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Abstract

Background: Doxorubicin (DOX) is used in the treatment of various cancers and has good effectiveness. However, its therapeutic
use is limited due to its effects on various organs and healthy cells. Doxorubicin can affect the kidneys and cause toxicity. Evidence
shows that DOX induces nephrotoxicity through oxidative stress.
Objectives: In this research, we examined the effect of mitochondrial transplantation on improving mitochondrial and cellular
toxicity caused by DOX on renal proximal tubular cells (RPTCs).
Methods: The research measured 7 toxicity parameters, including cell lysis, reactive oxygen species (ROS) formation, mitochondrial
membrane potential (MMP) decline, GSH and GSSG content, lipid peroxidation (LPO), adenosine triphosphate (ATP) content, and
Caspase-3 activity (the final mediator of apoptosis). Active fresh mitochondria were prepared from Wistar rat kidney.
Results: The findings indicated that DOX caused cytotoxicity in RPTCs. Additionally, DOX induced oxidative stress by increasing
the level of reactive oxygen species, reducing glutathione content, and elevating lipid peroxidation. Moreover, it led to damage
to the mitochondrial membrane, increased caspase-3 activity, and decreased ATP content. Mitochondrial transplantation, as a
new therapeutic approach, reduced oxidative stress, mitochondrial membrane damage, and apoptosis caused by DOX in RPTCs.
Furthermore, this therapeutic approach increased the ATP content in RPTCs.
Conclusions: Our study suggests that this therapeutic approach could be helpful in the treatment of drug-induced nephrotoxicity.
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1. Background

Drugs are exogenous compounds that can damage
various human organs, including the kidneys (1). The
kidney is known as a vital and key organ in the body
of living organisms and is involved in many essential
functions (2, 3). Drugs are one of the causes of kidney
toxicity that leads to many disorders in this organ (4, 5).
In various studies, the relationship between the use of
anticancer drugs and kidney toxicity has been reported
(6, 7). Doxorubicin (DOX) is one of the anti-cancer drugs
that is effective in treating various human cancers (8, 9).
Despite the good effectiveness of DOX in the treatment of
several cancers, due to its toxic effects on some organs such
as the kidneys, its therapeutic use is limited. Also, DOX

can target healthy cells and cause side effects in these cells
(10-12). In the kidneys, proximal tubules are one of the most
important targets of nephrotoxic drugs (13).

The mechanism of nephrotoxicity caused by DOX is
not well understood. Nevertheless, evidence shows that
DOX causes nephrotoxicity through the production of
reactive oxygen species (ROS) and induction of oxidative
stress (14, 15). The consequence of an imbalance between
the level of oxidants (ROS) and antioxidants is oxidative
stress, in which oxidant agents can cause serious damage
to cells (16). Mitochondria are considered the main
sources of ROS production in living organisms. The
production of ROS often occurs due to disturbances in
the mitochondrial respiratory chain (17, 18). Doxorubicin
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can affect the mitochondrial transmission chain and
mitochondrial pathways, which can cause the production
of ROS, dysfunction of mitochondria, and apoptosis (19,
20). Also, it has been reported that DOX can induce
apoptosis in proximal tubule cells by stimulating the
mitochondrial pathway and activating caspase-3 (21, 22).

Mitochondria are known as one of the vital
organelles in cells. These organelles are involved in
many physiological processes (20). Mitochondria are
involved in the production of ROS, adenosine triphosphate
(ATP), and induction of death signaling. Normal levels
of ROS are involved in many physiological processes.
In abnormal conditions, they cause damage to vital
macromolecules in the cell (23, 24). Dysfunction of
mitochondria is involved in the pathogenesis of many
diseases (especially mitochondrial diseases) and also cell
viability (25, 26). Therefore, recovery of dysfunctional
mitochondria is of great importance. Mitochondria
transplantation is one of the new therapeutic approaches
to improve mitochondrial diseases. This approach is
based on the transfer of exogenous normal mitochondria
to dysfunctional cells or tissues to improve mitochondrial
function (27, 28).

2. Objectives

The novelty of this study lies in examining the
protective effects of mitochondrial transplantation
on cytotoxicity and oxidative stress through the
measurement of several parameters such as ROS
generation, reduced glutathione (GSH) and oxidized
glutathione (GSSG) content, changes in mitochondrial
membrane, apoptosis by assessing caspase-3 activity, and
ATP content caused by the treatment of rat renal cells
with DOX. These parameters have not been thoroughly
investigated in other studies. Due to the lack of sufficient
information related to DOX nephrotoxicity, this study
aimed to investigate the effects of mitochondrial
transplantation on DOX-induced nephrotoxicity.

3. Methods

3.1. Animals

The animals (Wistar rats, 180 - 220 g) used in this
study were purchased from the Institute Pasteur
(Tehran, Iran) and kept under standard temperature
and relative humidity conditions. Before the
experiments, the rats were habituated for 1 week. All
experiments were conducted following the standards and
protocols of the ethics committee of Shahid Beheshti
University of Medical Sciences in Tehran, Iran (ID:

IR.SBMU.PHARMACY.REC.1401.087). Renal proximal
tubular cells (RPTCs) were isolated from Wistar rats (29,
30).

3.2. Renal Proximal Tubular Cells Isolation

Renal proximal tubular cells were isolated using the
method described by Boom et al., and Schafer et al. (29, 30).
Before digesting the samples, the kidneys were perfused
with Hank’s balanced salt solution (HBSS), which is free
of Ca2+. The next step involved using collagenase type II
HBSS, which contains penicillin/streptomycin and calcium
chloride. De-capsulation and subsequent dissection of
renal cortical segments were performed to generate 0.5
mm-thick sections and proximal cell tubules, which were
mechanically separated based on serial filtration (120 µm
and 60 µm meshes). Renal proximal tubular cells were
then washed and pelleted before being re-suspended in
Earle’s solution (pH = 7.4) as an incubation medium. This
step was carried out in a round vessel with a round bottom
that circulated in a water bath. Finally, 28 mM HEPES was
added to the incubation medium and covered with O2, N2,
CO2, 10%, 85%, and 5%, respectively (31).

3.3. Cytotoxicity Assay

An indicator of cytotoxicity was lactate dehydrogenase
(LDH) released by cells. Specifically, LDH activity was
measured using an LDH kit from Sigma-Aldrich Co. 10
µL of sample and indicator (1 mL) were mixed at 37°C.
Additionally, associated absorption was measured at
30-second intervals over a 4-minute period. A relative
coefficient averaged the absorbance of the samples at
340 nm (Beckman DU-7 spectrophotometer) into units of
enzyme activity. Lactate dehydrogenase activity for each
treatment group was calculated as µM (substrate)/min/L
(32).

3.4. Mitochondrial Isolation

In recent studies, active fresh mitochondria were
prepared from Wistar rat kidneys using the process of
differential ultracentrifugation (Hettich, Universal 320
R, Germany) (33, 34). Rat kidneys were removed in
a cold isolation solution and minced with scissors. A
homogenization procedure was performed using a glass
homogenizer, followed by the removal of intact cells and
nuclei through centrifugation for 10 minutes at 4°C. After
adding 250µL of BSA solution to the supernatant, filtration
was conducted with a mesh size of 4 or 5µm. Additionally,
the supernatant was centrifuged at 10 000 × g for 10
minutes. The bottom layer, known as the mitochondrial
fraction, was re-suspended in an isolation solution. It
underwent centrifugation twice for 10 minutes at 10 000
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× g. The mitochondrial fraction was suspended using
an incubation buffer (Tris buffer) at 4°C (pH 7.4). The
bio-distribution of mitochondria is illustrated in Figure 1.

3.5. Fluorescence Microscopy Image Capturing, Staining of
the Nuclei of RPTCs by DAPI and Mitochondrial Staining by
Mito-Tracker Green

A 1 mL sample of untreated control RPTCs was washed
with PBS and immobilized with a paraformaldehyde PBS
solution (3.7%) at room temperature for 10 minutes. The
immobilized cells were then washed with PBS and stained
with DAPI. In the next step, the RPTCs were washed again
with PBS and observed using a fluorescence microscope.
Under the fluorescence microscope, the fluorescence of
the cells in the control group appeared more diffuse and
uniform, the nucleus was relatively complete and regular,
with an ellipsoid shape, and the nucleolus was clearly
visible (Figure 1).

The isolated mitochondria were suspended in Tris-HCl
buffer and stained with Biotracker (mitotracker) 488
green. Subsequently, the mitochondria were observed
using a fluorescence microscope. Under the fluorescence
microscope, the mitochondria appeared as short rods or
ball-shaped structures, with regular shapes (Figure 1).

3.6. Experiment Design

First, Rat RPTCs were isolated and suspended in Earle’s
solution (pH 7.4). Then, the Rat RPTCs were incubated
with DOX (5 µM) for 2 hours. Next, to study the effects
of mitochondrial transplantation on the effects caused by
DOX, fresh mitochondria were isolated from rat kidney.
The RPTCs medium was replaced. Subsequently, control
RPTCs as well as RPTCs exposed to DOX were incubated
with freshly isolated mitochondria for 4 hours in a 37°C
water bath. After the completion of incubation, the
parameters/tests were performed (31).

3.7. Reactive Oxygen Species Determination

Using DCFH-DA reagent and fluorescence intensity
measurement, we evaluated the ROS level. Mitochondrial
membrane potential (MMP) changes in groups treated
with DOX (5 µM), mitochondrial transplantation (40 and
80 µg/mL), and cytochalasin D (10 µM) were measured by
DCFH-DA reagent and a spectrophotometer at wavelengths
of 500 nm and 520 nm (35).

3.8. MMP Assay

Using rhodamine 123 (Rh123) reagent and fluorescence
intensity measurement, we evaluated the collapse in
the MMP. Mitochondrial membrane potential changes
in groups treated with DOX (5 µM), mitochondrial

transplantation (40 and 80 µg/mL), and cytochalasin
D (10 µM) were measured by Rh123 reagent using a
spectrophotometer at wavelengths of 490 nm and 520 nm
(36).

3.9. GSH and GGSG Content Assay

In this study, we evaluated the GSH and GSSG content
in groups treated with DOX (5 µM), mitochondrial
transplantation (40 and 80µg/mL), and cytochalasin D (10
µM) using a spectrophotometer at wavelengths of 350 nm
and 420 nm (37).

3.10. Evaluation of Lipid Peroxidation

The content of malondialdehyde (MDA) was evaluated
to measure lipid peroxidation (LPO) as one of the
parameters indicating oxidative stress. Trichloroacetic
acid (TCA, 10%) and thiobarbituric acid (TBA, 0.37%) were
used in the assay. The amounts of the compounds used
were as follows: TCA 750 µL, TBA 500 µL, and 250 µL
supernatant. After centrifugation at 10 000× g for 10 min,
250 µL of the samples were used for the assay. Finally, the
content of MDA was assayed using a spectrophotometer at
a wavelength of 532 nm (38).

3.11. Caspase-3 Activity Measurement

The caspase-3 kit (Sigma-Aldrich) was used to measure
caspase-3 according to the manufacturer’s instructions
(39).

3.12. Mitochondrial Uptake Mechanism Evaluation

The mitochondrial uptake mechanism was evaluated
by pre-treatment with 5-(N-ethyl-N-isopropyl) amiloride
(EIPA) (100 µM) (40), cytochalasin D (10 µM) (41), and
methyl-β-cyclodextrin (1 mM) (42) in DOX-treated RPTCs
(106 cells/mL). The aforementioned pre-treatments were
conducted for 30 minutes in three separate flasks to
compare the results with those of RPTCs treated only
with DOX (106 cells/mL) in the fourth flask. Isolated
mitochondria (80µg protein/mL) were then added to each
flask and co-incubated at 37°C with 5% CO2 for 4 hours.
Finally, the ATP levels in the four flasks were assessed (43).

3.13. Statistical Evaluation

Data representation processing was performed as
mean ± SD. The data were analyzed using GraphPad Prism
6 (GraphPad, La Jolla, CA, USA). Additionally, P < 0.05 was
chosen as the minimum significance level. The one-way
ANOVA test followed by the post hoc Tukey test was used
for the evaluation of all tests.
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Figure 1. Mitochondrial bio-distribution. Internalization of mitochondria (green labeled) into renal proximal tubular cells (RPTCs) during 4 h of incubation (scale bar: 50
µm)

4. Results

4.1. Mitochondrial Transplantation Reduced DOX Induced
Cytotoxicity

The results in Figure 2 showed that DOX caused toxicity
in RPTCs at concentrations ranging from 1 to 20µM (1, 2.5, 5,
10, and 20µM) in a concentration-dependent pattern. Also,
the concentration of 5 µM has been reported as an IC50

concentration (Figure 2A). A concentration of 5 µM was
used for the experiments. To determine the best protective
concentration for the isolated kidney mitochondria
used for mitochondrial transplantation in reducing the
toxicity of DOX (5 µM) in RPTCs, we transplanted several
concentrations of isolated kidney mitochondria (5 - 160
µg protein/mL) onto DOX-treated damaged RPTCs. The
results showed that transplantation of mitochondria at
concentrations of 40 and 80 µg/mL protein significantly
protected the DOX-treated rat RPT cells against the
cytotoxicity caused by DOX (5 µM) compared to other
concentrations of isolated kidney mitochondria (Figure
2B). Consequently, the concentrations of 40 and 80 µg/mL
protein of mitochondria were used to investigate the
effects of mitochondrial transplantation.

4.2. Mitochondrial Transplantation Decreased DOX Induced
Reactive Oxygen Species Formation

Our results indicated that DOX (5 µM) induces the
production of ROS in RPTCs. As seen in Figure 3A, this
approach (40 and 80 µg/mL protein of mitochondria) has
reduced the effect of DOX (5 µM) on the production of
ROS in RPTCs (Figure 3A). This inhibitory effect of this
therapeutic approach can help reduce the damage caused
by DOX in RPTCs. Cytochalasin D causes an increase in the
level of ROS, which is similar to DOX (5 µM) (Figure 3A).

4.3. Mitochondrial Transplantation Decreased DOX Induced
MMP Collapse

After 2 hours of incubation and compared to the
control group, DOX (5 µM) has caused a disturbance
in the MMP (Figure 3B). 40 and 80 µg/mL protein of
mitochondria were used to investigate the beneficial
effects of this therapeutic approach. After 4 hours
of incubation, we indicated that the mitochondrial
transplantation (40 and 80 µg/mL) reduced the effects of
DOX (5 µM) on MMP changes. The effects of cytochalasin
D on MMP are similar to DOX (5 µM) (Figure 3B).
Mitochondrial membrane potential is involved in the
health and death of mitochondria.

4.4. Mitochondrial Transplantation Improved DOX Decreased
GSH Content

Based on statistical analysis, the results revealed that
DOX (5 µM) decreased the content of GSH in RPTCs (Figure
4A). As seen in Figure 5, mitochondrial transplantation (40
and 80 µg/mL protein of mitochondria) has been able to
increase the GSH content decreased by DOX (5µM) in RPTCs
(Figure 4A). Also, the results showed that mitochondrial
transplantation caused the reduction of GSSG content
induced by DOX (5 µM) in RPTCs (Figure 4B). The results
showed that cytochalasin D increases the GSSG level and
decreases the GSH level (Figure 4A-B). This reduction effect
of this therapeutic approach shows the improvement of
antioxidant status in RPTCs.

4.5. Mitochondrial Transplantation Decreased DOX Induced
LPO

Compared to the control group, DOX has been able to
increase the content of MDA as an indicator of LPO (Figure
5A). After 4 hours of incubation, the results showed that
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Figure 2. A, cytotoxicity assay; and B, LDH assay. DOX at concentrations of 2.5 to 20µM has decreased cell viability in RPTCs. IC50 DOX was 5µM. Mitochondrial transplantation
(40 and 80 µg/mL protein) was able to reduce DOX-induced cytotoxicity. Values were represented as mean ± SD (n = 5). *** P < 0.001 vs control group; **** P < 0.0001 vs DOX
group; * P < 0.05 vs mitochondria group (40 µg/mL); $$$ P < 0.001 vs mitochondria group (40 and 80 µg/mL). DOX, doxorubicin; LDH, lactate dehydrogenase; RPTCs, renal
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Figure 4. A, GSH assay; B, GSSG assay. Mitochondrial transplantation (40 and 80µg/mL protein) was able to significantly increase DOX (5µM)-induced reduced GSH levels and
also reduce DOX (5µM)-induced increased GSSG levels. Values were displayed as mean ± SD (n = 5). *** P < 0.001 vs control group; # P < 0.05, ## P < 0.01 and ### P < 0.001
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doxorubicin; GSH, reduced glutathione; GSSG, oxidized glutathione.

the mitochondrial transplantation (40 and 80µg/mL) was
able to reduce the effects of DOX (5 µM) on MDA content
(Figure 5A). As shown in Figure 5A, cytochalasin D causes
an increase in the content of LPO.

4.6. Mitochondrial Transplantation Decreased DOX Induced
Caspase-3 Activity

Incubation of RPTCs with DOX at a concentration
of 5 µM has been associated with caspase-3 activation
in RPTCs (Figure 5B). Furthermore, we indicated that
mitochondrial transplantation can reduce the activity of
caspase-3, which is increased by DOX (5 µM) (Figure 5B).
Therefore, mitochondrial transplantation with this effect
can prevent cell death caused by DOX.

4.7. Cytochalasin D Reduced the Restoration Effect of
Mitochondrial Transplantation on ATP Content

Based on statistical analysis, the results revealed
that DOX (5 µM) was able to decrease the content
of ATP in RPTCs (Figure 5C). As seen in Figure 5C,
mitochondrial transplantation (40 and 80 µg/mL protein
of mitochondria) has been able to increase the ATP content
decreased by DOX (5 µM) in RPTCs. We reported that
cytochalasin D-based pre-incubation may considerably
inhibit mitochondrial transplantation protective effects.
We indicated that only cytochalasin D affected ATP

content in RPTCs. Furthermore, the mechanistic results
showed that EIPA (macropinocytosis inhibitor/100 µM)
and methyl-β- Cyclodextrin (caveola/clathrin-dependent
endocytosis inhibitor/1 mM) as two inhibitors could
not reverse the effects caused by mitochondrial
transplantation. Accordingly, these two inhibitors did not
play a role in mitochondria internalization (Figure 5C).
As a result, the actin-dependent endocytosis would play a
role in the mitochondria’s internalization into the RPTCs
(Figure 5C).

4.8. Fluorescence Microscopy for Showing Mitochondrial
Uptake by the DOX Treated RPTCs

To demonstrate mitochondrial uptake by the
DOX-treated RPTCs, the incubation media of DOX-treated
RPTCs were replaced with kidney mitochondria stained
with mitotracker green dispersed in the same incubation
medium (Earle’s solution, pH = 7.4) at a concentration
of 80 µg/mL mitochondrial protein, which had already
shown the best protective effect against DOX cytotoxicity.
The mitochondrial transplantation took place 2 hours
after DOX addition to the RPRCs. Then, 4 hours later, 7
toxicity parameters including cell lysis, ROS formation,
MMP decline, GSH and GSSG content, LPO, ATP content, and
finally Caspase-3 activity (the final mediator of apoptosis)
were measured to determine the probable protective
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Figure 5. A, LPO assay. LPO is one of the important indicators of oxidative stress. Mitochondrial transplantation (40 and 80 µg/mL protein) was able to significantly decrease
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effect of mitochondrial transplantation (Figure 1).

5. Discussion

DOX is an anti-cancer drug used to treat various
cancers. However, its use is limited due to its effects
on different organs as well as healthy cells (44, 45). It
has been reported that DOX can affect mitochondria and
disrupt their function (19, 20, 46). The kidney is one of

the organs with a high number of mitochondria due to
its function. Additionally, there is a direct link between
normal mitochondrial function and mitochondrial health
(47). Renal proximal tubules are one of the parts that DOX
can affect. Also, this anti-cancer drug induces cell death
signaling through the mitochondrial pathway in this part
of the kidney (21, 22). The number of mitochondria in renal
tubules is high for ATP production. Therefore, the effect
on mitochondria can be associated with many disorders in
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tubules (47).
Mitochondria are involved in many physiological

processes, the most important of which include ATP
production, free radicals production, differentiation,
and apoptosis. Mitochondria are considered the most
important source of energy (ATP) for kidneys. Tubular
defects are among the most common kidney symptoms
caused by mitochondrial dysfunction. Disruption in
the normal function of mitochondria is recognized as
one of the significant causes of several diseases (31).
Therefore, it is necessary to explore new therapeutic
approaches to treat mitochondria-related disorders.
Nowadays, researchers have been investigating the use
of mitochondrial transplantation as a new treatment
approach for mitochondrial disorders. In this approach,
healthy exogenous mitochondria are transferred to
damaged cells (48-50).

The internalization of exogenous mitochondria into
RPTCs was confirmed in our research. Furthermore, our
study demonstrated that mitochondrial transplantation
reduced DOX-induced cytotoxicity in RPTCs. In this study,
the internalization of mitochondria into the RPTCs was
observed using fluorescence microscopy techniques with
DAPI and Mito-Tracker Green double staining. However,
other confirmatory tests, such as flow cytometry for
the quantitative determination of the uptake of isolated
kidney mitochondria into RPTCs, were not performed,
which could be considered one of the limitations of
the study. Previous studies have indicated that DOX
causes nephrotoxicity through oxidative stress (5, 45,
51). Oxidative stress is a condition in which the level
of oxidant factors, especially free radicals, is higher than
the level of antioxidant factors (16). In kidney tubules,
the mitochondrial electron transport chain is recognized
as the primary source of ROS production (47). It has
been reported that DOX induces kidney toxicity through
its effect on mitochondrial electron transport, which
can lead to ROS production (46). Our findings revealed
that DOX induces the production of ROS in kidney cells,
consistent with previous studies (5, 14, 15). In this study,
mitochondrial transplantation reduced the production of
ROS caused by DOX in RPTCs. Therefore, this approach
may be effective in preventing oxidative stress, which is
considered one of the important mechanisms in causing
nephrotoxicity induced by DOX.

Mitochondrial membrane potential plays a crucial role
in mitochondrial function, and its disruption is associated
with damage to mitochondria and other consequences,
such as mitochondrial swelling and induction of cell death
(18). Mitochondrial transplantation was able to reduce
the collapse in MMP induced by DOX in RPTCs. Based on
this, mitochondrial transplantation with this effect can

prevent other events, such as the release of pro-apoptotic
proteins that cause cell death. Previous studies have shown
that DOX reduces the activity of the antioxidant system
by reducing GSH activity, providing evidence of oxidative
stress (5, 14, 52). GSH is involved in the detoxification
of xenobiotic agents and the removal of ROS. One of the
pieces of evidence of oxidative stress is a result of the
decrease in GSH levels (53). In agreement with our previous
studies, our results showed that DOX has reduced GSH
levels in RPTCs (4, 5). Also, mitochondrial transplantation
has been able to improve the decreased GSH levels caused
by DOX. Another important indicator of oxidative stress
is the level of LPO, which is reported by measuring the
content of MDA. Similar to other studies, our report
showed that DOX can cause LPO (10, 45). Mitochondrial
transplantation also can reduce LPO caused by DOX. These
results are in agreement with previous studies that have
shown that mitochondrial transplantation reduces LPO
(54, 55). Therefore, mitochondrial transplantation can
reduce the level of oxidative stress, which is one of the
most important mechanisms involved in DOX toxicity.

There is a direct relationship between oxidative stress
and cell vulnerability. It can also play a role in the
initiation of apoptosis. Caspase-3 is one of the important
factors involved in apoptosis signaling. It has been
shown that caspase-3 level is involved in nephrotoxicity
(56). Our results showed that this treatment approach
was able to reduce caspase-3 activity in RPTCs, which
can prevent cell death with this effect. This reported
effect of mitochondrial transplantation aligns with past
studies (57). Renal tubular cells need ATP to perform their
function. Therefore, a decrease in its level causes damage
to its performance. Mitochondrial transplantation has
been able to increase ATP content in RPTCs. This effect is
in agreement with previous studies (58).

5.1. Conclusions

In our study, we proposed a therapeutic strategy
involving the transplantation of exogenous mitochondria
for the treatment of kidney impairment. Our results
suggest that mitochondrial transplantation decreases
DOX-induced cytotoxicity in rat RPTCs. Furthermore, this
therapeutic strategy reduces oxidative stress and damage
to mitochondria caused by DOX in rat RPTCs.
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