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Abstract

A novel series of thiadiazole compounds was synthesized through the reaction of thiosemicarbazone intermediates with 2, 3-

dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The antiplatelet activity of the synthesized compounds was evaluated using an
aggregation test with adenosine diphosphate (ADP) and arachidonic acid (AA) as platelet aggregation inducers. Among the

synthesized analogs, compound 3b exhibited the most potent inhibition of platelet aggregation induced by ADP (half maximal

inhibitory concentration [IC50] = 39 ± 11 µM). Molecular docking studies of 3b revealed hydrogen bonds between the nitrogen of

the thiadiazole ring and Lys280. The tolyl ring exhibited hydrophobic interactions with Tyr105, similar to the antagonist co-

crystallized with P2Y12 (PDB ID: 4NTJ). These compounds have the potential to serve as lead molecules for designing P2Y12

inhibitors.
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1. Background

Cardiovascular disease (CVD), a leading global cause

of death, is estimated to account for 17.5 million deaths

(31%) annually (1). The prevalence of CVD and similar
thrombotic diseases has been increasing (2, 3). Although

platelets play a crucial role in preventing hemorrhage

following injury, pathological platelet aggregation plays
a significant role in CVDs and their complications (3).

Therefore, one rational approach to prevent CVD is the

use of antiplatelet drugs (4). As reported, antiplatelet
drugs hold approximately a 65% market share and are

the primary choice for preventing arterial thrombotic

diseases (5).

Platelet activation can be triggered by exposure to

potent endogenous stimuli, such as thrombin,
thromboxane A2 (TXA2), collagen, and adenosine 5’-

diphosphate (ADP) (6). Consequently, various types of

antiplatelet drugs are available, each with a specific

pharmacological mechanism (7). For instance, aspirin

blocks the cyclooxygenase-1 (COX-1)/TXA2 pathway (8);

nevertheless, others, such as clopidogrel and tirofiban,

antagonize the P2Y12 ADP receptor and glycoprotein

IIb/IIIa (GPIIb/IIIa), respectively (9). Phosphodiesterase
inhibitors, such as cilostazol, belong to another class of

antiplatelet agents that enhance the therapeutic efficacy

of P2Y12 ADP receptor blockers (10).

Despite the advantages of antiplatelet drugs, their

use is associated with some side effects, including

gastrointestinal (GIT) disorders, drug resistance, and
drug-drug interactions (4, 11). Despite significant

progress in developing novel and efficient antiplatelet

agents, there is still room for improving their efficacy

and safety (12).

In recent years, a diverse set of 1,3,4-thiadiazole

analogs have been developed, exhibiting a broad
spectrum of biological activities, such as antiparasitic

(13), anticancer (14), antibacterial (15), antiviral (16), and

antitubercular (17-19) activities. Furthermore, several
studies on molecules with antiplatelet activity have
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revealed that analogs containing N-acylhydrazone and

its isosteres exhibit remarkable antiplatelet activity (3,

20-23). Two examples of the compounds introduced in
these studies, namely molecules A and B, are

represented in Figure 1.

Figure 1. The chemical structures of A, B, C, and designed derivatives (3a-m)

In 1993, Rehse and Martens reported a novel series of

1,2,4-thiadiazolimines capable of blocking collagen-

induced platelet aggregation at micromolar levels (24).
Moreover, in one of our previous studies, a novel group

of 2-hydrazinyl-1,3,4-thiadiazole analogs, exemplified by

compound C (Figure 1), was synthesized with
antiplatelet activity against arachidonic acid (AA) and

ADP-induced platelet aggregation (25).

2. Objectives

The present study, aiming to discover new
compounds with potent antiplatelet aggregation

activity, synthesized a series of novel antiplatelet agents

containing the thiadiazole moiety and screened their
antiplatelet activity.

3. Experimental Section

3.1. General Methods

All reagents and solvents were procured from Merck
(Darmstadt, Germany) and employed without

additional purification. Proton nuclear magnetic

resonance (1H-NMR) spectra were acquired using a 400
MHz Bruker spectrometer, with tetramethylsilane (TMS)

as the internal standard. Chemical shifts were expressed

as (δ = ppm), and CDCl3 and dimethyl sulfoxide-d6

(DMSO-d6) were utilized as solvents. Positive

electrospray ionization (ESI) mass spectra were recorded

on an Agilent 6410 triple quadrupole mass

spectrometer. Infrared (IR) spectra were obtained using
a Perkin Elmer IR spectrophotometer, with values

reported in cm-1 and measured on potassium bromide

discs. Melting points of the compounds were
determined via the capillary method using an

Electrothermal 9100 melting point apparatus, and the

values provided were uncorrected. Thin layer
chromatography (TLC) was conducted on silica gel (60)

F254 Merck plates (Germany) and visualized under UV

254 nm light. Elemental analysis for carbon (C),

hydrogen (H), nitrogen (N), and sulfur (S) was

performed using a Costech 4010 elemental analyzer
(Milan, Italy). For all the compounds, the calculated

values closely matched the measured values within a

margin of 0.4%.

3.1.1. Synthesis of N-phenylhydrazinecarbothioamide (1)

Hydrazine hydrate (25 mmol, 0.125 g) was added to a

solution of phenyl isothiocyanate (20 mmol, 0.27 g) in
20 mL of 2-propanol. The mixture was stirred for 4 hours

at RT. The reaction progress was monitored by TLC. After

the completion of the reaction, the resulting white
precipitate was filtered and recrystallized from ethanol

96° to afford the purified intermediate 1.

White solid. Yield: (91%); mp: 138 - 141°C; IR (KBr): ϋ =

3300, 3149 (NH), 1216 (C=S) cm-1; ESI-MS m/z [M+H+] =

168.1, [M+Na+] = 190.1; Anal. Calcd for C7H9N3S: C, 50.27;

H, 5.42; N, 25.13; S, 19.17, found: C, 51.31; H, 5.41; N, 25.14; S,
19.16.

3.1.2. General Procedure for the Synthesis of Phenyl
Thiosemicarbazone Analogs (2a-m)

The phenyl thiosemicarbazones 2a-m were
synthesized via the procedure reported in the previous

studies (26). In summary, a mixture of 1 (1 mmol) and

appropriate aromatic aldehydes in absolute ethanol was
stirred for 24 hours at RT. A catalytic increment of HCl

(37%) was added to accelerate the reaction progress. The

obtained precipitate was collected by filtration. The final
products 2a-m were recrystallized from absolute

ethanol.

(E)-2-benzylidene-N-

phenylhydrazinecarbothioamide (2a): White solid.
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Yield: (80 %); mp: 190 - 191°C; 1H-NMR (400 MHz, CDCl3): δ
= 7.27 (t, J = 8.0 Hz, 1H, H4a), 7.44-7.40 (m, 5H, H3a, H5a,

H3b, H5b,H4b), 7.69-7.66 (m, 4H, H2a, H6a, H2b, H6b),

7.98 (s, 1H, HC=N), 9.22 (s, 1H, NH), 10.34 (s, 1H, NH); IR

(KBr): ϋ = 3296, 3150 (NH), 1582 (C=N), 1201 (C=S) cm-1; ESI-

MS m/z [M+H+] = 256.0, [M+Na+] = 277.9; Anal. Calcd for

C14H13N3S: C, 65.85; H, 5.13; N, 16.46; S, 12.56; found: C,

64.77; H, 5.12; N, 16.45; S, 12.57.

(E)–2-(4-methylbenzylidene)-N-

phenylhydrazinecarbothioamide (2b): White solid.

Yield: (86%); mp: 218 - 220°C; 1H-NMR (400 MHz, CDCl3): δ
= 2.39 (s, 3H, CH3), 7.22 - 7.28 (m, 3H, HC4a, H3b, H5b), 7.42

(t, J = 8.0 Hz, 2H, H3a, H5a), 7.57 (d, J = 8.0 Hz, 2H, H2a,
H6a), 7.67 (d, J = 8.0 Hz, 2H, H2b, H6b), 7.9 (s, 1H, HC=N),

9.20 (s, 1H, NH), 9.87 - 9.97 (m, 1H, NH); IR (KBr): ϋ = 3330,

3145 (NH), 1596 (C=N), 1199 (C=S) cm-1; ESI-MS m/z [M+H+]

= 270.0, [M+Na+] = 291.8; Anal. Calcd for C15H15N3S: C,

66.88; H, 5.61; N, 15.60; S, 11.90; found: C, 65.22; H, 5.62; N,

15.62; S, 11.91.

(E)-2-(4-bromobenzylidene)-N-

phenylhydrazinecarbothioamide (2c): White solid.

Yield: (90 %); mp: 229-230°C; IR (KBr): ϋ= 3336, 3299 (NH),

1593 (C=N), 1265 (C=S) cm-1; ESI-MS m/z [M+H+] = 333.9,

335.9, [M+Na+] = 355.9, 357.9; Anal. Calcd for C14H12BrN3S:

C, 50.31; H, 3.62; N, 12.57; S, 9.59; found: C, 51.02; H, 3.63; N,

12.56; S, 9.60.

(E)-2-(2-chlorobenzylidene)-N-

phenylhydrazinecarbothioamide (2d): Cream-

colored solid. Yield: (46%); mp: 188 - 189°C; 1H-NMR (400
MHz, CDCl3): δ = 7.24-7.44 (m, 6H, H3a, H4a, H5a, H3b,

H4b, H5b), 7.68 (d, J = 8.0 Hz, 2H, H2a, H6a), 7.95 (dd, J =

8.0 Hz, J = 4.0 Hz, 1H, H6b), 8.30 (s, 1H, HC=N), 9.19 (s, 1H,

NH), 9.48 (s, 1H, NH); IR (KBr): ϋ = 3287, 3136 (NH), 1591

(C=N), 1191 (C=S) cm-1; ESI-MS m/z [M+H+] = 289.9,

[M+Na+] = 311.8; Anal. Calcd for C14H12ClN3S: C, 58.03; H,

4.17; N, 14.50; S, 11.07; found: C, 56.25; H, 4.16; N, 14.51; S,

11.06.

(E)-2-(4-fluorobenzylidene)- N-

phenylhydrazinecarbothioamide (2e): White solid.

Yield: (49%); mp: 199 - 200°C; 1H-NMR (400 MHz, CDCl3):

δ = 7.12 (t, J = 8.0 Hz, 1H, H4a), 7.27 (t, J = 8.0 Hz, 2H, H3b,

H5b), 7.42 (t, J = 8.0 Hz, 2H, H3a, H5a), 7.65 - 7.70 (m, 4H,

H2a, H6a, H2b, H6b), 7.92 (s, 1H, HC=N), 9.16 (s, 1H, NH),

10.00 (s, 1H, NH); IR (KBr): ϋ= 3291, 3229 (NH), 1634 (C=N),

1235 (C=S) cm-1; ESI-MS m/z [M+H+] = 274; Anal. Calcd for

C14H12FN3S: C, 61.52; H, 4.43; N, 15.37; S, 11.73; found: C,

60.53; H, 4.41; N, 15.36; S, 11.74.

(E)-2-(4-methoxybenzylidene)-N-

phenylhydrazinecarbothioamide (2f): White solid.

Yield: (52%); mp: 177 - 178°C; 1H-NMR (400 MHz, CDCl3): δ

= 3.85 (s, 3H, OCH3), 7.26 (t, J = 8.0 Hz, 1H, H4a), 7.41 (t, J =

8.0 Hz, 2H, H3a, H5a), 7.62 (d, J = 8.0 Hz, 2H, H2a, H6a),
7.67 (d, J = 8.0 Hz, 2H, H2b, H6b), 7.92 (s, 1H, HC=N), 7.93

(d, J = 8.0 Hz, 2H, H3b, H5b), 9.19 (s, 1H, NH), 10.16 (s, 1H,

NH); IR (KBr): ϋ = 3323, 3151 (NH), 1607 (C=N), 1205 (C=S)

cm-1; ESI-MS m/z [M+H+] = 285.8; Anal. Calcd for

C15H15N3OS: C, 63.13; H, 5.30; N, 14.73; S, 11.24; found: C,

62.98; H, 5.32; N, 14.71; S, 11.23.

(E)–2-(3-methoxybenzylidene)–N-

phenylhydrazinecarbothioamide (2g): Yellow solid.

Yield: (70%); mp: 154 - 155°C; 1H-NMR (400 MHz, CDCl3): δ
= 3.84 (s, 3H, OCH3), 6.96 (dd, J = 8.0 Hz, J=4 Hz, 1H, H4b),

7.20-7.34 (m, 4H, H4a, H2b, H5b, H6b), 7.42 (t, J = 8.0 Hz,
2H, H3a, H5a), 7.65 (d, J = 8.0 Hz, 2H, H2a, H6a), 7.97 (s, 1H,

HC=N), 9.20 (s, 1H, NH), 10.64 (s, 1H, NH); IR (KBr): ϋ =

3327, 3150 (NH), 1596 (C=N), 1280 (C=S) cm-1; ESI-MS m/z

[M+H+] = 285.9; Anal. Calcd for C15H15N3OS: C, 63.13; H,

5.30; N, 14.73; S, 11.24; found: C, 62.98; H, 5.32; N, 14.71; S,
11.23.

(E)-2-(4-chlorobenzylidene)-N-

phenylhydrazinecarbothioamide (2h): White solid.

Yield: (57 %); mp: 199-200°C; IR (KBr): ϋ = 3302, 3122 (NH),

1587 (C=N), 1194 (C=S) cm-1; ESI-MS m/z [M+H+] = 289.8;
Anal. Calcd for C14H12ClN3S: C, 58.03; H, 4.17; N, 14.50; S,

11.07; found: C, 57.33; H, 4.15; N, 14.52; S, 11.08.

(E)-2-(3-cyanobenzylidene)-N-

phenylhydrazinecarbothioamide (2i): White solid.

Yield: (63 %); mp: 197-198°C; IR (KBr): ϋ = 3285, 3177 (NH),

2237 (CN), 1542 (C=N), 1205 (C=S) cm-1; ESI-MS m/z [M+H+]

= 281.0, [M+Na+] = 302.8; Anal. Calcd for C15H12N4S: C,

64.26; H, 4.31; N, 19.98; S, 11.44; found: C, 65.31; H, 4.30; N,

19.99; S, 11.45.

(E)-2-(4-nitrobenzylidene)-N-

phenylhydrazinecarbothioamide (2j): White solid.

Yield: (77 %); mp: 233-234°C; IR (KBr): ϋ = 3227, 3170 (NH),

1584 (C=N), 1521, 1339 (NO2), 1196 (C=S) cm-1; ESI-MS m/z
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[M+H+] = 300.8; Anal. Calcd for C14H12N4O2S: C, 55.99; H,

4.03; N, 18.65; S, 10.68; found: C, 55.50; H, 4.02; N, 18.63; S,

10.69.

(E)–2-(3-hydroxybenzylidene)-N-

phenylhydrazinecarbothioamide (2k): White solid.

Yield: (55 %); mp: 186-188°C; IR (KBr): ϋ = 3386, 3310 (NH),

1577 (C=N), 1161 (C=S) cm-1; ESI-MS m/z [M+H+] = 272.0;

Anal. Calcd for C14H13N3OS: C, 61.97; H, 4.83; N, 15.49; S,

11.82; found: C, 60.71; H, 4.84; N, 15.50; S, 11.80.

(E)-N-phenyl-2-(4-(trifluoromethyl)benzylidene)

hydrazinecarbothioamide (2l): White solid. Yield:

(58.0 %); mp: 194-195 °C; IR (KBr): ϋ = 3200, 3060 (NH),

1609 (C=N), 1176 (C=S) cm-1; ESI-MS m/z [M+H+] = 324.2,
[M+Na+] = 346.2; Anal. Calcd for C15H12F3N3S: C, 55.72; H,

3.74; N, 13.00; S, 9.92; found: 56.56; H, 3.72; N, 13.02; S, 9.93.

(E)-2-(3-bromobenzylidene)-N-

phenylhydrazinecarbothioamide (2m): Yellow solid.

Yield: (63 %); mp: 196-197°C; IR (KBr): ϋ = 3336, 3299 (NH),

1591 (C=N), 1214 (C=S) cm-1; ESI-MS m/z [M+H+] = 333.9,
335.9; Anal. Calcd for C14H12BrN3S: C, 50.31; H, 3.62; N,

12.57; S, 9.59; found: C, 50.36; H, 3.61; N, 12.55; S, 9.61.

3.1.3. General Procedure for the Synthesis of Derivatives
3a-m

A solution of DDQ (0.53 g, 2.3 mmol) in acetonitrile
was added dropwise to a solution of intermediates 2a-m

(2.3 mmol) in the same solvent. The mixture was stirred

in the RT overnight. The obtained precipitates 3a-m were
filtered off and recrystallized from the absolute ethanol.

N-5-diphenyl-1,3,4-thiadiazol-2-amine (3a): White

solid. Yield: (75%); mp: 199 - 200°C; 1H-NMR (400 MHz,

DMSO-d6): δ = 7.03 (t, 1H, J = 8.0 Hz, H4a), 7.37 (t, J = 8.0

Hz, 2H, H3a, H5a), 7.52 (m, 3H, H3b, H4b, H5b), 7.66 (d, J =

8.0 Hz, 2H, H2a, H6a), 7.87 (m, 2H, H2b, H6b), 10.56 (s, 1H,
NH); IR (KBr): ϋ= 3252, 3198 (NH), 1610 (C=N), 695 (C-S)

cm-1; ESI-MS m/z [M+H+] = 254.2; Anal. Calcd for:

C14H11N3S: C, 66.38; H, 4.38; N, 16.59; S, 12.66; found: C,

65.42; H, 4.39; N, 16.58; S, 12.67.

N-phenyl-5-(p-tolyl)-1,3,4-thiadiazol-2-amine (3b):

White solid. Yield: (72%); mp: 219 - 220°C; 1H-NMR (400

MHz, DMSO-d6): δ = 2.37 (s, 3H, CH3), 7.02 (t, J = 8.0 Hz, 1H,

H4a), 7.34 (m, 4H, H3b, H5b, H3a, H5a), 7.65 (d, J = 8.0 Hz,
2H, H2a, H6a), 7.75 (d, J = 8.0 Hz, 2H, H2b, H6b), 10.52 (s,

1H, NH); IR (KBr): ϋ = 3254, 3214 (NH), 1626, 1605 (C=N),

674 (C-S) cm-1; ESI-MS m/z [M+H+] = 268.2; Anal. Calcd for:

C15H13N3S: C, 67.39; H, 4.90; N, 15.72; S, 11.99; found: C,

65.87; H, 4.91; N, 15.73; S, 11.98.

5-(4-bromophenyl)-N-phenyl-1,3,4-thiadiazol-2-

amine (3c): White solid. Yield: (70%); mp: 230 - 231°C; 1H-

NMR (400 MHz, DMSO-d6): δ = 7.03 (t, J = 7.6 Hz, 1H, H4a),

7.37 (t, 2H, J = 7.6 Hz, H3a, H5a), 7.66 (d, 2H, J = 7.6 Hz, H2a,

H6a), 7.72 (d, 2H, J = 8.4 Hz, H3b, H5b), 7.82 (d, 2H, J = 8.8
Hz, H2b, H6b), 10.61 (s, 1H, NH); IR (KBr): ϋ = 3259, 3209

(NH), 1618, 1605 (C=N), 668 (C-S) cm-1; ESI-MS m/z [M+H+]

= 332.1, 334.1; Anal. Calcd for: C14H10BrN3S: C, 50.62; H,

3.03; N, 12.65; S, 9.65; found: C, 51.55; H, 3.02; N, 12.67; S,
9.66.

5-(2-chlorophenyl)-N-phenyl-1,3,4-thiadiazol-2-

amine (3d): White solid. Yield: (68%); mp: 225 - 226°C; 1H-

NMR (400 MHz, DMSO-d6): δ = 7.04 (t, J = 8.0 Hz, 1H, H4a),

7.38 (t, J = 8.0 Hz, 2H, H3a, H5a), 7.53 (m, 2H, H4b, H5b),

7.67 (m, 3H, H2a, H6a, H6b), 8.09 (m, 1H, H3b), 10.59 (s, 1H,
NH); IR (KBr): ϋ = 3261, 3203 (NH), 1622, 1604 (C=N), 671 (C-

S) cm-1; ESI-MS m/z [M+H+] = 288.1; Anal. Calcd for:

C14H10ClN3S: C, 58.43; H, 3.50; N, 14.60; S, 11.14; found: C,

56.59; H, 3.49; N, 14.61; S, 11.15.

5-(4-fluorophenyl)-N-phenyl-1,3,4-thiadiazol-2-

amine (3e): White solid. Yield: (60%); mp: 199 - 200°C; 1H-
NMR (400 MHz, DMSO-d6): δ = 7.03 (t, 1H, J = 7.2 Hz, H4a),

7.36 (m, 4H, H2a, H3a, H5a, H6a), 7.66 (d, J = 7.6 Hz, 2H,

H3b, H5b), 7.92 (m, 2H, H2b, H6b), 10.56 (s, 1H, NH); IR

(KBr): ϋ = 3291, 3229 (NH), 1634, 1614 (C=N), 683 (C-S) cm-1;

ESI-MS m/z [M+H+] = 272.2; Anal. Calcd for: C14H10FN3S: C,

61.98; H, 3.72; N, 15.49; S, 11.82; found: C, 60.24; H, 3.71; N,
15.50; S, 11.81.

5-(4-methoxyphenyl)-N-phenyl-1,3,4-thiadiazol-2-

amine (3f): White solid. Yield: (68%); mp: 217 - 220°C; 1H-

NMR (400 MHz, DMSO-d6): δ = 3.83 (s, 3H, OCH3), 7.01 (t, J

= 8.0 Hz, 1H, H4a), 7.07 (d, J = 8.0 Hz, 2H, H3b, H5b), 7.36

(t, J = 8.0 Hz, 2H, H3a, H5a), 7.65 (d, J = 8.0 Hz, 2H, H2a,
H6a), 7.8 (d, J = 8.0 Hz, 2H, H2b, H6b), 10.47 (s, 1H, NH); IR

(KBr): ϋ = 3270, 3122 (NH), 1628, 1609 (C=N), 691 (C-S) cm-1;

ESI-MS m/z [M+H+] = 283.8; Anal. Calcd for: C15H13N3OS: C,

63.58; H, 4.62; N, 14.83; S, 11.32; found: C, 62.78; H, 4.63; N,
14.82; S, 11.30.

5-(3-methoxyphenyl)-N-phenyl-1,3,4-thiadiazol-2-

amine (3g): White solid. Yield: (71%); mp: 169 - 170°C; 1H-
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NMR (400 MHz, DMSO-d6): δ = 3.84 (s, 3H, OCH3), 7.05 (m,

2H, H4b, H4a), 7.41 (m, 5H, H3a, H5a, H2b, H5b, H6b), 7.66

(d, J = 8.0 Hz, 2H, H2a, H6a), 10.58 (s, 1H, NH); IR (KBr): ϋ =

3280, 3224 (NH), 1628, 1609 (C=N), 661 (C-S) cm-1; ESI-MS
m/z [M-H-] = 282.2; Anal. Calcd for: C15H13N3OS: C, 63.58;

H, 4.62; N, 14.83; S, 11.32; found: C, 64.20; H, 4.61; N, 14.80;
S, 11.29.

5-(4-chlorophenyl)-N-phenyl-1,3,4-thiadiazol-2-

amine (3h): White solid. Yield: (73%); mp: 119 - 220°C; 1H-

NMR (400 MHz, DMSO-d6): δ = 7.04 (t, J = 8.0 Hz, 1H, H4a),

7.38 (t, J = 8.0 Hz, 2H, H3a, H5a), 7.58 (d, J = 8.0 Hz, 2H,

H3b, H5b), 7.66 (d, J = 8.0 Hz, 2H, H2a, H6a), 7.89 (d, J = 8.0
Hz, 2H, H2b, H6b), 10.61 (s, 1H, NH); IR (KBr): ϋ = 3360,

3228 (NH), 1606, 1592 (C=N), 660 (C-S) cm-1; ESI-MS m/z

[M-H-] = 286.1; Anal. Calcd for: C14H10ClN3S: C, 58.43; H,

3.50; N, 14.60; S, 11.14; found: C, 57.74; H, 3.51; N, 14.61; S,
11.15.

3-(5-(phenylamino)-1,3,4-thiadiazol-2-

yl)benzonitrile (3i): White solid. Yield: (65%); mp: 219 -

220°C; 1H-NMR (400 MHz, DMSO-d6): δ = 7.049 (t, J = 7.6

Hz, 1H, H4a), 7.38 (t, J = 8.4 Hz, 2H, H3a, H5a), 7.67 (d, J =

8.0 Hz, 2H, H2a, H6a), 7.72 (t, J = 8.0 Hz, 1H, H5b), 7.96 (d, J
= 8.0 Hz, 1H, H4b), 8.21 (d, J = 8.0 Hz,1H, H6b), 8.30 (s, 1H,

H2b), 10.69 (s, 1H, NH); IR (KBr): ϋ = 3258, 3137 (NH), 2237

(CN), 1542, 1512 (C=N), 681 (C-S) cm-1; ESI-MS m/z [M+H+] =
279.1; Anal. Calcd for: C15H10N4S: C, 64.73; H, 3.62; N, 20.13;

S, 11.52; found: C, 63.69; H, 3.61; N, 20.12; S, 11.53.

5-(4-nitrophenyl)–N-phenyl-1,3,4-thiadiazol-2-

amine (3j): White solid. Yield: (68%); mp: 219 - 220°C; 1H-
NMR (400 MHz, DMSO-d6): δ = 7.06 (t, 1H, J = 7.2 Hz, H4a),

7.39 (t, J = 7.6 Hz, 2H, H3a, H5a), 7.67 (d, J = 8.0 Hz, 2H, H2a,

H6a), 8.12 (d, J = 8.4 Hz, 2H, H3b, H5b), 8.33 (d, J = 8.8 Hz,

2H, H2b, H6b), 10.78 (s, 1H, NH); IR (KBr): ϋ = 3332, 3106

(NH), 1589, 1570 (C=N), 1530, 1334 (NO2), 622 (C-S) cm-1;

ESI-MS m/z [M+H+] = 299.1; Anal. Calcd for: C14H10N4O2S:

C, 56.37; H, 3.38; N, 18.78; S, 10.75; found: C, 57.22; H, 3.37; N,

18.79; S, 10.74.

3-(5-(phenylamino)-1,3,4-thiadiazol-2-yl)phenol

(3k): White solid. Yield: (81%); mp: 270 - 271°C; 1H-NMR

(400 MHz, DMSO-d6): δ = 6.94 (d, J = 8.0 Hz, 1H, H4b), 7.08

(t, J = 8.0 Hz, 1H, H4a), 7.34 (m, 3H, H2b, H5b, H6b), 7.42 (t,
J = 8.0 Hz, 2H, H3a, H5a), 7.71 (d, J = 8.0 Hz, 2H, H2a, H6a),

9.86 (s, 1H, NH), 10.59 (s, 1H, OH); IR (KBr): ϋ = 3233 (OH),

1594, 1569 (C=N), 681 (C-S) cm-1; ESI-MS m/z [M+H+ =

269.8; Anal. Calcd for: C14H11N3OS: C, 62.44; H, 4.12; N,

15.60; S, 11.90; found: C, 61.39; H, 4.11; N, 15.61; S, 11.92.

N-phenyl-5-(4-(trifluoromethyl)phenyl)-1,3,4-

thiadiazol-2-amine (3l): White solid. Yield: (65%); mp:

228 - 229°C; 1H-NMR (400 MHz, DMSO-d6): δ = 7.05 (t, J =

7.2 Hz, 1H, H4a), 7.39 (t, J = 8.0 Hz, 2H, H3a, H5a), 7.67 (d, J

= 8.0 Hz, 2H, H2a, H6a), 7.87 (d, J = 8.4 Hz, 2H, H3b, H5b),
8.08 (d, J = 8.0 Hz, 2H, H2b, H6b), 10.70 (s, 1H, NH); IR

(KBr): ϋ = 3253, 3199 (NH), 1610, 1598 (C=N), 660 (C-S) cm-1;

ESI-MS m/z [M+H+] = 322.2; Anal. Calcd for: C15H10F3N3S:

C, 56.07; H, 3.14; N, 13.08; S, 9.98; found: C, 55.96; H, 3.13; N,
13.07; S, 9.97.

5-(3-bromophenyl)-N-phenyl-1,3,4-thiadiazol-2-

amine (3m): White solid. Yield: (67%); mp: 195 - 196°C; 1H-

NMR (400 MHz, DMSO-d6): δ = 7.04 (t, J = 7.2 Hz, 1H, H4a),

7.38 (t, J = 8.4 Hz, 2H, H3a, H5a), 7.478 (t, J = 8.0 Hz, 1H,

H5b), 7.70 (m, 3H, H2a, H6a, H4b), 7.86 (d, J = 8.0 Hz, 1H,
H6b), 8.04 (s, 1H, H2b), 10.648 (s, 1H, NH); IR (KBr): ϋ =

3236, 3185 (NH), 1608, 1589 (C=N), 654 (C-S) cm-1; ESI-MS

m/z [M+H+] = 332.0, 334.0; Anal. Calcd for: C14H10BrN3S:

C, 50.62; H, 3.03; N, 12.65; S, 9.65; found: C, 51.52; H, 3.02;
N, 12.64; S, 9.66.

3.2. Platelet Aggregation Studies

Platelet aggregation was evaluated using APACT-
4004 aggregometer (LABiTec, Ahrensburg, Germany),

based on the turbidimetric method reported by Born in

previous studies (27). In summary, PRP was obtained
through centrifugation of human-citrated blood at 100

g for 10 minutes. To obtain platelet-poor plasma (PPP),

the residual blood was centrifuged at 1500 g for 15
minutes. Different concentrations of tested compounds

were prepared in DMSO. Platelet-rich plasma (200 μL)

and synthesized compounds were incubated at 37°C.
After 5 minutes, the ADP and AA were added as platelet

aggregation inducers. The final concentrations of ADP

and AA were 5 μM and 1.35 mM, respectively. Dimethyl
sulfoxide (0.5% v/v) was used as blank, and aspirin was

used as positive control in the aggregation study. The

platelet aggregation was monitored for 5 minutes. The
compounds were screened at 1 mM. The active

compounds of 3a-m (> 50% inhibition) were diluted to

obtain IC50. The % inhibition values were obtained from

the equation (28-31):
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Where D denotes platelet aggregation in the

presence of a tested molecule, and S stands for platelet

aggregation in the presence of DMSO.

3.3. Docking Studies

The crystal structure of COX-1 (PDB code: 3N8Y) and

purinergic receptor P2Y12 (PDB code: 4NTJ) were

retrieved from the RCSB Protein Data Bank with a

resolution of 2.60 and 2.62 Å, respectively (32, 33). The
computer simulation automated docking analysis was

performed with AutoDock Vina (34). The target protein

was prepared by removing co-crystallized ligands and
water molecules and adding the polar hydrogens and

Gasteiger partial charges. The chemical structures of

newly designed analogs were sketched and optimized
using the molecular mechanic AMBER method with the

algorithm Polak-Ribiere through Hyperchem 8.0

software (Gainesville, FL, USA). The central zones of the
co-crystallized ligands in the active sites were

determined as grid box’s centroids. The type of amino

acid in the target protein that was involved in the
formation of H-bond (distance < 3 Å) was predicted

using Discovery Studio 4.5 visualizer (35). The final

results were shown using PyMOL (36) and the
ProteinsPlus web server (https://proteins.plus) (37).

4. Results and Discussion

4.1. Chemistry

The newly designed compounds 2a-m were
synthesized by reacting thiosemicarbazide intermediate

1 with appropriate benzaldehyde derivatives.

Thiosemicarbazone derivatives 2a-m, therefore
obtained, were subsequently converted to compounds

3a-m in acetonitrile at room temperature (RT), following

the synthetic route outlined in Figure 2. Compound 1
was synthesized by adding 1 mmol of hydrazine hydrate

to a solution of phenyl isothiocyanate in 2-propanol at

RT. The chemical structure of the product was
confirmed through infrared (IR) spectroscopy, as

evidenced by the appearance of the N-H band at

approximately 3300 cm-1. Compounds 2a-m resulted
from the reaction of 1 mmol of phenyl

thiosemicarbazide 1 with 1 mmol of an ethanolic

solution of the corresponding benzaldehyde analogs in

the presence of hydrochloric acid (HCl) as the catalyst.

The primary IR characterization was indicated by the

appearance of the C=N peak at 1550-1600 cm-1.

Compounds 3a-m were prepared by stirring the solution

of thiosemicarbazones 2a-m in acetonitrile with 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) for 2

hours. The IR spectrum was characterized by a distinct

peak for N-H in the range of 3100-3400 cm-1.

Figure 2. Synthetic route for the target compounds; reagents and conditions: (A), 2-
propanol, RT; (B), HCl 37%, ethanol, RT; (C), acetonitrile, DDQ, RT

Proton nuclear magnetic resonance (1H-NMR)

spectroscopy displayed characteristic signals for the
prepared compounds (3a-m). Compound 3a exhibited a

distinct singlet peak at δ = 10.56 ppm, which is

attributed to the N-H group, indicating
aminothiadiazole formation. Compound 3b recorded a

singlet peak at δ = 2.37 ppm for C-H protons originating

from the aliphatic (CH3) group. In the 1H-NMR spectra of

compounds 3f and 3g, significant singlet peaks
appeared at δ = 3.83 and 3.84 ppm, integrating for three

protons, indicating the presence of aliphatic methoxy

groups (OCH3). Compound 3k displayed one prominent

signal at δ = 10.59 ppm, attributed to the OH group. All

corresponding aromatic protons for compounds 3a-m
were observed in their expected aromatic region.

4.2. Antiplatelet Activity

The antiplatelet activity of the synthesized
compounds was evaluated using the “Born” method

with ADP and AA as platelet aggregation inducers, with

aspirin used as a positive control. The antiplatelet

%Inhibition =[1 −( )]×100
D

S

https://proteins.plus/
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activity and half maximal inhibitory concentration

(IC50) values of 3a-m are reported in Figure 3.

Figure 3. Inhibition percentage (%) and IC50 values (mean ± standard error of the
mean [SEM], n = 3) of compounds (3a-m), using ADP and AA as platelet aggregation
inducer agents

The antiplatelet activity of 2a-m was evaluated at a

concentration of 1 mM. All tested compounds exhibited

less than 60% inhibition of platelet aggregation when
ADP was used as the platelet aggregation inducer. When

AA was used as a platelet aggregation inducer, only 2a,

2e, 2f, and 2k showed inhibition of more than 80%. The
results obtained indicated that 2a-m did not possess

suitable antiplatelet activity.

On the other hand, among the final products 3a-m,

compounds 3f, 3g, and 3i, containing a 4-methoxy, 3-

methoxy, and 3-cyano group, respectively, showed
moderate effects against platelet aggregation induced

by AA with IC50 values of 370 - 520 µM. Meanwhile,

aggregation induced by the ADP molecule was more

effectively inhibited by compounds 3f, 3j, and 3m. These
compounds, with 4-methoxy, 4-nitro, and 3-bromo

moieties, exhibited modest activity against platelet

aggregation induced by ADP (IC50 = 421 - 468 μM).

Among the cyclic compounds, 3b, containing 4-methyl
with an IC50 of 39 ± 11 µM, was observed to be the most

potent against ADP.

Thiosemicarbazones were converted into thiadiazole

derivatives to study the effect of the ring on antiplatelet
activity. According to the obtained results, the

antiplatelet activity against aggregation induced by AA

decreased after the ring closure of thiosemicarbazones;
nevertheless, greater activity was observed against ADP-

induced platelet aggregation with thiadiazole

derivatives. Moreover, the addition of an electron-

donating group, such as a methyl group at the para

position of the phenyl ring (3b), significantly improved
the antiplatelet activity against the ADP pathway;

however, the introduction of electron-withdrawing

groups, such as fluorine at the same position, had the
opposite effect.

In addition, for compounds 3f and 3g, placing the
methoxy group on the phenyl ring, regardless of the

position of the substitution, increased the antiplatelet

effect against AA-induced platelet aggregation.

4.3. Lipinski’s Rule of Five

To predict the oral suitability of the chemical

compounds, the most active derivatives against ADP (3b)
and AA (3f, 3g, and 3i) were evaluated in silico using a

computational cheminformatics pipeline, namely

Lipinski’s Rule of Five, employing SwissADME® (38-40).
LogP is one of the components of Lipinski’s Rule of Five

and describes the lipophilicity of molecules. According

to the calculated logP values, the compounds were
predicted to be capable of crossing biological

membranes due to their high lipophilicity. The results

of calculating Lipinski’s criteria of drug-likeness for the
most active compounds (Table 1) showed that none of

them violated Lipinski’s boundaries, thereby suggesting

a proper kinetic profile and good oral bioavailability.

Table 1. In Silico Predicted ADME Parameters of the Most Active Derivatives

Compounds MW HBD HBA LogP
Violation of Lipinski’s Rule of Five

a

3b 267.35 1 2 3.78 0

3f 283.35 1 3 3.43 0

3g 283.35 1 3 3.43 0

3i 278.33 1 3 3.21 0

a Lipinski’s Rule of Five: Molecular weight (MW) ≤ 500 Da; Number of hydrogen
bond donors (HBD) ≤ 5, number of hydrogen bond acceptors (HBA) ≤ 10, and logP ≤

5.

4.4. Docking Studies

Based on the results of the antiplatelet aggregation
test, compounds 3b and 3g, which exhibited the highest

potency against ADP and AA-induced platelet

aggregation, respectively, were selected for molecular
docking simulations to model their binding to potential

targets, namely P2Y12 and COX-1. The best binding poses
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with the lowest energy were calculated using AutoDock

Vina and analyzed using PyMol and Discovery Studio

Visualizer software. The binding modes of compounds
3b and 3g in the active sites of P2Y12 and COX-1 are

depicted in Figure 4.

Figure 4. 2D (A) and 3D (B) representation of 3b in the active site of P2Y12 (PDB ID:

4NTJ) and 2D (C) and 3D (D) representation of 3g in the active site of COX-1 (PDB ID:
3N8Y); Hydrogen bonds are represented as black and yellow dashed lines in 2D and
3D models respectively.

The results suggest that in the case of 3b, P2Y12 aids in

anchoring the compound within the pocket through

hydrophobic interactions formed between the tolyl and
phenyl rings in the ligand and Tyr105 and Lys280 in

P2Y12, respectively. Additionally, π-π stacking occurs

between the phenol ring of Tyr105 and the p-tolyl group

of 3b. Moreover, hydrogen bonds are formed between

Lys280 and the thiadiazole ring. These interactions are
consistent with previously reported studies (41).

In the case of compound 3g, a hydrogen bond is
observed between the hydrogen of the OH group of

Tyr385 and the oxygen of the methoxy group. This

hydrogen bond is also reported for diclofenac, the co-
crystallized ligand, in the active site of COX-1.

Furthermore, the phenyl ring of 3g forms hydrophobic

interactions with Leu359, Leu531, Val349, and Val116 (32).

5. Conclusions

In the present study, a novel series of thiadiazole

derivatives were synthesized, and their activity on

platelet-rich plasma (PRP) was evaluated using ADP and

AA as platelet aggregation inducers. The synthesized

compounds were thoroughly characterized through 1H-

NMR, mass spectrometry (MS), IR, and elemental
analyses. The findings revealed that most of the

synthesized analogs exhibited low to moderate activity

against AA and ADP. Structure-activity relationship (SAR)
studies indicated that compound 3b, bearing a 4-methyl

substituent on the aryl side group, displayed the highest

potency against ADP (IC50 = 39 ± 11 µM). On the other

hand, for antiplatelet activity against AA, derivatives
containing substituents, such as 4-methoxy, 3-methoxy,

and 3-cyano, exhibited the most activity.

In addition, in silico ADME prediction studies, the

synthesized compounds adhere to Lipinski's Rule of Five

parameters, suggesting their potential for oral

administration. Furthermore, molecular docking
analysis was conducted for the potent compounds 3b

and 3g to study their putative binding patterns at the

P2Y12 and COX-1 active sites, respectively. Overall, the

presence of thiadiazole in these compounds was
observed to potentiate their antiplatelet activity against

ADP-induced aggregation. In summary, the results of

this study provide valuable insights for future
investigations aimed at developing potent compounds

with antiplatelet effects.
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