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Abstract

Background: Insulin resistance is an important pathological hallmark of Parkinson’s disease (PD). Proinflammatory cytokines

during neuroinflammation decrease insulin sensitivity by suppressing insulin signaling elements. Toll-like receptor 4 (TLR4),

the main receptor involved in neuroinflammation, is also associated with the pathogenesis of PD.

Objectives: The present study evaluated the effect of insulin, an insulin receptor antagonist, and a TLR4 inhibitor on behavioral

deficits and insulin resistance induced by 6-hydroxydopamine (6-OHDA).

Methods: Male Wistar rats were divided into nine groups: (1) sham (normal saline [NS] in the medial forebrain bundle [MFB]);

(2) 6-OHDA (20 µg in the MFB); (3) 6-OHDA + NS; (4) 6-OHDA + dimethyl sulfoxide (DMSO); (5) 6-OHDA + insulin (2.5 IU/day,

intracerebroventricular ([ICV]); (6) 6-OHDA + insulin (5 IU/day, intranasal [IN]); (7) 6-OHDA + insulin receptor antagonist (S961;

6.5 nM/kg, ICV); (8) 6-OHDA + TLR4 inhibitor (TAK242; 0.01 µg/rat, ICV); (9) 6-OHDA + insulin + TLR4 inhibitor. All treatments were

administered for seven consecutive days. Motor performance was evaluated using apomorphine-induced rotation and cylinder

tests. Gene expression and protein levels of α-synuclein, TLR4, insulin receptor substrate (IRS) 1, IRS2, and glycogen synthase

kinase 3β (GSK3β) were measured by real-time PCR and western blotting, respectively, in the striatum.

Results: Insulin, alone and with TAK242, improved motor deficits induced by 6-OHDA. Administration of the insulin receptor

antagonist had no effect on motor deficits. The increased expression of α-synuclein and TLR4 following 6-OHDA was attenuated

by insulin and TAK242. GSK3β levels, both mRNA and protein, were significantly increased by 6-OHDA and attenuated with

insulin and TAK242.

Conclusions: The findings suggest that 6-OHDA induces neurodegeneration via activation of TLR4 and GSK3β, indicating

insulin resistance, and that insulin can improve these impairments. Moreover, TLR4 inhibition prevents insulin signaling

dysfunction and improves behavioral and molecular impairments, highlighting the critical role of TLR4 in the development of

insulin resistance in PD pathology.
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1. Background

Parkinson’s disease (PD), the second most common
neurological disorder after Alzheimer's disease, is

mainly characterized by the loss of dopaminergic
neurons in the midbrain (1). Dopamine depletion in the

nigrostriatal pathway leads to motor symptoms

including bradykinesia, resting tremor, rigidity, and

postural instability. There is growing evidence that

insulin resistance and diabetes, which share similar
pathological pathways, are important contributors to

PD (2).

For many years, insulin was thought to act merely as

a peripheral hormone involved in glucose homeostasis

and energy metabolism. Nowadays, there is strong
evidence that insulin affects several functions in the
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brain, such as mitochondrial function, gene expression,

protein synthesis, and synaptic transmission through

PI3K/Akt and MAPK/ERK pathways (3-5). Insulin receptors
are expressed in different parts of the brain including

the striatum and substantia nigra, and disruption of
insulin signaling causes dopaminergic neuron

dysfunction and death (6). Insulin resistance is defined

as insulin desensitization, characterized by a decrease in
the level and function of insulin signaling pathway

elements (5). Many studies have shown the relationship
between insulin resistance in the brain and

neurodegenerative diseases like PD (5, 7). Increased risk

of development of PD in diabetic patients (8), and the

positive effects of anti-diabetic medications in patients

with PD (9), have been reported in several studies.
Central insulin resistance is mostly induced by chronic

neuroinflammation in the brain and can promote
neuronal cell death (5). These findings suggest that

insulin signaling pathways can be considered a

potential target for PD modification.

Toll-like receptors (TLRs), especially TLR2 and toll-like

receptor 4 (TLR4), are involved in innate immune

responses through the production of pro-inflammatory

cytokines (10). Overactivation of TLR4 during chronic

neuroinflammation reduces insulin sensitivity and

causes insulin resistance (11-13), directly through pro-

inflammatory kinases and reactive oxygen species, or

indirectly through the release of pro-inflammatory

cytokines and insulin-desensitizing factors (14). Toll-like

receptor 4 is highly expressed in the substantia nigra

and putamen of human brains (15) and plays an

important role in the pathogenesis of PD (16, 17).

Experimental evidence indicates that the inflammatory

response induced by α-synuclein is mediated by TLR4

(18), and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP)-induced PD pathology is less severe in TLR4

knockout mice than in wild-type mice (15).

2. Objectives

Given the involvement of insulin receptor signaling

and TLR4 in PD pathology, the present study evaluated
the effect of modulation of these pathways using

insulin, S961, and TAK242 on motor performance in a rat
model of PD induced by 6-hydroxydopamine (6-OHDA).

Additionally, insulin signaling pathway elements, as

markers of insulin resistance, were assessed.

3. Methods

3.1. Animals

Male Wistar rats (220 - 250 g) were housed five per

cage with food and water available ad libitum, under a

standard 12-hour light/dark cycle and a temperature of
23 ± 2ºC. The rats were acclimated to the animal colonies

for 5 to 6 days. This study was approved by the Animal
Research Ethics Committee of Shahid Beheshti

University of Medical Sciences

(IR.SBMU.RETECH.REC.1400.676).

3.2. Stereotaxic Surgery

The rats were placed on a stereotaxic instrument

(Stoelting, USA) after being anesthetized with an

intraperitoneal injection of ketamine/xylazine (80/20

mg/kg). A total of 20 µg of 6-OHDA (H4381; Sigma, USA),
dissolved in 2 µL of sterile 0.9% normal saline (NS) with

0.2 mg/mL ascorbic acid, was injected over 5 minutes
into the right medial forebrain bundle (MFB) (AP: -5.2;

ML: +2.4; DV: 8.4) using a Hamilton syringe (22 µL). The

control rats received the same volume of vehicle (2 µL of
sterile 0.9% NS with 0.2 mg/mL ascorbic acid). A guide

cannula was placed in the right lateral ventricle (AP:
-0.75, ML: +1.7, DV: 4) for the daily injection of insulin,

insulin antagonist, and TLR4 inhibitor. Normal saline
and dimethyl sulfoxide (DMSO) (1%) were injected as

vehicles.

3.3. Drugs Administrations

The rats were divided into nine groups (n = 10 per

group) as follows:

(1) Sham: NS with 0.2 mg/mL ascorbic acid in the

right MFB

(2) 6-OHDA: 6-OHDA in the right MFB

(3) 6-OHDA + NS: 6-OHDA in the right MFB + NS

(intracerebroventricular [ICV])

(4) 6-OHDA + DMSO: 6-OHDA in the right MFB + DMSO

(ICV)

(5) 6-OHDA + insulin (ICV): 6-OHDA in the right MFB +

insulin (Novo Nordisk Pharma, Bagsvӕrd, Denmark; 2.5

IU/day, ICV)

(6) 6-OHDA + insulin (IN): 6-OHDA in the right MFB +

insulin (Novo Nordisk Pharma, Bagsvӕrd, Denmark; 5

IU/day, intranasal [IN])

(7) 6-OHDA + S961: 6-OHDA in the right MFB + S961

(NNC0069-0961; Novo Nordisk, Denmark) (6.5 nM/kg,

ICV)

(8) 6-OHDA + TAK242: 6-OHDA in the right MFB +

TAK242 (CLI-095; InvivoGen, USA) (0.01 μg/rat, ICV)

(9) 6-OHDA + insulin + TAK242: 6-OHDA in the right

MFB + insulin (2.5 IU/day, ICV) + TAK242 (0.01 μg/rat, ICV)
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All treatments were continued for seven consecutive

days. After the last injection of treatments, behavioral

tests were performed, and then the animals were

sacrificed for molecular assessments (n = 3 for real-time

PCR and western blotting). The timeline of the
experiments is shown in Figure 1.

Figure 1. Experimental time-line

3.4. Behavioral Tests

3.4.1. Apomorphine-induced Rotation Test

The animals were placed in the box for 20 minutes

for habituation and then received a subcutaneous

injection of apomorphine (0.5 mg/kg), dissolved in NS
with 0.2 mg/mL ascorbic acid (19). The net contralateral

rotations (contralateral - ipsilateral) were calculated
over 40 minutes.

3.4.2. Cylinder Test

The cylinder test is commonly used to assess motor-

sensory function in animal models of PD (20). The

asymmetric use of the forelimbs is due to a lesion in the

nigrostriatal pathway, while normal rats use both

forepaws equally (21). The rats were placed in a glass

cylinder, and each touch on the cylinder wall using the

right, left, or both front paws was counted. The results

are expressed as the percentage of touches made with

the contralateral paw to the total number of touches in

300 seconds.

3.5. RNA Isolation and qPCR Protocol

Total RNA from the right striatum was extracted

using the Total RNA Isolation System (Qiagen, USA),

according to the manufacturer's instructions. RNA

concentration and purity (the ratio of absorbance

values at 260 and 280 nm) were evaluated using a

Nanodrop™ spectrophotometer (Nanodrop; Thermo

Fisher Scientific, Wilmington, DE, USA). Then, cDNA was

synthesized from 1 μg of total RNA using the RevertAid™

First Strand cDNA Synthesis Kit (Qiagen, USA) in

accordance with the manufacturer's protocols, and used
to quantitatively measure the expression of genes using

SYBR Green Real-Time PCR Master Mix reagents in the

ABI system (USA). Relative expression of α-synuclein,

TLR4, insulin receptor substrate (IRS) 1, IRS2, and

glycogen synthase kinase 3β (GSK3β) was calculated by

the 2-ΔΔCT method, with β-actin used as an internal

control. Primer sequences used for qPCR are presented

in Table 1.

Table 1. Primer Sequences Use for qPCR

Gene Forward Primers (5′3′) Revers Primers (5′3′)

α-synuclein CCAACATATAGGCTGGAGTG TAGCCATCCACAGACACACC

TLR4 GTGGGTCAAGGACCAGAAAA GGCTACCACAAGCACACTGA

IRS1 AGGTTTTCCCCTCCTAGCAA GCTGAGATCGAAACATGCAA

IRS2 GGCTCACCAGTTTTCTGCTC GTAGAATTGCTCCCGTTGGA

GSK3β TCGGCTCTCTCCTTCCATTA CCCTCATCCCTGTACCTCAA

β-actin TAGGGTCCATTGGTGGAAAC TGCCGATAGTGATGACCTGA

3.6. Western Blotting

A Potter-Elvehjem tissue grinder (Sigma, St. Louis,

Missouri, USA) with chilled tris-buffered saline with
tween (TBST) (20 mM tris, pH 7.5; 0.75 M NaCl; 2 mM 2-

mercaptoethanol) and 10 µL/mL protease inhibitor
cocktail (Sigma) was used to homogenize striatum

samples, which were then centrifuged at 23,000 g at 4°C
for 45 minutes. The protein concentrations of the

supernatant were quantified using a bicinchoninic acid

protein assay kit (Sigma-Aldrich) with bovine serum

albumin (BSA) as the standard. Next, 25 µg of protein

was loaded onto sodium dodecyl sulfate-polyacrylamide

gels for electrophoresis. The separated proteins were

transferred to polyvinylidene difluoride membranes

(MSI, Westborough, Massachusetts, USA), and non-

specific binding sites were blocked using blocking

buffer (TBST + BSA) for 1 hour. The membranes were

incubated with rabbit anti-TLR4 (1:1000, ab22048,

Abcam), anti-α-synuclein (1:1000, ab52168, Abcam), anti-

IRS1 (1:1000, ab52167, Abcam), anti-IRS2 (1:1000, ab134101,

Abcam), anti-GSK3β (1:1000, ab2602, Abcam), and anti-β-

actin (1:1000, ab20272, Abcam) antibodies at 4°C

overnight. After washing in TBST, the membranes were

incubated with rabbit anti-mouse secondary antibody

(1:2000, ab6728, Abcam) for 30 minutes at room

temperature. The immunoreactive bands were

visualized using an enhanced chemiluminescent

substrate (ChemiGlow; Alpha Innotech, San Leandro,



Hemmati F et al.

4 Iran J Pharm Res. 2024; 23(1): e144200.

Figure 2. Insulin treatment improved motor impairments induced by 6-hydroxydopamine (6-OHDA). Administration of 6-OHDA induced motor deficits in apomorphine-
induced rotation (A); and cylinder (B) tests. Insulin, both intracerebroventricular (ICV) and intranasal (IN), and TAK242 decreased contralateral rotations. Insulin combined with
TAK242 was more effective than TAK242 alone (A); insulin (ICV) and combination therapy with TAK242 significantly increased the use of the contralateral hand, whereas S961 and
TAK242 alone had no effects on forelimb asymmetry (B). Data are presented as mean ± standard error of the mean (SEM) (n = 10). * P < 0.05, ** P < 0.01, *** P < 0.001 vs. sham; # P <
0.05, ### P < 0.001 vs. 6-OHDA; $$ P < 0.01, $$$ P < 0.001 vs. 6-OHDA + TAK242.

California, USA) and a chemiluminescent imaging
system (FluorChem 5500; Alpha Innotech).

Quantification of the bands' density was performed
using Image J software.

3.7. Statistical Analysis

One-way analysis with Tukey’s post hoc tests was used

for the statistical comparison of behavioral and

molecular data, using the 16th version of SPSS. Data are
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Figure 3. Insulin, S961 and TAK242 effects on the expression of α-synuclein and toll-like receptor 4 (TLR4). The mRNA and protein levels of α-synuclein (A, B); and TLR4 (C, D) were

significantly increased by 6-hydroxydopamine (6-OHDA). Although α-synuclein mRNA was reduced by insulin, TAK242 and insulin + TAK242 (A); but its protein decreased just by
intracerebroventricular (ICV) administration of insulin (B); all treatment decreased TLR4 gene expression (C); however, TLR4 protein only attenuated by TAK242. Data are
expressed as mean ± standard error of the mean (SEM) (n = 3). *** P < 0.001 vs. sham; # P < 0.05, ## P < 0.01, ### P < 0.001 vs. 6-OHDA; + P < 0.05, +++ P < 0.001 vs. 6-OHDA +
insulin (ICV); $$$ P < 0.001 vs. 6-OHDA + TAK242.

reported as mean ± standard error of the mean (SEM),

and P < 0.05 was considered statistically significant.

4. Results

4.1. Improvement of 6-OHDA-Induced Motor Impairment by
Insulin

Insulin, both IN and ICV, improved motor

impairments induced by 6-OHDA (Figure 2). As shown in
Figure 2A, 6-OHDA caused contralateral rotations

induced by apomorphine compared to the sham group
[F (8, 81) = 52.268, P < 0.001]. Intranasal and ICV

administrations of insulin significantly reduced

contralateral rotations, both alone (P < 0.001) and in

combination with TAK242 (P < 0.001). TAK242 also

decreased contralateral rotations compared to 6-OHDA

(P < 0.05), but there was a significant increase compared

to the sham group (P < 0.001). Combination therapy of

insulin and TAK242 was more effective than TAK242

alone in reducing apomorphine-induced rotation (P <

0.001). S961 had no effect on apomorphine-induced

rotations (P < 0.001 compared to sham).

Findings from the cylinder test indicated that 6-

OHDA decreased the use of the contralateral forelimb [F

(8, 81) = 8.817, P < 0.001], and insulin (ICV) significantly

improved forelimb asymmetry by increasing the use of

the lesioned hand (P < 0.05 vs. 6-OHDA). Intranasal

insulin partially improved this motor deficit (P > 0.05

vs. sham). Although S961 and TAK242 alone did not

improve this impairment, the combination treatment

of insulin and TAK242 increased the use of the left hand

compared to 6-OHDA (P < 0.05). The effect of insulin and

TAK242 was better than TAK242 alone (P < 0.01) (Figure

2B).

4.2. Insulin and TAK242 Attenuated α-Synuclein and TLR4
Gene Expression Following 6-OHDA
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Figure 4. The effect of different treatment on insulin receptor substrate (IRS) 1 and 2. Injection of 6-hydroxydopamine (6-OHDA) had no effect on the mRNA and protein of IRS1
(A, B) and IRS2 (C, D). Insulin and insulin + TAK242 increased IRS1 and 2 expression, but S961 and TAK242 did not change them (A, C). IRS1 and 2 proteins were enhanced by insulin,
S961 and TAK242, bun not insulin + TAK242 (B, D). Data are presented as mean ± standard error of the mean (SEM) (n = 3). *** P < 0.001 vs. sham; # P < 0.05, ### P < 0.001 vs. 6-
OHDA; +++ P < 0.001 vs. 6-OHDA + insulin (intracerebroventricular [ICV]); $$$ P < 0.001 vs. 6-OHDA + TAK242.

mRNA and protein levels of α-synuclein and TLR4

were assessed using qPCR and western blot (Figure 3). 6-

hydroxydopamine significantly increased α-synuclein

mRNA [F (6, 14) = 161.992, P < 0.001] and protein [F (6, 14) =

326.364, P < 0.001] (Figure 3A and B). Insulin, TAK242,

and insulin + TAK242 reduced α-synuclein gene

expression compared to 6-OHDA (P < 0.001). Intranasal

insulin administration was more effective than ICV in

decreasing α-synuclein mRNA (P < 0.05). α-Synuclein

mRNA in animals treated with insulin + TAK242 was

lower than in those treated with TAK242 alone (P <

0.001), suggesting the greater effectiveness of

combination therapy. α-Synuclein gene expression was

significantly increased in S961-treated animals

compared to 6-OHDA (P < 0.001) (Figure 3A). α-Synuclein

protein, which increased in the 6-OHDA group, was

significantly attenuated following treatment with ICV

administration of insulin (P < 0.001). Intranasal insulin,

S961, TAK242, and insulin + TAK242 did not significantly

decrease it (P < 0.001 and P > 0.05 compared to sham

and 6-OHDA, respectively) (Figure 3B).

Gene expression [F (6, 14) = 66.311, P < 0.001] and

protein [F (6, 14) = 1808.634, P < 0.001] levels of TLR4 were

enhanced following 6-OHDA injection (Figure 3C and D).

All treatments reduced TLR4 mRNA compared to 6-

OHDA (P < 0.001) (Figure 3C). Toll-like receptor 4 protein

was only decreased by TAK242 (P < 0.05 vs. 6-OHDA)

(Figure 3D).

4.3. IRS1 and 2 Expression and Protein Elevated by Insulin

Changes in the mRNA and protein levels of IRS1 and

IRS2 are shown in Figure 4. Statistical analysis

demonstrated that although 6-OHDA had no effect on

IRS1 gene expression [F (6, 14) = 453.446, P < 0.001] and

protein levels [F (6, 14) = 523.951, P < 0.001], insulin

significantly increased both in comparison to sham and

6-OHDA groups (P < 0.001). Insulin + TAK242 also

significantly increased IRS1 mRNA levels compared to
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sham, 6-OHDA, and TAK242 alone (P < 0.001). S961 and

TAK242 did not change IRS1 mRNA levels (P > 0.05

compared to sham) (Figure 4A). Insulin receptor

substrate 1 protein levels were enhanced by all

treatments (P < 0.001 vs. sham and 6-OHDA).

Intracerebroventricular administration of insulin was

more effective than IN insulin and insulin + TAK242 in

increasing IRS1 protein levels (P < 0.001) (Figure 4B).

Similar to IRS1, IRS2 levels were not changed by 6-

OHDA, but significantly increased following treatment

with ICV and IN insulin at both mRNA [F (6, 14) = 79.247, P

< 0.001] and protein [F (6, 14) = 812.855, P < 0.001] levels.

Elevated IRS2 gene expression was also observed in the

insulin + TAK242 group compared to sham, 6-OHDA, and

TAK242 alone (P < 0.001) (Figure 4C). Insulin receptor

substrate 2 protein levels were significantly increased by

insulin (IN and ICV), S961, and TAK242 in comparison to

sham and 6-OHDA groups (P < 0.001) (Figure 4D).

4.4. Increased Levels of GSK3β Following 6-OHDA was
Reduced by Insulin and TAK242

Statistical analysis indicated that the levels of GSK3β
mRNA [F (6, 14) = 181.239, P < 0.001] and protein [F (6, 14) =

516.394, P < 0.001] were significantly different between

groups (Figure 5). The mRNA of GSK3β was elevated by 6-

OHDA (P < 0.001), while insulin (both IN and ICV),

TAK242, and insulin+TAK242 significantly decreased it in

comparison to 6-OHDA (P < 0.001). Insulin+TAK242

reduced GSK3β gene expression more than TAK242 alone

(P < 0.001). In animals treated with S961, GSK3β
expression was not only not reduced but was also

significantly higher than in the 6-OHDA group (P <

0.001) (Figure 5A).

6-hydroxydopamine also increased GSK3β protein

levels (P < 0.001). Insulin, TAK242, and insulin + TAK242

attenuated this increase in comparison to 6-OHDA (P <

0.001); however, GSK3β protein levels were still higher in

these groups than in the sham group (P < 0.001). S961

had no effect on GSK3β protein levels compared to 6-

OHDA (P < 0.001) (Figure 5B).

5. Discussion

These findings revealed that 6-OHDA induced motor

impairments by increasing the expression of α-

synuclein and TLR4 in the striatum. It also elevated

GSK3β, an indicator of insulin resistance, at both mRNA

and protein levels. Administration of insulin (IN and

ICV) and TLR4 inhibitor (TAK242) attenuated these toxic

effects, leading to improvements in behavioral deficits.

However, suppression of the insulin signaling pathway

by S961 prevented the positive effects of insulin.

Insulin regulates dopamine synthesis and release by

modulating the expression of tyrosine hydroxylase (TH),

the rate-limiting enzyme in dopamine synthesis (22).

Central insulin resistance during aging may result in

dopaminergic neuron dysfunction (5, 23). Reduced

insulin receptor mRNA and immunoreactivity, along

with lower levels of TH, have been previously observed

in the substantia nigra pars compacta of patients with

PD (24, 25). Therefore, activation of insulin signaling

pathways may protect against 6-OHDA-induced toxicity

in dopaminergic neurons. In this regard, an

experimental study has shown that IN insulin

administration protects dopaminergic neurons against

cell death in the 6-OHDA model of PD and attenuates

motor impairments (26).

α-Synuclein is the main component of Lewy bodies

and Lewy neurites observed in the brains of PD patients

(27). It disrupts mitochondrial function via interaction

with complex I in the respiratory chain (28). α-Synuclein

is a presynaptic protein involved in neurotransmitter

release, synaptic transmission, and mitochondrial

function (27). It also acts as an immune signaling

molecule that activates microglia and astrocytes

through TLR4 (15, 16, 29, 30).

In the present study, we observed increased gene

expression of α-synuclein concomitant with elevated

TLR4 expression and motor deficits. In parallel with

these findings, it has been previously shown that

overexpression of α-synuclein leads to motor

dysfunction in mice via microglial overactivation and

increased TLR4 expression. Furthermore, suppression of

microglial activation improved motor deficits (18). In

vitro studies have also shown that lithium and IGF-1

reduce astrocyte activation and inflammatory factors

following LPS treatment through inhibition of TLR4

expression (31, 32). Our findings revealed that IN and ICV

insulin administration improved motor impairments

induced by 6-OHDA, at least in part, via the reduction in

α-synuclein and TLR4 gene expression.

Insulin plays a critical role in autophagy regulation

through the PI3K/Akt/mTOR pathway, ultimately leading

to autophagy activation (33). Pharmacological

inhibition of mTORC1 by rapamycin has been shown to

decrease α-synuclein aggregation (34) and prevent

dopaminergic neuron loss (35). In the present study,

increased IRS1 and IRS2 levels in animals receiving

insulin confirmed the activation of the insulin signaling

pathway. Additionally, the reduced protein level of α-

synuclein indicated that insulin administration

activated the autophagy process, thereby reducing α-
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Figure 5. Insulin and TAK242 attenuated glycogen synthase kinase 3β (GSK3β) following 6-hydroxydopamine (6-OHDA). Gene expression (A); and protein (B) of GSK3β were

enhanced by 6-OHDA. Insulin (intracerebroventricular [ICV] and intranasal [IN]), TAK242 and insulin + TAK242 reduced both of them. S961 had no effect on GSK3β. Data are
reported as mean ± standard error of the mean (SEM) (n = 3). ** P < 0.01, *** P < 0.001 vs. sham; ### P < 0.001 vs. 6-OHDA; +++ P < 0.001 vs. 6-OHDA + insulin (ICV); $$$ P < 0.001 vs.
6-OHDA + TAK242.

synuclein levels. Consistent with our findings, another

study also revealed that insulin reduced α-synuclein in

PC12 cells following treatment with MPP+ (36).

Toll-like receptor 4 is elevated in the blood and brain

of patients with PD and in animal models of PD (18, 37,

38). The severity and duration of the disease, as well as

responsiveness to PD medication, are strongly

correlated with TLR4 levels in the blood (38), suggesting

that TLR4 modulation could be a promising approach to

improve PD pathology. In line with clinical evidence,

experimental studies have reported the neuroprotective

effect of TLR4 knockout against MPTP neurotoxicity in

animal models of PD (39, 40). Reduced expression of

TLR4 and MyD88, important downstream elements of

the TLR4 signaling pathway, by rosmarinic acid has been

shown to improve motor impairment by decreasing α-

synuclein and preventing TH+ neuron degeneration in

the MPTP mouse model of PD (41). Here, in line with the

evidence mentioned above, we also demonstrated that

TLR4 inhibition by TAK242 decreased the expression of

α-synuclein and TLR4, thereby significantly improving

behavioral impairments following 6-OHDA injection in

rats. TAK242 had better effects when co-administered

with insulin.

Several epidemiological and experimental studies
have revealed the association between diabetes and PD

(8, 9). Insulin resistance in patients with type 2 diabetes

leads to dopaminergic neuron degeneration (42),
suggesting that diabetic patients are more susceptible

to PD and experience more severe movement symptoms

compared to non-diabetic PD patients (8, 43, 44).

Moreover, the neuroprotective effect of anti-diabetic

medications in patients with PD (9, 45-48) confirms the

importance of insulin signaling and insulin resistance

in PD.

Proinflammatory cytokine production during

chronic inflammation in neurodegenerative diseases

can induce insulin resistance through IRS serine

phosphorylation, which decreases IRS interaction with

the insulin receptor (49, 50). Increased levels and

activity of GSK3β have been observed in insulin

resistance and other pathological conditions (50).

Glycogen synthase kinase 3β, a cellular serine/threonine

protein kinase, plays critical roles in several processes

like cell division, differentiation, proliferation, cellular
adhesion, neuronal plasticity and polarity, synaptic

function, and neurotransmitter release (51). It is

expressed throughout the brain, and its activity is

negatively regulated by phosphorylation on Ser9 by pro-

survival signaling pathways like insulin. However,
phosphorylation on Tyr216 increases GSK3β activity (23).

The insulin signaling pathway regulates GSK3β
activation via the IRS/PI3K/Akt pathway (52).

In the present study, we observed an elevation in

gene expression and protein levels of GSK3β – as a

marker of insulin resistance – following 6-OHDA

injection. In parallel with this finding, postmortem

studies have previously found an increase in p-Tyr216-
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GSK3β and α-synuclein expression in the striatum of PD

patients (53, 54). We also indicated that IN and ICV

insulin administration activated the insulin signaling

pathway, leading to decreased GSK3β at both mRNA and

protein levels.

5.1. Conclusions

In general, the findings of the present study

indicated that insulin signaling was impaired in the 6-

OHDA rat model of PD, accompanied by overexpression

of TLR4 and α-synuclein, which led to motor deficits.

Insulin, both IN and ICV, and the TLR4 inhibitor (TAK242)

improved these impairments. Co-treatment with insulin

and TAK242 had a better effect, suggesting that

combination therapy may be an effective therapeutic

approach to attenuate PD pathology. However, more

studies are needed to elucidate the molecular

interaction between insulin and TLR4 signaling

pathways.
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