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Abstract

Background: Polycystic ovary syndrome (PCOS) affects women of reproductive age globally with an incidence rate of 5% - 26%.
Growing evidence reports important roles formicroRNAs (miRNAs) in the pathophysiology of granulosa cells (GCs) in PCOS.
Objectives: The objectives of this study were to identify the top differentially expressed miRNAs (DE-miRNAs) and their
corresponding targets in hub gene-miRNA networks, as well as identify novel DE-miRNAs by analyzing three distinct microarray
datasets. Additionally, functional enrichment analysis was performed using bioinformatics approaches. Finally, interactions
between the 5 top-ranked hub genes and drugs were investigated.
Methods: Using bioinformatics approaches, three GC profiles from the gene expression omnibus (GEO), namely gene expression
omnibus series (GSE)-34526, GSE114419, and GSE137684, were analyzed. Targets of the top DE-miRNAs were predicted using the
multiMiR R package, and only miRNAs with validated results were retrieved. Genes that were common between the “DE-miRNA
prediction results” and the “existing tissue DE-mRNAs” were designated as differentially expressed genes (DEGs). Gene ontology
(GO) and pathway enrichment analyses were implemented for DEGs. In order to identify hub genes and hub DE-miRNAs, the
protein-protein interaction (PPI) network andmiRNA-mRNA interaction network were constructed using Cytoscape software. The
drug-gene interactiondatabase (DGIdb)databasewasutilized to identify interactionsbetween the top-rankedhubgenes anddrugs.
Results: Out of the top 20DE-miRNAs thatwere retrieved from theGSE114419 andGSE34526microarray datasets, only 13 of themhad
“validated results” through the multiMiR prediction method. Among the 13 DE-miRNAs investigated, only 5, namely hsa-miR-8085,
hsa-miR-548w, hsa-miR-612, hsa-miR-1470, and hsa-miR-644a, demonstrated interactions with the 10 hub genes in the hub gene-miRNA
networks in our study. Except for hsa-miR-612, the other 4 DE-miRNAs, including hsa-miR-8085, hsa-miR-548w, hsa-miR-1470, and
hsa-miR-644a, are novel and had not been reported in PCOS pathogenesis before. Also, GO and pathway enrichment analyses
identified “pathogenic E. coli infection” in the Kyoto encyclopedia of genes and genomes (KEGG) and “regulation of Rac1 activity”
in FunRich as the top pathways. The drug-hub gene interaction network identified ACTB, JUN, PTEN, KRAS, and MAPK1 as potential
targets to treat PCOS with therapeutic drugs.
Conclusions: The findings from this studymight assist researchers in uncovering new biomarkers and potential therapeutic drug
targets in PCOS treatment.

Keywords: Polycystic Ovary Syndrome, Bioinformatics, Biomarkers, MicroRNAs, Drug-Target Network

1. Background

Polycystic ovary syndrome (PCOS), a prevalent
endocrine and metabolic condition among women of

reproductive age, is estimated to affect 5% to 26% of
women worldwide, with variability depending on the
diagnostic criteria utilized (1). The clinical necessity for
robust and precise genetic biomarkers, both in tissue
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and blood specimens, has intensified. These biomarkers
hold the promise of unraveling the complex molecular
mechanism of PCOS and enhancing diagnostic accuracy
(2, 3), hence providing important support for clinical
translational research initiatives (4, 5). Noncoding
RNAs are being recognized as crucial regulators of gene
expression, organizing complex molecular networks
that are essential to the pathophysiology of numerous
diseases (6-9). Translational studies have investigated the
complex systems biology of diseases, particularly PCOS,
using various bioinformatics approaches, microarray
data analysis, DNA and RNA next-generation sequencing
methods, and DNA methylation analysis, among others
(10-12).

Granulosa cells (GCs) encompass the oocyte,
coordinating follicular development and playing a pivotal
role in primordial follicle maturation. Beyond their
central role in normal folliculogenesis, GCs contribute
to the perturbed follicular dynamics characteristic of
conditions like PCOS (13). Ovaries of individuals with PCOS
manifest small antral follicles, which exhibit impaired
progression into dominant follicles. Notably, increased
GC proliferation within smaller follicles is evident in
PCOS-affected ovaries (14). Consequently, GCs present a
valuable cellularmodel for investigating the intricacies of
PCOS.

MicroRNAs (miRNAs), a class of small noncoding
RNAs, exert a substantial regulatory effect on gene
expression. WithinGCs, a variety of microRNAs coordinate
ovarian follicle development and function (15) by
directly interacting with specific molecular targets and
modulating diverse signaling pathways. These pathways
involve important processes such as atresia, ovulation,
and ovarian steroidogenesis, with key contributors
including TGF-β1 (16), FSH (17), hormones (18, 19), and
apoptosis-related pathways (20). In our search, we
analyzed three distinct gene expression omnibus series
(GSE) datasets derived from PCOS patients: GSE34526,
GSE114419, and GSE137684. Our primary objective was to
identify topDE-miRNAswith validated effects, utilizing the
predictive power of the multiMiR R package. Genes that
were commonbetween the “DE-miRNA prediction results”
and the “existing tissue DE-mRNAs” were designated as
differentially expressed genes (DEGs). Then, DEGs were
exposed to functional enrichment analysis, followed by
the construction of hub miRNA-gene networks. Finally,
the drug-gene interaction database (DGIdb) was used
to investigate the interactions between the initial top 5
ranked hub genes and relevant therapeutic drugs.

2. Objectives

The objectives of this study were to identify the top
differentially expressed miRNAs (DE-miRNAs) and their
corresponding targets in hub gene-miRNA networks, as
well as identify novel DE-miRNAs by analyzing three
distinct microarray datasets. Additionally, functional
enrichment analysis was performed using bioinformatics
approaches. Finally, interactions between the 5 top-ranked
hub genes and drugs were investigated.

3. Methods

3.1. Downloading Microarray Data

ThemiRNA andmRNA expression profiles of GSE114419
(accessed October 30, 2018) and GSE34526 (accessed
November 6, 2012) and the mRNA expression profile of
GSE137684 (accessed September 19, 2019)weredownloaded
from the gene expression omnibus (GEO) database.

3.2. Statistical Analysis and Preprocessing of Microarray Data
for Integration

R project version 4.0.1 and the annotation package
were used to process the downloaded matrix file and
platform. The gene symbol, or the international standard
name of the gene, was generated from the ID, matching
the probe name. An inter-array normalization was
performed using the normalize between arrays function
from the limma R package. Top miRNAs and mRNAs from
three microarray datasets were analyzed for differential
expression analysis in the GCs of PCOS and healthy
participants using the R software package limma. The
cutoff parameters for screening top DE-miRNAs were as
follows: P-value < 0.05, log2FC ≥ 0.80, and log2FC ≤
-0.50.

3.3. Identification of Top DE-miRNAs and DE-mRNAs in Three
Microarray Datasets

Themicroarray dataset GSE137684 exclusively contains
mRNA expression data, whereas both GSE114419 and
GSE34526 encompass both miRNA and mRNA expression
patterns. Regarding this issue and based on the cutoff
parameters detailed in section 3.2, top DE-miRNAs were
retrieved from GSE114419 and GSE34526 microarray
datasets. The predicted targets of these top DE-miRNAs
were retrieved using the multiMiR R package. The
”multiMiR” R package includes various functions, one
of which is for ”identifying validated miRNA targets”.
The validated miRNA targets are those targets in this
package that have been demonstrated to be accurate by
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means of proven experimental procedures, including
RT-PCR, Western blot, luciferase reporter assay, in situ
hybridization, HITS-CLIP, degradome sequencing, and
othermethods. Also, among thedatabases in themultiMiR
package, only the “validated results” of two databases,
includingmiRTarBase and TarBase, were used for analysis.

All of the microarray datasets mentioned in the
manuscript, including GSE137684, GSE114419, and
GSE34526, encompass mRNA expression profiles.
Regarding this issue and based on the cutoff parameters
detailed in section 3.2, top DE-mRNAs among these three
microarray datasets were retrieved.

3.4. Identification of Differentially Expressed Genes

In our study, DEGs are defined as genes overlapping
between “validatedmultiMiR prediction results of the top
13 DE-miRNAs” and “existing tissue DE-mRNAs”. A Venn
diagram was created using an online resource to visually
display the genes that overlap between the identified sets.

3.5. Gene Ontology Enrichment Analysis of Differentially
Expressed Genes

Gene ontology (GO) enrichment analysis, including
biological processes (BPs), molecular functions (MFs),
and cellular components (CCs), was performed using
ShinyGO v0.77 (accessed April 19, 2022) with an FDR
cutoff of 0.05 (21). The Kyoto encyclopedia of genes
and genomes (KEGG) pathway enrichment analysis
on DEGs was built using R packages including DOSE,
Hs.egENSEMBL, and clusterProfiler: DOSE R package for
disease ontology semantic and enrichment analysis,
Hs.egENSEMBL R package for mappings between entrez
gene identifiers and KEGG pathway, and clusterProfiler for
comparing biological themes among gene clusters. Also,
the open-source and user-friendly software FunRich was
used for the biological pathway analysis of DEGs.

3.6. Construction of Protein-Protein Interaction and Hub
Gene-miRNA Networks

First, protein-protein interactions (PPIs) for DEGs were
created using the STRING v11.5 database (accessed August
12, 2021), an online tool (22), and a list of 352 mRNAs
uploaded to the STRING database. In the next step, the
Cytoscape v3.7.2 software plugin, CytoHubba, was used to
assess and investigate significant nodes inside biological
networks, using diverse network properties for scoring
purposes. The CytoHubba plugin conveniently offers
11 distinct topological analysis approaches in a single
package. Hence, for scoring and identifying significant
nodes in our PPI network, we used the CytoHubba plugin.

Using this plugin, 10 genes were defined as hub genes.
Additionally, the CytoHubba plugin was used to discover
the interactions between these 10 hub genes and miRNAs
to produce the hub gene-miRNA interaction network.

3.7. Drug-Gene Interaction Analysis

Drugs were chosen based on the initial top 5 ranked
hub genes, which emerged as promising centers of
interest, utilizing the (DGIdb; version 3.0.2; sha1 ec916b2).
This study only included FDA-approved drugs. The
DGIdb compiles information on drug-gene interactions
originating from diverse sources, including the Drug
Bank, ChEMBL, NCBI Entrez, Ensembl, PharmGKB,
PubChem, clinical trials, and literature indexed in
PubMed. Researchersmayuse this resource tohypothesize
about therapeutic gene targets and drug development
priorities (23). Interaction between drugs and genes was
performed using Cytoscape (version 3.7.2).

4. Results

4.1. Identification of Top DE-mRNAs and DE-miRNAs in Three
Microarray Datasets

While GSE137684 exclusively presents mRNA
expression data, GSE114419 and GSE34526 both include
miRNA and mRNA expression patterns. Regarding this
issue and based on the cutoff parameters detailed in
section 3.2, the top 20 DE-miRNAs were retrieved from
GSE114419 and GSE34526 microarray datasets. Out of
the top 20 DE-miRNAs, only 13 of them had “validated
results” through the multiMiR prediction method.
These 13 DE-miRNAs consist of 10 upregulated and 3
down-regulated miRNAs (Table 1). Using only “validated
results” in the multiMiR R package, “1880” miRNA targets
were generated (Figure 1A, the left segment of the Venn
diagram: 1528 + 352 = “1880”).

All of the microarray datasets mentioned in the
manuscript, including GSE137684, GSE114419, and
GSE34526, encompass mRNA expression profiles.
Regarding this issue and based on the cutoff parameters
detailed in section 3.2, top DE-mRNAs among these three
microarray datasets were retrieved, which were “3798”
mRNAs (Figure 1A, the right segment of the Venn diagram:
3446 + 352 = “3798”).

4.2. Identification of Differentially Expressed Genes

According to the methodology, DEGs are genes
overlapping between “validated multiMiR prediction
results of the top 13 DE-miRNAs” and “existing tissue
DE-mRNAs”. Hence, using the provided definition and
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Figure 1. Venn diagram and gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs): A, Venn diagram of 352 DEGs from three microarray datasets:
DEGs are defined as genes that are common between the “validated multiMiR prediction results of the top 13 differentially expressed (DE)-miRNAs” and “existing tissue
DE-miRNAs”; B, GO of biological processes (BP) enrichment analysis; C, GO of molecular function (MF) enrichment analysis; D, GO of cellular component (CC) enrichment
analysis; E, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis; F, FunRich pathway enrichment analysis.

referring to the Venn diagram, a total of “352” DEGs were
found tobedifferentially expressedbetweenPCOSsubjects
and healthy controls (Figure 1A, overlapping segment of
Venn diagram: “352”).

4.3. Gene Ontology and Pathway Enrichment Analysis

A significant number of genes showed enrichment
in response to endogenous stimulus, cytoskeletal protein
binding, and perinuclear region of cytoplasm for BP, MF,
and CC, respectively. Escherichia coli (E. coli) infection and

RAC1 activity are the most significant pathways in KEGG
and FunRich pathway analyses, respectively (Figure 1B-F
and Table 2).

4.4. Construction of HubmiRNA-Gene Networks

The top 10 hub genes were found through the plugin
cytoHubba in thePPInetwork (Table 3). Thenetworkof hub
DE-miRNAs and target genes was constructed through the
Cytoscape (Figure 2A).
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Figure 2. Hub gene-miRNA networks and drug-hub gene interactions; A, hub gene-miRNA networks: Blue rectangles are hub genes, including ACTB, JUN, PTEN, KRAS,MAPK1,
SMAD3, FYN, ARRB1, CFL1, and SIN3A and oval red nodes are DE-miRNAs; B, drug-hub gene interactions: Oval pink nodes are the initial top 5 ranked hub genes, including ACTB,
JUN, PTEN, KRAS, andMAPK1, which serve as potential gene targets for drugs. Green octagon nodes indicate FDA-approved drugs. Yellow octagon nodes indicate FDA-approved
drugs for polycystic ovary syndrome (PCOS).
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Table 1. Top 13 Significantly Up- andDown-RegulatedmiRNAswith Validated Results
ThroughMultimir PredictionMethod

miRNAs Status LogFC P-Value

hsa-miR-8085 Up 3.32026 0.00465

hsa-miR-612 Up 2.924954 0.012351

hsa-miR-637 Up 2.890822 0.004339

hsa-miR-1282 Up 2.388948 0.031552

hsa-miR-8085 Up 2.373889 0.010707

hsa-miR-4656 Up 2.194869 0.026918

hsa-miR-548w Up 1.338450222 0.007760057

hsa-miR-4451 Up 0.880255278 0.016179284

hsa-miR-1264 Up 0.862366056 0.001420294

hsa-miR-644a Up 0.805058333 0.037980205

hsa-miR-3146 Down -0.691118278 0.024531246

hsa-miR-1470 Down -0.643911889 0.012536171

hsa-miR-4473 Down -0.580333833 0.001855791

4.5. Drug-Gene Construction Network

The DGIdb was utilized to analyze the drugs that
interacted with the initial top 5 ranked hub genes,
including ACTB, JUN, PTEN, KRAS, and MAPK1, as potential
gene targets for these drugs. Through the DGIdb, 113
FDA-approved drugs were predicted as potential PCOS
medications (Figure 2B).

5. Discussion

Polycystic ovary syndrome is a complicated disorder
that mostly affects women of reproductive age and is
characterized by a variety of endocrine and metabolic
abnormalities. Our study involved transcriptomic analysis
of GCs inwomenwith PCOS compared to healthy controls,
followed by GO enrichment analysis, the establishment
of hub miRNA-gene networks, and the construction of
drug-hub gene interactions.

To the best of our knowledge, the current study is the
first to reveal that DEGs involved in KEGGpathway analysis
of GCs are strongly associated with E. coli infection.
Several studies have demonstrated that PCOS is associated
with alterations in the microorganisms of the intestines
(24-26) and vaginal region (27-29). Nevertheless, very
few studies have investigated the microorganisms in
follicular fluid or GCs and their associationwith infertility
(30). A functional experiment conducted by Pelzer et al.
indicated that follicular fluid was not sterile and that
it was possible to isolate bacteria from the follicular
fluid of infertile women (31). Furthermore, the level of

bacterial colonization of the follicular fluid was linked
to fertility treatment effectiveness (29). It is currently
unclear how precisely E. coli levels in follicular fluid affect
the infertility levels in PCOS. Further functional studies
should be conducted to shed light on this matter because
this field represents a novel research frontier. The results
of our KEGG pathway enrichment analysis demonstrated
that the DEGs were mainly enriched in pathogenic E. coli
infection, salmonella infection, and Yersinia infection,
followed by triggering innate immune responses such as
leukocyte trans-endothelial migration. According to our
KEGG pathways analysis, 17 genes, including ARF6, ABCF2,
FYN, JUN, ARHGEF2, WIPF1, ACTB, CLDN1, CLDN11, CLDN16,
MAPK1, MYO1F, MYO5A, MYH14, OCLN, PTPN6, and TUBB2A,
were enriched in the E. coli infection pathway. Most of
these genes belong to TNF signaling-, NRL signaling-,
cytoskeleton regulation-, and membrane trafficking
pathways.

The role of the RAC1 signaling pathway is confirmed
through many reproductive events, including anchoring
in oocytes (32), modulating the transcription of genes
required for follicular assembly (33), and GC proliferation
(34). Furthermore, Liu et al. (35) andCozzolinoandSeli (36)
reported increased GC proliferation in the ovaries of PCOS
in the murine models. In accordance with these findings
(33-36), our study discovered that the Rac1 signaling
pathway was upregulated in the GCs of PCOS patients
compared to healthy controls and was the first-ranked
pathway in biological pathway analyses. According to
our results, genes enriched in the Rho family of GTPases
(Rac1, Cdc42, and RhoA) were significantly upregulated
in PCOS’ GCs compared to healthy controls. Because
these genes are critical for cell growth and proliferation,
their upregulation resulted in increased GC proliferation,
probably leading to the development of PCOS (37).

In the current study, 5 miRNAs, including
hsa-miR-8085, hsa-miR-548w, hsa-miR-612, hsa-miR-1470,
and hsa-miR-644a, demonstrated interactions with 10
hub genes in the hub gene-miRNA networks and were
defined as hub miRNAs. Except for hsa-miR-612, the other
4 DE-miRNAs, including hsa-miR-8085, hsa-miR-548w,
hsa-miR-1470, and hsa-miR-644a, are novel and had not
been reported in PCOS pathogenesis before. To the best
of our knowledge, this is the first time that hsa-miR-8085,
hsa-miR-548w, hsa-miR-1470, and hsa-miR-644a are
selected as hubmiRNAs associated with PCOS viamultiple
bioinformatics analyses in our study.

According to the findings of Peng et al., hsa-miR-8085
is a predicted miRNA that regulates HOXC10 expression,
which plays a significant role in ovarian cancermetastasis
(38). The highest expression levels of hsa-miR-548w were
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Table 2. Gene Ontology Enrichment Analysis with Polycystic Ovary Syndrome

Enrichment FDR No. of Genes Pathway Genes Fold Enrichment Gene Ontology

Biological process

1.66E-06 61 1769 2.339491 Response to endogenous stimulus

5.94E-06 43 1085 2.688797 Cell morphogenesis

5.94E-06 53 1505 2.389234 Cellular response to endogenous stimulus

6.20E-06 45 1181 2.585128 Reg. of catabolic proc.

6.26E-06 55 1631 2.287853 Neg. reg. of cellularmacromolecule biosynthetic proc.

7.28E-06 59 1847 2.167227 Reg. of cell death

1.09E-05 56 1738 2.186038 Reg. of cell differentiation

1.1E-05 38 957 2.7 Neg. reg. of transcription by RNA polymerase II

1.1E-05 30 640 3.2 Developmental growth

1.1E-05 59 1895 2.1 Pos. reg. of RNAmetabolic proc.

Molecular function

9.23E-05 39 1050 2.519966 Cytoskeletal protein binding

0.000110925 47 1446 2.205205 Protein-containing complex binding

0.000145606 53 1767 2.034973 Sequence-specific DNA binding

0.00052994 22 477 3.12913 Actin binding

0.000873657 48 1660 1.96179 Sequence-specific double-stranded DNA binding

0.000931633 50 1775 1.911133 Double-stranded DNA binding

0.000955304 17 333 3.463571 DNA-binding transcription repressor activity, RNA polymerase II-specific

0.000955304 17 335 3.442893 DNA-binding transcription repressor activity

0.000955304 46 1598 1.952992 Transcription regulatory region nucleic acid binding

0.001506085 45 1596 1.91293 Transcription cis-regulatory region binding

Cellular component

0.0001826 31 783 2.686082 Perinuclear region of cytoplasm

0.0001826 34 907 2.543261 Anchoring junction

0.0003813 22 471 3.168992 Focal adhesion

0.0003813 22 478 3.122584 Cell-substrate junction

0.0025373 8 80 6.784524 Cytoplasmic stress granule

0.0034097 19 445 2.896763 Cell leading edge

0.0041227 3 6 33.92262 CRD-mediatedmRNA stability complex

0.0041227 14 272 3.492034 Cytoplasmic ribonucleoprotein granule

0.0062328 14 288 3.298032 Ribonucleoprotein granule

0.0071017 5 34 9.977241 Dendrite cytoplasm

discovered in ovarian cumulus granulosa cell (CGC)
and mural granulosa cell (MGC) samples according to
small RNA high-throughput sequencing performed by
Rooda et al. (39). In line with the results of Rooda et
al. (39), upregulation of hsa-miR-548w was observed in
our study in PCOS patients. Has-miR-612 had an essential
function in suppressing Rap1b, a regulator of the MAPK
pathway, which is critical in the pathophysiology of

PCOS patients with insulin resistance, according to the
findings of Hu et al. (40) research. Based on our results,
upregulation of has-miR-612 plays an important role in GCs
of PCOS patients, which is consistent with Hu et al. (40).
Overexpression of hsa-miR-1470 induces cell proliferation,
migration, and apoptosis through different mechanisms
in hepatocellular carcinoma (HCC) and esophageal
squamous carcinoma cells (ESCCs). Prior to our current
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Table 3. Top 10 Target Genes in Protein-Protein Interaction Network

Rank Name Score

1 ACTB 63

2 JUN 38

3 PTEN 36

4 KRAS 31

5 MAPK1 30

6 SMAD3 26

7 FYN 25

8 ARRB1 23

9 CFL1 22

9 SIN3A 22

investigation, no association between hsa-miR-1470 and
PCOS had been reported (41, 42). As known, has-miR-612
prevents cellular proliferation and invasion in gastric
cancer, and its overexpression increases apoptosis in HCC.
To the best of our knowledge, this is the first reported
association between has-miR-612 and PCOS (43, 44).

The ACTB gene, the top-ranked hub gene identified
in our PPI construction, encodes the beta-actin protein,
which is a member of the actin protein family. Shen et al.
identified ACTB as an upregulated gene in PCOS that was
positively related to actin cytoskeleton regulation and
had a role in PCOS development (45). Prior research led
to the concept that the Jun and Fos subfamilies, which
are essential in numerous aspects of cell proliferation
and differentiation, play important roles in ovarian
follicular development (46). Furthermore, the activation
of the ovary-specific PII promoter of the aromatase gene,
which is responsible for the production of estrogen
in premenopausal women, is functionally shown to
be regulated by Jun proteins (47). These studies (46,
47) focused on the crucial functions of JUN proteins in
granulosa cells, and in line with these results, we found
that the JUN protein is the second most important hub
gene according to our data.

In our study, the initial top 5 ranked hub genes
(ACTB, JUN, PTEN, KRAS, and MAPK1) were identified as
potential candidates for drug targets during the search
for medications using the DGIdb database. According to
the DGIdb database, 113 drugs with potential anti-PCOS
therapeutic effectiveness were identified, the majority
of which have unknown mechanisms. Currently, ethinyl
estradiol (EE) serves as the estrogen in the vast majority
of combined oral contraceptives (COCs). The clinical and
hormonal aspects of PCOS seem to be improved by the
ethinyl estradiol/DRSP combination (48). In addition,

ethinyl estradiol is an effective treatment for PCOS-related
hyperandrogenism-related skin symptoms (49). Ethinyl
estradiol has an interaction with the ACTB gene in our
study. Considering its interactionwith ethinyl estradiol in
PCOS, ACTB has the potential to develop into a therapeutic
target for ethinyl estradiol in the near future. Overall, the
progesterone level inPCOSpatients is related to theclinical
pregnancy rate (50). Furthermore, statistics from the pilot
daily diary indicate that PCOS patients’ experiences with
cyclic progesterone medication have exhibited positive
changes (51). In our results, progesterone interacted
with PTEN and MAPK1. Results of a systematic review and
meta-analysis indicated that metformin has the strongest
evidence for enhancing menstrual cycles, glucose levels,
and adiposity in PCOS, notably when incorporated
alongside lifestyle adjustments (52, 53). Animal model
research demonstrated that metformin could benefit
PCOSmice with ovarian dysfunction as well as obesity and
metabolic problems (54). In the present study, metformin
interactedwith PTEN and KRAs. As a result, these two genes
may provide new therapeutic targets and are likely to
open new horizons in the treatment of PCOS.

5.1. Conclusions

Our study on PCOS led to the identification of novel
dysregulated miRNAs and pathways involved in PCOS.
In the current study, multiple bioinformatics analyses
were performed, which resulted in the identification of
352 DEGs and 5 hub DE-miRNAs, including hsa-miR-8085,
hsa-miR-548w, hsa-miR-612, hsa-miR-1470, and hsa-miR-644a.
Except for hsa-miR-612, the other 4 DE-miRNAs, including
hsa-miR-8085,hsa-miR-548w,hsa-miR-1470, andhsa-miR-644a,
are novel and had not been reported in PCOS pathogenesis
before. Thedevelopmentof thehubgene-miRNAnetworks
and drug-hub gene interactions might be beneficial to
the investigation of the underlying causes of PCOS. The
results serve as abasis for further research into the impacts
of these miRNAs and their associated pathways on PCOS.
Additional in vitro and in vivo research is required to
validate these results.
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