all containing
10% TrA. The cream was formulated here and was used
as a conventional dosage form just for comparison. All
permeation experiments were conducted 3 times.

2.13. Statistical Analysis

The results are presented as mean ± standard deviation
(SD). A t-test and one-way analysis of variance (ANOVA) with
Tukey’s post-hoc test were used for statistical comparisons,
depending on the situation, using SPSS (Statistical Package
for Social Science, IBM SPSS Statistics 22, New York,
USA). A P-value less than 0.05 was considered statistically
significant.

3. Results

3.1. Preparation of Microneedle Patch

The 3% and 10% w/w TrA-containing PLA microneedles
were fabricated using the solvent casting micro-molding
method. As Figures 2A and 2B show, fabricated
microneedles contain 81 (9 × 9) uniformly distributed
needles without any failure, deterioration, or loss.
Through microscopic analysis (Figures 2C and 2D), the
microneedle dimensions were measured, and the results
are presented in Table 1. The data show that there were no
statistically significant differences between the geometry
of different microneedles (P > 0.05).

Table 1. Dimension of Microneedles Measured by Optical Microscopy

Microneedle Needle Height,
µm

Base,µm Needle-to-needle
Distance,µm

Plain 1358 ± 54 418 ± 25 1408 ± 20

3%
TrA-containing

1373 ± 62 424 ± 17 1414 ± 12

10%
TrA-containing

1355 ± 50 428 ± 14 1410 ± 18

Abbreviation: TrA, triamcinolone acetonide.

3.2. Physicochemical Properties of Drug-Loaded Microneedles

3.2.1. Fourier-Transform Infrared Spectroscopy (FT-IR)

Fourier-transform infrared spectroscopy analysis of
10% TrA-containing and plain microneedle and TrA are
presented in Figure 3A. The characteristic bands of the
TrA spectrum were the broad peak at 3355 cm-1 (a typical
absorption band for vibrational stretching of -O-H groups)
and a peak at 1709 cm-1 (referred to as stretching vibration

4 Iran J Pharm Res. 2024; 23(1):e138857.
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Figure 2. Photographic image of A, B, 10% and 3% TrA-containing microneedle (scale: 0.5 cm), respectively; Microscopic image of C, D, 10% and 3% TrA-containing microneedle
(scale: 500µm), respectively.

of the carbonyl group); these results follow the previous
results (33).

The comparison of the FT-IR spectra for 10%
TrA-containing and plain microneedles revealed no
significant shifts in the main absorption bands of PLA
(e.g., 1753 and 1456 cm-1, as discussed in a previous paper
(23) in the formulations and no extra peaks were detected.
However, the TrA bands were not disclosed, which might
be masked by the PLA bands (possibly due to the lower
concentration of TA). This experience has been confirmed
in several studies (34). It can be concluded that there
was no interaction between the PLA and TrA in this
formulation.

3.2.2. X-Ray Diffraction Analysis (XRD)

X-ray diffraction analysis patterns of 3% and 10%
TrA-containing microneedle, plain microneedle, and TrA
powder are shown in Figure 3B. Triamcinolone acetonide
showed sharp diffraction peaks at 2θ values of 10.0°, 14.1°,

and 17.1°, representing its high crystallinity. Microneedles
containing 10% TrA represented characteristic diffraction
peaks of TrA (e.g., 2θ = 9.9° and 14°), stating that the drug
was dispersed as crystalline solid particles in the polymer
matrix. The decrease in the intensity of the characteristic
TrA diffraction peaks in this formulation, compared to TrA
powder, could be attributed to the recrystallization after
solvent evaporation in polymer matrices. Such behavior
has also been expressed in various studies (35). However,
in an X-ray diffractogram of 3%TrA containing microneedle,
the characteristic peaks of TrA disappeared. This finding
implies that the TrA was distributed in molecular form or
was in an amorph state in the polymer matrix.

3.2.3. Thermal Behavior

Differential scanning calorimetry thermograms of
plain and TrA-loaded microneedles are presented in
Figure 3C. Differential scanning calorimetry analysis was
performed to investigate the effect of TrA content on

Iran J Pharm Res. 2024; 23(1):e138857. 5
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Figure 3. Physicochemical characterization of microneedles. A, FT-IR spectra of TrA powder, 10%-TrA containing and plain microneedle; B, XRD diffractogram of the plain, 3%
and 10% TrA-containing microneedle; C, DSC thermograms of the plain, 10% and 3% TrA-containing microneedle.

the thermal behavior of the polymer and determine the
crystallinity percentage of the polymer matrix.

The data showed that the addition of 3 and 10 wt%
of TrA did not have any relevant changes in Tg and
Tm. The crystallinity percentages of 10% and 3% TrA
microneedles were calculated to be 14.49 ± 0.91 and
13.12 ± 2.03, respectively, which showed no statistically
significant differences (P > 0.05). This finding indicates
that increasing TrA content did not affect the crystallinity.

3.3. Mechanical and Insertion Properties

Figure 4A depicts force-displacement curves of
different TrA-containing and plain microneedles, which
show good mechanical strength without any failure under
32 N compression force.

The percentage of height reduction under 32N axial
force for 10% and 3% TrA-containing microneedles were
determined to be 10.72 ± 2.44 and 12.75 ± 1.42 (Figure 4B),
respectively, which were not significantly different (P >

0.05).

The insertion capability of TrA-containing
microneedles into the skin is presented in Figures 4C and
4D. For both microneedles (3% and 10%), penetration was
confirmed by creating visible blue micro-holes (stained
with methylene blue following microneedle insertion) in
the excised human skin. Hematoxylin and eosin staining
of tissue sections of microneedle-treated skin (Figures
4 and 4D) showed that 3% and 10% microneedles were
penetrated to a depth of approximately 866 µm and
932 µm, respectively, which is approximately 64 - 69%
microneedle length.

Figure 4E depicts the capability of insertion of
TrA-containing and plain microneedles based on the
percentage of holes created in each Parafilm®M layer.
Both microneedles (3% and 10%) penetrated the seventh
layer and reached the eighth layer (with a percentage of
about 24 to 28%) of Parafilm®M. Therefore, the maximum
depth obtained by the microneedles was 889 µm to 1016
µm, which closely followed the insertion depth calculated
by the histological method.

6 Iran J Pharm Res. 2024; 23(1):e138857.
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Figure 4. Mechanical strength and insertion properties of microneedles. A, Force-displacement curves for plain, 3% and 10% TrA-containing microneedles; B, Height reduction
percentage of plain, 3% and 10%-TrA containing microneedles under 32 N compression force; C, D, 3% and 10% TrA-containing microneedle insertion into the human skin and
corresponding pathological sectioning with H&E staining, respectively; E, percentage of holes created in each layer of Parafilm versus the insertion depth for plain, 3%, and
10%-TrA containing microneedles.

3.4. Triamcinolone Acetonide Content and Uniformity

The average recovery percentage of loaded drug for
three patches was determined to be 100.6 ± 1.49 and
95.18 ± 2.56 for 3% and 10% TrA-containing microneedles,
respectively. In addition, the average recovery percentage
for three parts of an individual patch containing 3% and
10% TrA were 104.10 ± 2.24 and 94.38 ± 0.9, respectively.
High recovery percentage and low CV% showed complete
and uniform distribution of TrA between patches and
within each microneedle patch, indicating that the
molding and centrifugation process did not affect drug
distribution.

3.5. In-vitro Drug Release and Kinetics

The release profile of TrA from the whole body of
3% and 10% TrA-containing microneedles is depicted in
Figure 5A, A’. Following an ascending release in the first
7 days, a nearly linear release kinetic with the cumulative

release of 625.78 ± 53.94 µg (10.31 ± 0.89%) and 201.64
± 17.98 µg (12.19 ± 1.09%) for 10% and 3% formulation,
respectively, were observed. Figure 5B, B’ depicts the
cumulative release of TrA from the needles of 3% and
10% TrA-containing microneedles. Cumulative release for
10% and 3% formulations were determined to be 30.05
± 3.94 µg (9.00 ± 1.18%) and 20.37 ± 1.58 µg (22.38 ±
1.74), respectively. Release data from the needles of two
formulations of microneedle were described by zero-order
kinetic (Table 2); however, the profile from the whole body
was fitted to the Higuchi model (Table 3).

3.6. Ex-vivo Permeation Study

Based on the in-vitro results, since the microneedle
with 10% TrA released more TrA during the test time, it
was preferred as the optimal formulation for further
ex-vivo experiments. The ex-vivo permeation profile of
microneedle and cream containing 10% TrA are illustrated

Iran J Pharm Res. 2024; 23(1):e138857. 7
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Figure 5. Profiles of release of TrA from the whole body (A and A’) and needles only (B and B’) of microneedles containing 3% and 10% TrA. A and B represent the cumulative
amount released, and A’ and B’ represent the cumulative % released (mean ± SD, n = 3).

Table 2. Fitting of Triamcinolone Release Data from Needles of 3% and 10% Triamcinolone Acetonide (TrA)-Containing Microneedles on the Different Kinetic Models with
Correlation Coefficient (R2) and Release Rate Constant (k)

Formulation
Zero-Order First-Order Fickian-Cylinder

R2 K0 (µg. h-1) R2 K1 × 10-3 (h-1) R2 KF (µg. h-0.45)

3% TrA 0.9946 0.0244 0.9028 2.309 0.9679 1.195

10% TrA 0.9967 0.0350 0.9416 2.764 0.9403 1.689

Abbreviation: TrA, triamcinolone acetonide.

Table 3. Fitting of Triamcinolone Release Data from Whole Body of 3% and 10% Triamcinolone Acetonide (TrA)-Containing Microneedles on Different Kinetic Models with
Corresponding Correlation Coefficient (R2) and Release Rate Constant (k)

Formulation
Zero-Order First-Order Higuchi

R2 K0 (µg.h-1) R2 K1 × 10-3 (h-1) R2 KH (µg.h-0.5)

3% TrA 0.7101 0.0622 0.5805 2.073 0.8715 2.211

10% TrA 0.9117 0.2158 0.7153 2.764 0.9796 7.186

Abbreviation: TrA, triamcinolone acetonide.
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in Figure 6. After 72 hours, the cumulative amount
of permeated TrA and permeation flux (the slop of
permeation profile) was calculated to be 51.49 ± 6.28 µg
and 0.91 ± 0.18 µg/h for microneedle and 19.43 ± 3.54 µg
and 0.26 ± 0.05 µg/h for cream, respectively, which were
statistically significant (P < 0.05). These data demonstrate
the superiority of microneedles in skin delivery, compared
to a conventional dosage form.
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Figure 6. The cumulative amount of TrA (µg) permeated through rat skin from 10%
TrA-containing microneedle and cream containing 10% TrA over 72 h (Mean ± SD, n
= 3).

4. Discussion

Polylactic acid is a Food and Drug Administration
(FDA)-approved polymer with biocompatibility and
biodegradability properties, which has received special
attention in pharmaceutical applications, especially for
the controlled release of active ingredients. Recently,
PLA has also been studied for the fabrication of
microneedles. Different micro-molding techniques,
including thermoforming and solvent casting, can be
used for fabrication. Among these methods, solvent
casting is preferred because it does not require harsh
conditions (high temperature) and does not have other
limitations (e.g., dependence on resolution, efficiency, and
quality on operating parameters) of the thermoforming
methods (36).

We previously developed the fabrication of PLA
microneedles with a solvent casting method and
optimized the polymer content to be 25% w/v (23). In
the present study, the construction of 3% and 10% TrA
containing microneedles is considered. Photographs and
microscopic images showed the successful construction
of microneedles. Additionally, a uniform distribution of
TrA between microneedle patches (encapsulation of about

95% or more) and within an individual patch was observed
for both formulations. Uniform distribution is essential to
achieve controlled drug release. The uniform distribution
of TrA into the PLA matrix was anticipated due to their
compatibility and miscibility. The closeness of Hansen
solubility parameters of TrA and PLA with a difference in
total solubility (∆δt) equal to 3.7 MPa1/2 (∆δt lower than
7 MPa1/2 indicates the compatibility of drug and polymer)
confirms the compatibility (37).

The mechanical properties of PLA depend on
the crystallinity content (38). Differential scanning
calorimetry was performed to determine the effect
of TrA content on crystallinity, which showed no
statistically significant effect between the crystallinity
of TrA-containing microneedles. Moreover, FT-IR did
not show the interaction between TrA and PLA at the
maximum TrA content (10%).

The mechanical strength of the fabricated
microneedles was confirmed in the compression test
under 32 N (0.39 N/needle force), an average force of
hand to manually insert the microneedle into the skin.
The force-displacement profile did not show any failure
(sudden force reduction during displacement); rather,
microneedles became slightly compressed with height
reduction. Studies have shown that the force required
to insert a microneedle into the skin is less than 0.1
N per needle (39), suggesting that the TrA-containing
microneedles and the plain microneedle can theoretically
penetrate the skin without any failure.

The effective insertion of microneedles into the skin
is an important parameter for efficient drug delivery. The
number of micro-holes (which appeared as blue dots after
methylene blue staining) created in the skin after using a
microneedle can be a measure of the insertion capability
of a microneedle (40). Both 3% and 10%-TrA loaded
microneedles showed reasonable insertion ability into the
excised skin with the creation of about 91% micro-holes
in the skin (Figure 4D). Histological results support the
effective insertion of microneedles into the skin.

Release from the whole body of the microneedle
showed a typical logarithmic profile. This profile is created
as a result of surface TrA dissolution and the creation
of a drug depletion zone (41). As the thickness of the
drug-free zone increases (thereby increasing the diffusion
length), a slower release of TrA is observed over experiment
time. Previous reports have shown similar behavior for
the release of various drugs from the PLA matrix (39, 42).
Release profiles from the whole body of microneedles were
best fitted to the Higuchi model for both formulations
(Table 1). This behavior was anticipated from the thin film
(slab) geometry that was considered for the whole body of
the microneedle.
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For needles, the release profile from microneedles
containing 3% and 10% TrA was well-fitted by a zero-order
model. The difference in release behavior from the whole
body of microneedles and needles alone can be attributed
to different geometries. In monolithic systems (a system
in which the drug is dissolved or dispersed in the polymer
matrix), the geometry of the system has a significant effect
on drug release (43). In these systems, the crystalline state
of the loaded drug is another parameter that affects the
drug release characteristics (44).

As the data show, there is a faster release (Figure 5B) for
the microneedle containing 3% TrA (less loading) than for
the 10% TrA-containing microneedle for both releases from
the whole body of the microneedle and needles alone. This
finding might be attributed to the crystallin dispersion of
TrA in 10% TrA-loaded microneedle compared to molecular
or amorphous state dispersion of TrA in 3% TrA-loaded
microneedle, as confirmed by XRD. As previous studies
have shown, drug dispersion in crystalline form reduces
the release rate compared to the amorphous state (45,
46). The cumulative permeated amount of TrA from TrA
containing microneedle was about 3.5 times higher than
TrA cream, which shows the superiority of microneedle in
drug delivery over conventional drug delivery systems.

As mentioned before, the intralesional injection of TrA
is the most widely used treatment for scars. Additionally,
some clinical studies have reported successful treatment
with no evidence of recurrence of keloid scars by the
surgical excision of the lesion in conjunction with
full-thickness skin grafting followed by the injection of
TrA (47-49). However, the intralesional injection of TrA
can lead to side effects, such as depigmentation/atrophy.
These effects are hypothesized to be caused by the low
solubility of TrA and the formation of microcrystals, which
leads to the involution of subcutaneous fat lobules and
the suppression of melanocyte function (50).

Using non-invasive transdermal delivery, such as
microneedle, can reduce the side effects of intralesional
injection. The excessive proliferation of fibroblasts is the
main cause of scar formation. Studies show that when
the concentration of TrA reaches 25 µg/mL, fibroblast
viability starts to decrease, and when the concentration
reaches 139 µg/mL, half of the maximum inhibitory
effect is achieved (27). According to these data, it can
be concluded that 10% TrA-containing microneedle
with a cumulative permeation amount of 52 µg (in
approximately 1 cm3) over 72 hours can have an inhibitory
effect on fibroblasts. To date, various fast-dissolving
TrA-containing microneedles have been developed for
scar treatment. The superiority of the microneedle
designed in the current study, compared to fast-dissolving
microneedles, is its long-lasting characteristic, which can

potentially be used for wound closure in addition to the
inhibitory effect on fibroblast proliferation.

4.1. Conclusions

The present study demonstrated the construction of a
long-lasting TrA-loaded PLA microneedle patch that can be
used as a platform to deliver therapeutic agents in addition
to potential use for wound closure. The microneedles
were fabricated by the solvent casting method and showed
reasonable mechanical strength. Microneedles were able
to release their cargo for a long time. The authors believe
that these microneedles could potentially be used for skin
grafting after scar removal surgery to close the graft and as
a TrA release platform to prevent scar recurrence.
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