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Abstract

Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive deterioration, including

deficits in memory and other cognitive functions. Oxidative stress and free radical damage play significant roles in its

pathogenesis. This study aimed to investigate the potential anti-inflammatory and neuroprotective effects of Pistacia atlantica

gum (administered at doses of 50 and 100 mg/kg for 14 days) in a rat model of AD induced by aluminum chloride (AlCl3).

Behavioral changes were assessed using open field, passive avoidance, and elevated plus maze tests. Additionally, nitrite levels,

nuclear factor-kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), and immunostaining were evaluated. Administration

of P. atlantica gum significantly increased step-through latency in the passive avoidance test (P < 0.01 and P < 0.001), enhanced

mobility in the open field test (P < 0.01 and P < 0.001), and reduced anxiety-like behaviors in the elevated plus maze (P < 0.001)

compared to the AlCl3 group. Treatment with the gum partially normalized the elevated levels of NF-κB and the decreased levels

of BDNF caused by AlCl3 exposure. Our findings suggest that P. atlantica gum administration may alleviate oxidative stress,

neuroinflammation, and cognitive impairment in AD rats.
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1. Background

As the leading cause of dementia, Alzheimer's disease

(AD) is a neurodegenerative disorder characterized by

progressive impairment in behavioral and cognitive

functions (1). The intracellular accumulation of

neurofibrillary tangles (NFTs) and extracellular

deposition of Amyloid-β (Aβ) plaques are the main

pathophysiological hallmarks of AD (2). The clinical

manifestation of AD is the gradual loss of memory and

cognitive function, followed by neuropsychiatric

symptoms such as periods of confusion, mood changes,

delusions, and hallucinations that ultimately result in

death (3). Approximately 60 - 70% of dementia patients

suffer from AD, and it is estimated that dementia affects

55 million people worldwide (4-6). By 2050, this number

is expected to surpass 152 million, with most of the

growth occurring in low-income developing countries

(5). The complex and multifactorial nature of AD

represents the most difficult challenge in identifying an

effective therapy capable of modifying the course of the

disease and halting its progression (1). The presence of

elevated levels of inflammatory markers and the

identification of AD risk genes associated with innate

immune functions suggest that neuroinflammation

plays a significant role in the pathogenesis of AD (7, 8).

Neuroinflammation is a chronic process that involves

synaptic dysfunction, neuronal death, and inhibition of

neurogenesis (8). Upon stimulation by Aβ plaques and

NFTs, microglia and astrocytes become activated,
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migrate around plaques, and release neurotoxins and

inflammatory molecules (8). The secretion of pro-

inflammatory cytokines such as IL-1β, IL-6, IL-18, and

tumor necrosis factor (TNF), as well as different

chemokines like C-C motif chemokine ligand 1 (CCL1),

CCL5, and C-X-C motif, along with the release of

prostaglandins, nitric oxide, and reactive oxygen species

(ROS), are associated with neurodegeneration at

different stages of AD progression (8, 9). Therefore,

considerable evidence suggests that targeting

neuroinflammation is promising in AD drug discovery

(5).

The current standard treatments for AD mainly focus

on counteracting neurotransmitter imbalance.

Acetylcholinesterase inhibitors (donepezil,

rivastigmine, and galantamine) delay the cognitive

decline in patients with AD by increasing acetylcholine

levels and enhancing neuronal communication (10).

While these medications relieve symptoms, they do not

address the underlying pathology of the disease (11, 12).

Conversely, new drugs tested in clinical trials as novel

attempts to revive AD drug discovery have failed to

demonstrate cognitive or clinical benefits (11, 12).

Brain-derived neurotrophic factor (BDNF) is a small

protein belonging to the nerve growth factor (NGF)

family, highly expressed in the mammalian brain (13).

Brain-derived neurotrophic factor plays several

prominent roles in the growth, development,

differentiation, and regeneration of various types of

neurons in the CNS. Additionally, it contributes to long-

term potentiation and long-term depression, as well as

learning and memory processes (14).

Certainly, nuclear factor-κB (NF-κB) is a well-known

inflammatory transcription factor involved in

neurodegeneration, consisting of NF-κB1 (p105/p50), NF-

κB2 (p100/p52), RelA (p65), RelB, and c-Rel. The p65/p50

dimer, activated by IL-1β, Aβ peptide, or glutamate,

induces proapoptotic genes, resulting in neuronal

death (15).

Plant-derived resin oils are enriched sources of

antioxidants and anti-inflammatory chemicals with

potential therapeutic uses. One of the best examples of

such plants is Pistacia atlantica Desf., a tree from the

family Anacardiaceae that grows in the Zagrossian

region. P. atlantica resin has been widely used in

traditional medicine due to its manifold favorable

impacts on biological activities, such as positive

gastrointestinal effects on appetite, nausea, vomiting,

and constipation, as well as beneficial neurological

effects, such as nerve tonic in some pathological

conditions, including Bell’s palsy, stroke, tetanus,

seizure, tremor, and headache (16, 17). These beneficial

activities presumably derive from the presence of

phenolic compounds as well as monoterpenes and

oxygenated sesquiterpenes (15-19). Numerous studies

have evidenced the antioxidant and anti-inflammatory

capacities of different extracts and essential oils of P.

atlantica containing α-pinene, myrcene, limonene, β-

pinene, and γ-terpineol, which may have

pharmacological interest by reducing the production of

reactive species and pro-inflammatory mediators via

2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging,

reducing ferric oxidation in the ferric reducing

antioxidant power (FRAP) test, as well as decreasing

lipid peroxidation in the TBARS assay (18-22). More

specifically, various studies have shown the anti-

inflammatory effects of essential oils from P. atlantica in

vitro, as well as promoting wound healing in in vivo

studies (23-25). Regarding the neuroprotective

properties, in traditional Persian medicine, the essential

oils of this species have been prescribed to promote

memory (22). It has been depicted that some phenolic

compounds such as methyl gallate and digalloylquinic

have acetylcholinesterase (AChE) and anti-

butyrylcholinesterase (BuChE) activity, a hopeful source

for finding and expanding new anti-Alzheimer agents

(26). The protective effects of P. atlantica extract (150

mg/kg/day, orally) were also observed in mercury-

treated rats (2.5 mg/kg, once a week, i.p.), attenuating

some of the harmful and toxic effects in the brain

arising from mercury, such as reducing the activity of

the antioxidant defense system through a substantial

decline in the activity of catalase, glutathione

peroxidase, glutathione-s-transferase, and superoxide

dismutase acetylcholinesterase and elevation of the

activity of lactate dehydrogenase (27).

2. Objectives

The aim of the present study was to evaluate the

potential anti-inflammatory and neuroprotective effects

of P. atlantica in a rat model of AD induced by aluminum

chloride (AlCl3) via targeting NF-κB/BDNF.

3. Methods

This study was conducted following the standard

instructions for working with animals of Kermanshah

University of Medical Sciences, Iran (ethical number:

IR.KUMS.AEC.1400.012). The study was also conducted in

https://ethics.research.ac.ir/ProposalCertificateEn.php?id=239346
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accordance with the policies for experimental and

clinical studies outlined by Basic & Clinical

Pharmacology & Toxicology (28).

3.1. Materials

Aluminum chloride, 99% pure, was provided by

Sigma-Aldrich (St. Louis, MO). P. atlantica, containing α-

pinene (42.9%) and β-pinene (13.2%) (29), was purchased

from the Department of Pharmacognosy at the Faculty

of Pharmacy at Kermanshah University of Medical

Sciences in Iran.

3.2. Animals and Experimental Procedure

In this study, 32 adult male Wistar rats weighing

between 200 - 230 g were purchased from Aftab Lorestan

and housed in the central animal house at Kermanshah

University of Medical Sciences. The animals were fed ad

libitum and maintained under standard conditions (12-

hour light/dark cycle, relative humidity of 60% ± 5%, and

temperature of 24 ± 2ºC). Animal care strategies were

carried out following the guidelines for the treatment

and care of laboratory animals published by The Iranian

National Institute of Health and approved by the Ethics

Committee at Kermanshah University of Medical

Sciences. All efforts were made to minimize mouse

distress.

The rats were randomly divided into four groups,

with each group containing eight rats (n = 8):

- Group 1: Control group consisting of normal rats

treated intraperitoneally (i.p.) with saline for 14 days.

- Group 2: Animals receiving AlCl3 (100 mg/kg, i.p.)

(30) for 14 days to induce memory dysfunction.

- Group 3: Animals receiving AlCl3 (i.p.) followed by

oral administration of P. atlantica (50 mg/kg) (31) for 14

days.

- Group 4: Animals receiving AlCl3 (i.p.) followed by

oral administration of P. atlantica (100 mg/kg) (31) for 14

days.

3.3. Open Field Test (OFT)

Following the initiation of AlCl3 treatment, an open

field test (OFT) was conducted on the 8th day and

repeated on the 14th day. The OFT is a fundamental

sensorimotor test used to assess general activity in

animal models of central nervous system disorders such

as AD (32). The procedure was performed in a

transparent plastic square box measuring 80 × 80 × 40

cm, allowing the animal to move freely within the box

(33). The animals were observed for ten minutes in the

center of the box, and data were collected on the

following parameters: The number of squares traveled

by the rats (line crossed), grooming behavior (hand

licking), and rearing behavior (standing on two legs).

3.4. Elevated Plus Maze

The elevated plus-maze apparatus is a plus-shaped

labyrinth comprising a central region, two opposing

closed arms, and two opposing open arms. It serves as a

behavioral assay for rodents to assess the anxiolytic

effects of pharmacological agents (34, 35). Rats were

placed in the open arm (on days 8 and 14), and it was

determined whether the rats preferred the open arms

over the closed arms. The time taken to transfer to the

closed arm was measured.

3.5. Passive Avoidance Test

The passive avoidance test is utilized to assess

learning and memory in animal models of CNS

disorders. In this test, animals learn to avoid an

environment in which an undesirable stimulus was

previously delivered (36). The apparatus for the test

comprises a chamber divided into a lighted

compartment and a dark compartment, separated by a

door. Rats inherently explore their surroundings,

including dark and enclosed environments. Based on

this natural behavior, the experiment was designed so

that the rats were placed in a well-lit room on the

training days (day 7), with the door open. The rats

entered the dark chamber due to their preference for

the dark environment; then, the door was closed, and an

electric shock was immediately administered for one

second. The time it takes the animal to move from the

light side to the dark side of the apparatus was recorded

as the initial transition latency (ITL). On the day of the

experiment (days 8 and 14), the above procedure was

repeated to assess the rats' cognitive abilities in

recalling the previous day's electric shock experience

and to determine whether the tendency to enter the

darkroom had diminished. The time delay for the

animal to enter the dark side during the memory

retrieval phase (days 8 and 14) was designated as the

memory criterion and recorded as step-through latency

(STL) (37).
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3.6. Histopathological Assessments

At the conclusion of the behavioral tests, all animals

were euthanized (using 80 mg/kg ketamine + xylazine

10 mg/kg). The hippocampal tissue was carefully

extracted and preserved in 200 mL of 4%

paraformaldehyde and 0.1 M PBS. Tissue sections, 5 mm

in thickness, were prepared using a scalpel and stained

with hematoxylin and eosin (H&E) stain.

Histopathological alterations were examined using a

light microscope, and data were collected at a

magnification of 400.

3.7. Nuclear Factor Kappa B p65 and Brain-Derived
Neurotrophic Factor Immunostaining

Immunostaining analyses of the hippocampus were

performed using the affinity purification method to

evaluate the expression levels of NF-κB and BDNF (38).

Sections were deparaffinized (2 x 5 min in TBS plus 0.03%

Triton X-100). The NF-κB test probe and BDNF test probe

were incubated with 0.5 μg/mL anti-NF-kB p65 antibody

(ab16502) and anti-BDNF antibody (ab108319) (Turbo: At

37ºC for 4 hours, overnight at 4ºC). Then, they were

washed (3 × 5 min in TBS plus 0.03% Triton X-100) and

incubated with 0.2 mg/mL secondary antibody (Goat

Anti-Rabbit IgG (H + L) (FITC) (E-AB-1014)) in a dark room

at 37°C for 90 min. Afterwards, they were washed three

times with DAPI (Sigma-D9542) and for 20 min with PBS.

Next, sections were dehydrated in ethanol and xylene,

then covered with a fluorescent mounting medium. The

sections were observed under an Olympus BX50

fluorescence microscope (39).

3.8. Statistics

Data analysis was performed using GraphPad Prism

9. One-way analysis of variance (ANOVA) followed by

Tukey’s post hoc test was used to determine the

differences between groups. Results were presented as

mean ± SEM, and P < 0.05 was considered statistically

significant.

4. Results

4.1. Behavioral Tests

4.1.1. Open Field Test

The general levels of activity, locomotor activity, and

exploration behaviors in a new environment

determined by the open field test are shown in Figure 1.

The group treated with AlCl3 showed significantly less

grooming, rearing, and crossing lines compared to the

control group (P < 0.001). Administration of both doses

of P. atlantica (50 and 100 mg/kg) induced a progressive

recovery in grooming and rearing at the two time points

analyzed, while for the crossed lines, the changes are

less clear and only evident at 14 days.

4.1.2. Elevated Plus Maze

The effects of P. atlantica on the transfer latency of

rats treated with AlCl3 in the elevated plus-maze are

presented in Figure 2. The transfer latency of the AlCl3-

treated group was significantly increased compared to

the control group (P < 0.001). Treatment with both

concentrations of P. atlantica significantly decreased

transfer latency compared to the AlCl3 group at 8 days (P

< 0.001), while at 14 days, it was only significant for the

100 mg/kg concentration (P < 0.05).

4.1.3. Passive Avoidance Test

The results of memory and learning abilities of rats

determined with the passive avoidance test are

presented in Figure 3. Treatment with AlCl3 significantly

increased ITL (P < 0.01) and decreased STL (P < 0.001)

compared with the control group. Pistacia atlantica-

treated groups performed the test better in both short-

term memory and long-term memory compared to the

AlCl3 group (P < 0.01 and P < 0.001), with the group

receiving 100 mg/kg showing a better response in STL

after 14 days.

4.1.4. Histopathological Studies

The control group (Figure 4A) presented normal

hippocampus layers and typical morphological

characteristics, such as granule cells with intact nuclear

details and an undamaged hilar area. In the AlCl3 group

(Figure 4B), apoptotic cells (dark) could be observed

locally in some areas of the hippocampus. An increase in

the perivascular space, an abnormal appearance in

some gray matter cells (cerebral cortex), abnormal

collection and compression in cortical arteries and

veins (even capillaries), a relative decrease in the

number of cells in the gray matter layers (cerebral
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Figure 1. The results of the open field test in animals exposed to AlCl3 and treated with P. atlantica gum. A, the number of grooming acts; B, number of rearing acts; C, number of

lines crossed. AlCl3, aluminium chloride 100 mg/kg i.p; AlCl3 + gum 50, P. atlantica gum 50 mg/kg treated-AlCl3 group; AlCl3 + gum 100, P. atlantica gum 100 mg/kg treated-AlCl3

group. #P < 0.05; ##P < 0.01; ###P < 0.001 compared with the AlCl3 group; **P < 0.01; ***P < 0.001 compared with the control group.

Figure 2. Anxiety-like behaviors in the elevated-plus-maze in animals exposed to AlCl3 and treated with P. atlantica gum. AlCl3, aluminium chloride 100 mg/kg i.p; AlCl3 + gum 50,

P. atlantica gum treated-AlCl3 group; AlCl3 + gum 100, P. atlantica gum 100 mg/kg treated-AlCl3 group. #P < 0.05, and ###P < 0.001 compared with the AlCl3 group; ***P < 0.001

compared with the control group.

cortex), and the hippocampus could be observed.

Additionally, the presence of dark apoptotic cells in the

neuroglial population and the analysis of cellular

excesses in the deep areas adjacent to the hippocampus

could be observed.
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Figure 3. Passive avoidance test in animals exposed to AlCl3 and treated with P. atlantica gum. A, ITL (initial transfer latency); B, comparison of STL (step-through latency) during

a Passive Avoidance test. AlCl3, aluminum chloride 100 mg/kg i.p; AlCl3 + gum 50, P. atlantica gum 50 mg/kg treated-AlCl3 group; AlCl3 + gum 100, P. atlantica gum 100 mg/kg

treated-AlCl3 group. ##P < 0.01; ###P < 0.001 compared with the AlCl3 group; **P < 0.01; ***P < 0.001 compared with the control group.

Figure 4. Photomicrographs of the hippocampus stained with hematoxylin and eosin (*400). A, control group; B, AlCl3 100 mg/kg i.p.; C, P. atlantica gum 50 mg/kg treated-AlCl3
group; D, P. atlantica gum 100 mg/kg treated-AlCl3 group.

In the group treated with P. atlantica 50 mg/kg

(Figure 4C), a relative decrease in the changes caused by

AlCl3 was observed, including a decrease in apoptotic

dark cells and a relative increase in the neuronal layer of

the hippocampus, a decrease in the perivascular space,

and a relative normalization of the appearance of the

vessels (arteries and veins). However, dark cells are still

present in small areas of the hippocampus, although

their intensity is lower than in the AlCl3 group. The

appearance of tissue sections of the cerebral cortex and

hippocampus in the 100 mg/kg treated group was very

similar to the normal group (Figure 4D). The thickness

of the neuronal layer of the hippocampus was increased

compared to the AlCl3 group, and the neurons are
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Figure 5. Levels of brain-derived neurotrophic factor (BDNF) in hippocampi by immunofluorescence analysis. A, microphotographs show the co-localization of BDNF (green)-
positive cells with DAPI (blue) in the hippocampi of animals, B, semi-quantitative assay of active BDNF. AlCl3, aluminum chloride 100 mg/kg i.p; AlCl3 + gum 50, P. atlantica gum

50 mg/kg treated-AlCl3 group; AlCl3 + gum 100, P. atlantica gum 100 mg/kg treated-AlCl3 group. #P < 0.05; ## P < 0.01 compared with the AlCl3 group; ***P < 0.001 compared with

the control group.

normal. Dark cells are very few, and the perivascular

space was similar to the normal group. The vascular

layer adjacent to the hippocampus was also normal, and

the network of cellular extravasations resembled that of

the control group. The cortical layer of the brain (gray

matter) looks similar to the control group in terms of

cell density and the appearance of extracellular

background cells.

4.1.5. Brain-Derived Neurotrophic Factor levels

According to immunofluorescence analysis, a

reduction in the levels of BDNF (P < 0.001) was observed

in the AlCl3 group compared to the control group

(Figure 5). The administration of P. atlantica partially

recovered the BDNF levels, mainly in the 50 mg/kg

group (P < 0.01).
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Figure 6. Levels of nuclear factor-kappa B (NF-κB) p65 in the brain tissues by immunofluorescence analysis. A, microphotographs show the co-localization of NF-κB p65 (green)-

positive cells with DAPI (blue) in the hippocampi of animals; B, semi-quantitative assay of active NF-κB p65. AlCl3, aluminum chloride 100 mg/kg i.p; AlCl3 + gum 50, P. atlantica

gum 50 mg/kg treated-AlCl3 group; AlCl3 + gum 100, P. atlantica gum 100 mg/kg treated-AlCl3 group. ##P < 0.01; ###P < 0.001 compared with the AlCl3 group; ***P < 0.001

compared with the control group.

4.1.6. Nuclear Factor Kappa B Levels

The protein levels of p65 NF-κB were significantly

increased in the hippocampus of the AlCl3 group (P <

0.001) compared to the control group (Figure 6). The

administration of P. atlantica progressively decreased

the levels of p65 NF-κB protein (P < 0.01 and P < 0.001).

5. Discussion

Alzheimer's disease is a progressive disorder

characterized by memory loss and cognitive decline

(40). The amyloid beta (Aβ) cascade theory, tau theory,

inflammation theory, cholinergic theory, and oxidative

theory are among the most recognized hypotheses

proposed to explain AD (41, 42). An important aspect of
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AD pathogenesis related to neuroinflammation is the

accumulation of Aβ in the brain (43). Elevated levels of

reactive oxygen species (ROS), increased microglial

activation, cytokine release, and activated NF-κB all

contribute to the neuroinflammatory process in AD

(44). Nuclear factor-kappa B, as a key transcription

factor, modulates the expression of several genes

encoding proteins involved in immune and

inflammatory responses (45). Brain-derived

neurotrophic factor, a crucial neurotrophin for synaptic

development and flexibility, shows impaired signaling

in AD brains and is associated with tau phosphorylation,

Aβ accumulation, neuroinflammation, and neuronal

apoptosis (46). Indeed, altered BDNF signaling in animal

models of AD exacerbates age-related memory

impairment, while increases in its levels have beneficial

effects on learning and memory (47, 48).

Currently, there are no effective treatments for AD;

existing medications only slow down disease

progression. Moreover, routinely used drugs (Donepezil,

Rivastigmine, Galantamine, Tacrine, etc.) often have

significant side effects, such as hepatotoxicity,

underscoring the need to develop new drugs with

minimal toxic effects (42, 48). Various natural

compounds have been investigated for their potential

anti-neuroinflammatory activity, acting through

mechanisms such as microglia activation suppression,

restriction of pro-inflammatory cytokine production,

NF-κB suppression, and p38 mitogen‑activated protein

kinase (MAPK) activation (49). Alkaloids, polyphenols,

terpenes, and carotenoids are among the natural

products showing anti-neuroinflammatory potential.

Flavonoids and other polyphenolic substances, in

particular, exhibit anti-inflammatory properties by

reducing pro-inflammatory mediators and suppressing

NF-κB and p38 MAPK pathways (50, 51). Flavonoids, due

to their suppressive effects on pro-inflammatory

transcription factors and activation of antioxidant/anti-

inflammatory transcription factors, are considered a

significant subgroup for reducing neuroinflammation

in AD (51).

The wild pistachio, or P. atlantica, which grows in

Iran, Turkey, Iraq, and Saudi Arabia, has been widely

used in ancient medicine to treat various conditions,

including upper abdominal discomfort, dyspepsia, and

peptic ulcers (16). Through phytochemical

investigations, various beneficial substances such as

phenolic compounds, terpenes, fatty acids, tocopherols,

and phytosterols have been identified (16). Previous

studies have highlighted the high antioxidant content

of P. atlantica leaves, suggesting potential protection

against oxidative damage (42). Extracts of P. atlantica

have demonstrated potent acetylcholinesterase (AChE)

inhibitory, antioxidant, and antiproliferative effects (24,

26, 52-55). Moreover, several articles have discussed the

anti-Alzheimer effects of P. atlantica (56-58). A study by

Ben Ahmed et al. illustrated the potential of P. atlantica

galls as a source for novel anti-AD substances,

identifying metabolites in P. atlantica gall extracts that

may contribute to anticholinesterase activity (26).

Nuzzo et al.indicated that consuming pistachios with a

high-fat diet prevented the negative effects of the diet

on neurons and improved metabolic parameters,

including oxidative stress, apoptosis, and mitochondrial

dysfunction in mice (59). Additionally, the bicyclic

monoterpene α-pinene, found in P. atlantica, has been

shown to possess anxiolytic properties and improve

locomotor activities (24, 60, 61). Its mechanism of action

is associated with upregulation of BDNF mRNA

expression in the hippocampal regions of rats following

α-pinene inhalation (24, 61).

This study demonstrates the effectiveness of P.

atlantica in treating and recovering rats with AD

induced by AlCl3. The elevated plus maze, open field, and

passive avoidance behavioral tests were used to assess

behavioral alterations induced by AlCl3 and the

protective effects of P. atlantica. The elevated plus maze

test measures anxiety-related behavior (35). Aluminum

chloride treatment increased the time taken to

transition from the open arm to the closed arm, while P.

atlantica reversed this increase.

Open field test is used to evaluate the level of motor

and cognitive activities. The frequency of line crossings,

rearing, and grooming is used to measure rat

performance during the test period (62). In this study,

the administration of P. atlantica improved the

performance of the rats compared to the AlCl3 group.

Similarly, in the passive avoidance test, the latency was

more extended in the gum groups than in the AlCl3

group, which is related to better quality of memory.

Brain-derived neurotrophic factor is a critical factor

in neuronal survival and memory and has been linked

to the etiology of AD, with decreased BDNF levels found

in the disease (63). It is a neurotrophin that plays a

significant role in neuronal survival and growth and

participates in the development and flexibility of

synapses, which is essential for learning and memory

(46, 64). The present results evidenced a decrease in
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BDNF protein levels in the hippocampus after AlCl3

administration, suggesting the role of this

neurotrophin in AD. Moreover, the administration of P.

atlantica was capable of partially recovering the levels of

BDNF.

Alzheimer's disease is characterized by plaque

deposits of the Aβ peptide and the neurofibrillary

tangles of the microtubule-binding protein tau (65).

Previous data have shown that the neurotoxic Aβ is a

powerful stimulator of the transcription factor NF-κB in

primary neurons (66, 67). An important aspect of

controlling inflammatory reactions is the NF-κB

pathway (36). The levels of NF-κB were increased in the

AlCl3 group, which supports the findings that the NF-κB

pathway is involved in this disorder. Consistent with the

observed reduction of NF-κB after P. atlantica

administration, previous studies have also shown that

some phytochemicals such as morin, thymol, and

thymoquinone reduce the levels of NF-κB in a model of

AD induced by AlCl3 (68). Immunohistochemical

analysis showed that AlCl3 causes the development of

AD by triggering an increase in NF-κB and a decrease in

BDNF. These data also suggest that consumption of P.

atlantica reverses this effect.

From a histopathological standpoint, compared to

the AlCl3 group, the groups treated with the gum had

thicker neuronal layers in the hippocampus, and the

neurons were normal. The perivascular space was

identical to that of the normal group, and there were

relatively few dark cells, which were occasionally visible

as tiny local islands. The network of cellular

extravasations was comparable to that of the normal

group, and the vascular layer next to the hippocampus

was also normal. Regarding cell density and the

presence of extracellular background cells, the cortical

layer of the brain (sometimes referred to as gray matter)

resembled that of the normal group. Generally, the

observation of the histological results further supports

the improvement of AD.

5.1. Conclusions

The current study revealed the protective properties

of P. atlantica and the damaging effects of AlCl3

consumption in an in vivo model of AD. The results of

behavioral tests evidenced that P. atlantica could

improve cognitive dysfunction. The inhibition of the NF-

kB pathway and the induction of BDNF are possible

mechanisms involved in the neuroprotective action of P.

atlantica. Treatment with P. atlantica could also lessen

oxidative stress by lowering the inflammatory reaction

linked to the NF-kB pathway. These findings support the

idea that P. atlantica might provide a potential

treatment option for further studies on

neurodegenerative diseases like AD.
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