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Abstract

The inefficiency of some medications to cross the blood-brain barrier (BBB) is often attributed to their poor physicochemical

or pharmacokinetic properties. Recent studies have demonstrated promising outcomes using machine learning algorithms to

predict drug permeability across the BBB. In light of these findings, our study was conducted to explore the potential of

machine learning in predicting the permeability of drugs across the BBB. We utilized the B3DB dataset, a comprehensive BBB

permeability molecular database, to build machine learning models. The dataset comprises 7,807 molecules, including

information on their permeability, stereochemistry, and physicochemical properties. After preprocessing and cleaning, various

machine learning algorithms were implemented using the Python library Pycaret to predict permeability. The extra trees

classifier model outperformed others when using Morgan fingerprints and Mordred chemical descriptors (MCDs), achieving an

area under the curve (AUC) of 0.93 and 0.95 on the test dataset. Additionally, we conducted an experiment to train a voting

classifier combining the top three performing models. The best-blended model, trained on MCDs, achieved an AUC of 0.96.

Furthermore, Shapley additive exPlanations (SHAP) analysis was applied to our best-performing single model, the extra trees

classifier trained on MCDs, identifying the Lipinski rule of five as the most significant feature in predicting BBB permeability. In

conclusion, our combined model trained on MCDs achieved an AUC of 0.96, an F1 Score of 0.91, and an MCC of 0.74. These results

are consistent with prior studies on CNS drug permeability, highlighting the potential of machine learning in this domain.
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1. Background

The central nervous system (CNS) is separated from

the bloodstream by the blood-brain barrier (BBB), a

highly selective barrier primarily formed by the

endothelium of brain capillaries. The BBB prevents

many molecules from entering the CNS, allowing only

selective transporters and certain water- and lipid-

soluble molecules to pass through. Active efflux systems,

such as P-glycoprotein (Pgp), are present in the BBB to

block neurotoxins, but they also impede the entry of

some drugs (1). The inefficiency of certain drugs in

crossing the BBB is often due to their poor

physicochemical or pharmacokinetic properties, such

as inefficient absorption, distribution, metabolism, and

excretion (ADME) (2). The pharmacokinetics of a drug in

the plasma can differ significantly from its

pharmacokinetics in the brain. Studying CNS-specific

drug pharmacokinetics requires understanding the

relationship between the drug’s physicochemical

properties and the physiological functions of the BBB

(3). In recent years, with the development of artificial

intelligence, various statistical methods and machine

learning algorithms have been utilized to make such

predictions. Machine learning, a subset of artificial

intelligence, aims to enable computer programs to

automatically learn patterns within data (4).

Recent advancements in artificial intelligence have

facilitated the use of statistical methods and machine

learning algorithms to predict BBB permeability.

Machine learning, a subset of artificial intelligence,

focuses on developing algorithms and statistical models

that enable computer systems to learn patterns within

data and improve their performance without explicit

programming (4, 5). Techniques such as logistic
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regression (6), support vector machines (SVMs) (7), and

K-nearest neighbors (KNNs) (8) are commonly used to

identify patterns and relationships in data. While these

algorithms have inherent strengths and weaknesses,

their performance can be enhanced by fine-tuning

hyperparameters (9). For example, adjusting

hyperparameters like learning rate and regularization

strength can optimize the algorithm’s performance and

improve prediction accuracy (10).

These machine learning approaches are not limited

to predicting drug permeability to the BBB. They are also

employed in fields such as predicting protein folding to

determine a protein’s three-dimensional structure,

protein-protein interactions, and ligand-based virtual

screening when detailed information about a protein's

structure is unavailable (11).

Recent studies have highlighted the growing interest

in using machine learning for predicting drug

properties. Saber et al. compared sequential feature

selection and genetic algorithms to predict BBB

permeability (12). Shaker et al. used a large dataset of

7,162 compounds to train a machine learning model

based on the light gradient boosting machine (light

GBM) algorithm for BBB permeability prediction (13).

Building on these findings, our study aimed to further

investigate the potential of machine learning in

predicting drug permeability to the BBB, focusing on

optimizing algorithms and fine-tuning

hyperparameters for greater prediction accuracy.

We conducted a comprehensive analysis of various

machine learning techniques, including logistic

regression, SVMs, and KNNs. Additionally, we integrated

advancements such as the light GBM algorithm, which

has demonstrated promising results in prior studies.

Beyond merely predicting BBB permeability, a

significant part of our research focused on interpreting

the results and identifying critical descriptors.

Interpretability is crucial for understanding the

decision-making process of machine learning models.

By analyzing feature importance, we identified key

descriptors that significantly influence prediction

outcomes. These descriptors often represent specific

physicochemical or pharmacokinetic properties of drug

compounds. Understanding their importance validates

the model’s predictive capabilities and provides

essential insights for drug design and development. By

focusing on optimizing these descriptors, researchers

can design drugs with improved BBB permeability. This

interpretability bridges the gap between complex

algorithmic predictions and practical pharmacokinetic

applications, enhancing the utility of machine learning

in drug development.

2. Methods

2.1. Data Collection

We developed and evaluated machine learning

models to predict the BBB permeability of drug-like

molecules using the B3DB dataset, a curated molecular

database focused on BBB permeability with

comprehensive chemical descriptors. This database,

compiled from 50 published sources, represents the

largest collection of numerical and categorical data for

small molecules associated with BBB permeability. It

includes 7,807 molecules, of which 4,956 are classified as

permeable and 2,851 as non-permeable to the BBB.

The dataset provides detailed information, including

stereochemistry, chiral characteristics, and molecular

representations using the simplified molecular input

line entry system (SMILES), a linear notation method for

describing molecules and chemical reactions.

Additionally, pre-calculated physicochemical features

generated through the Mordred library are included in

the dataset (14).

2.2. Preprocessing

We employed supervised learning to train artificial

intelligence models, with the reference label being the

presence or absence of a molecule’s permeability to the

BBB, as extracted from the B3DB library. The input data

for the models consisted of the structural and

physicochemical information of molecules represented

using SMILES strings (15) available in the B3DB library.

After extracting SMILES information and molecule

labels, we utilized the RDKit (16) and Mordred (17)

libraries to derive numerical features for each molecule.

These features included extended-connectivity

fingerprints with a diameter of six (ECFP6), which

numerically describe molecular activity (18). Morgan

fingerprints, also known as extended connectivity

fingerprints (19), and Mordred chemical descriptors

(MCDs) (17) were also employed. Mordred chemical

descriptors provide numerical values corresponding to

two-dimensional and three-dimensional descriptors of a

molecule.
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We converted ECFP6 and Morgan fingerprints into bit

representations for machine learning calculations. Both

fingerprints comprised 2,048 bits to represent each

molecule, differing only in their computational

methods. Using the Mordred library, we extracted 1,826

descriptors for each molecule. These chemical

descriptors contained numerical and non-numerical

information for each molecule. Since not all descriptors

were available for every molecule, preprocessing was

necessary. We cleaned the dataset by removing

descriptors with non-numerical information,

descriptors missing values for more than 30 molecules,

columns with constant values, and descriptors with a

standard deviation to mean ratio of less than 0.05. After

this cleaning step, the dataset retained 7,775 molecules

with 912 descriptors each.

Following the initial cleaning, we evaluated the

relationship between each descriptor and others to

eliminate redundancy. For any two highly correlated

descriptors, we retained only one to avoid redundant

information entering the model. A Pearson correlation

coefficient threshold of 0.95 was used to identify highly

correlated descriptors. After this second cleaning phase,

the dataset comprised 7,763 molecules with 393

descriptors.

2.3. Modeling

We employed the open-source Python low-code

machine learning library named PyCaret for model

development. Leveraging its low-code functionality,

PyCaret simplifies machine learning workflows by

enabling efficient model management on the Python

platform. PyCaret integrates various machine-learning

libraries and frameworks, including scikit-learn,

XGBoost, LightGBM, CatBoost, spaCy, Optuna, Hyperopt,

and Ray (20). PyCaret features hyperparameter tuning,

which helps identify optimal hyperparameters to

prevent overfitting, and early stopping, which halts the

training process when the model’s performance on the

validation set begins to degrade, thereby avoiding

overfitting (21).

We evaluated and trained all available models within

this library. These models include light GBM, gradient

boosting machine (GBM), AdaBoost, Random Forest (RF),

Decision Tree (DT), extra trees classifier, KNN, linear

discriminant analysis (LDA), Ridge Classifier, quadratic

discriminant analysis (QDA), naive Bayes (NB), Support

Vector Machine (SVM), and Logistic Regression (LR).

Light GBM is a gradient-boosting framework that

employs tree-based learning algorithms and is

renowned for its efficiency and scalability with large

datasets (22). Gradient boosting machine is a robust

algorithm that constructs an ensemble of weak

prediction models and integrates them to create a

stronger, more effective model capable of handling

complex datasets (23). AdaBoost, on the other hand,

combines multiple weak learners to form a strong

learner. This algorithm trains the AdaBoost model by

adjusting the training set based on the accuracy of the

previous iteration's predictions. It assigns greater

weight to misclassified observations, ensuring they

receive higher classification probabilities in subsequent

iterations (24). Random forest is an ensemble learning

algorithm that combines multiple decision trees to

make predictions. It is easy to use and can handle both

regression and classification problems (25). Decision

tree is a straightforward tree-based algorithm that

creates a model by splitting the data into smaller

subsets based on the value of a single feature. It can

manage both categorical and numerical data (26). Extra

trees classifier, another ensemble algorithm, builds

multiple decision trees and uses them to predict

outcomes. Unlike RF, it randomly selects features to split

on instead of searching for the best feature (27). K-

nearest neighbor bases its predictions on the (k) closest

data points in the training set (28). Linear discriminant

analysis is a statistical algorithm that seeks a linear

combination of features that best separates the classes

in the data, making it particularly useful in

classification problems (29). Ridge classifier is a linear

algorithm that employs L2 regularization to prevent

overfitting (30). Quadratic discriminant analysis is

similar to LDA but allows for non-linear separation

between classes (31).

Naive Bayes methods utilize supervised learning

algorithms based on Bayes' theorem. The "naive"

assumption is that every pair of features is conditionally

independent given the value of the class variable (32).

Support vector machine is a linear algorithm that tries

to find a hyperplane that best separates the classes in

the data (33). Lastly, LR is a widely used algorithm for

predicting permeability (34).

Beyond individual models, we explored the ensemble

voting method. Ensemble voting is a machine learning

technique that combines predictions from multiple

models to improve accuracy and robustness. This can be
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Figure 1. Process flowchart

implemented using hard voting (majority vote) or soft

voting (probability averaging). By leveraging the

strengths of diverse models, ensemble voting enhances

generalization and reduces errors. It has demonstrated

potential in various applications, such as medical

diagnostics, by improving predictive performance and

decision-making processes (35). Our study aimed to

boost the overall predictive performance and

robustness of our machine-learning solutions. The

flowchart of the process is presented in Figure 1.

2.4. Evaluation

We split the data into two parts for model evaluation:

80% for training (6,210 molecules) and 20% for testing

(1,553 molecules). To enhance the efficiency of our

algorithm and ensure that the model produces

consistent and replicable results, we employed a 10-fold

cross-validation technique during the training process.

This method divides the training dataset into ten

equally sized subsets. Nine subsets are used for training

the model, while the remaining one is reserved for

testing. This process is repeated ten times, with each

subset serving as the testing set once. By adopting this

approach, we evaluated the model's performance across

various data subsets, which helped to detect potential

weaknesses or biases. Ultimately, the data split resulted

in 4,347 molecules used for training, 1,863 for validation,

and 1,553 as the test set.

We used several performance metrics to assess the

proposed algorithms' effectiveness, including accuracy,

precision, recall, the area under the curve (AUC), F1-

score, Matthew’s correlation coefficient (MCC), and

Kappa (36).

To interpret the results of our models, we utilized the

Shapley additive exPlanations (SHAP) library. Shapley

additive exPlanations is a game theory-based method

designed to explain the output of any machine learning

model. It links optimal credit allocation with local

explanations by leveraging classic Shapley values from

game theory and their extensions. Using the SHAP

library, we identified the most significant features

contributing to the model's predictions, providing

valuable insights into the underlying factors driving the

results (37).

3. Results

In the task of predicting BBB molecular permeability,

the Light GBM model using 2048 ECFP6 outperformed

other models. The model achieved an average accuracy

of 0.87 ± 0.01, an average AUC of 0.94 ± 0.01 (Figure 2), an

average Recall of 0.74 ± 0.03, an average Precision of

0.88 ± 0.03, an average F1 score of 0.80 ± 0.02, an average

Kappa coefficient of 0.70 ± 0.03, and an average MCC of

0.71 ± 0.03, as shown in Table 1.

When Morgan fingerprints were used as input, the

extra trees classifier model showed superior

performance compared to other models. This model

achieved an accuracy of 0.87 ± 0.01, an AUC of 0.93 ± 0.01

(Figure 3), a Recall of 0.71 ± 0.03, a Precision of 0.90 ±

0.01, an F1 score of 0.79 ± 0.02, a Kappa coefficient of

0.70 ± 0.02, and an MCC of 0.71 ± 0.02, as outlined in

Table 1.
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Figure 2. Receiver operating characteristic (ROC) curves for extra trees classifier with ECFP6

Table 1. Comparison of the Best ML Model with 10-fold Cross-Validation for ECFP6, and Morgan Fingerprints, and Mordred Chemical Descriptors a

Features Best Model F1 score MCC b AUC c

ECFP6 Light Gradient Boosting Machine 0.80 ± 0.02 0.71 ± 0.03 0.94 ± 0.01

Morgan fingerprints Extra tree classifier 0.79 ± 0.02 0.71 ± 0.02 0.93 ± 0.01

MCDs Extra tree classifier 0.91 ± 0.01 0.74 ± 0.02 0.94 ± 0.01

Abbreviations: GBM, gradient boosting machine; MCDs, Mordred chemical descriptors; AUC, area under the curve.

a Values are expressed as mean ± SD.

b Matthew’s correlation coefficient.

c the area under the Curve.

Similarly, we implemented and trained the same

models using MCDs as input data. Among these models,

the extra trees classifier achieved the best results, with

an accuracy of 0.88 ± 0.01, an AUC of 0.94 ± 0.01 (Figure

4), a Recall of 0.94 ± 0.01, a Precision of 0.88 ± 0.01, an F1

score of 0.91 ± 0.01, a Kappa coefficient of 0.73 ± 0.02,

and an MCC of 0.74 ± 0.02, as detailed in Table 1.

We also evaluated the performance of the best

models on the test dataset, as presented in Table 2. The

light GBM trained on ECFP achieved an AUC value of

0.94, an MCC of 0.70, and an F1 score of 0.89. The extra

trees classifier trained on Morgan fingerprints achieved

an AUC value of 0.93, an MCC of 0.70, and an F1 score of

0.79. The extra trees classifier trained on MCDs achieved

an AUC value of 0.95, an MCC of 0.72, and an F1 score of

0.90.

In Table 3, as an additional experiment, we presented

the results of the best models combined as a voting

classifier. This approach combined the predictions

generated by the top three machine learning models to
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Figure 3. Receiver operating characteristic (ROC) curves for extra trees classifier with Morgan fingerprint

produce the final prediction. The blended model using

MCDs demonstrated superior performance on the test

dataset compared to the single best model with MCDs. It

achieved an AUC of 0.96, an MCC of 0.74, and an F1 score

of 0.91.

We applied SHAP to our best-performing single

model, the extra trees classifier. This model

demonstrated higher performance metrics than all

others, regardless of its combination with Morgan

fingerprints or MCDs. The top five features identified as

significant in predicting BBB permeability were:

Lipinski rule of five (2D), number of hydrogen bond

donors (nHBDon, 2D), Ghose filter (2D), centered

Moreau-Broto autocorrelation of lag 0 weighted by

Gasteiger charge (ATSC0c, 2D), and acidic group count

(nAcid, 2D). A complete list of features is provided in

Table 4 and Figure 5.

4. Discussion

4.1. Overview

In this study, we developed machine learning models

to predict BBB permeability using the B3DB dataset,

which includes data compiled from 50 credible sources.

Four different versions of the dataset were prepared

using the SMILES molecular representation for each

drug, and the Pycaret library was utilized for training,

validation, and testing of the models.

A significant challenge encountered was the

imbalance in the dataset, which consisted of 4,956

positive instances and 2,851 negative ones. This

imbalance made traditional evaluation metrics less

reliable. To address this, we relied on the F1 Score and the

MCC as our primary performance metrics, as they

provide a more balanced assessment of model

performance in imbalanced datasets.

4.2. Model Performance and Recommendation

Our research identified that the best-performing

model was a voting ensemble model. This model, which

we recommend as the optimal approach for similar

datasets, integrated the extra trees classifier, Random

Forest Classifier, and Gradient Boosting Classifier, all

trained on MCDs. This ensemble model achieved

outstanding results, with an AUC of 0.96, an F1 Score of

0.91, and an MCC of 0.74. The enhanced performance is

likely attributable to the robust predictive capabilities

https://brieflands.com/articles/ijpr-149367


Jafarpour S et al. Brieflands

Iran J Pharm Res. 2024; 23(1): e149367 7

Figure 4. Receiver operating characteristic (ROC) curves for extra trees classifier with Mordred chemical descriptors (MCDs)

Table 2. Comparison of the best ML model for ECFP6, Morgan Fingerprints, and Mordred Chemical Descriptors on the Test Dataset

Features Model F1 score MCC AUC

ECFP6 Light Gradient Boosting Machine 0.89 0.70 0.94

Morgan Fingerprints extra trees classifier 0.79 0.70 0.93

MCDs extra trees classifier 0.90 0.72 0.95

Abbreviation: GBM, gradient boosting machine; MCDs, Mordred chemical descriptors; AUC, area under the curve.

Table 3. Comparison of the Blended ML Model for ECFP6, Morgan Fingerprints, and Mordred Chemical Descriptors on the Test Dataset

Features Model F1 score MCC AUC

ECFP6 Voting Classifier 0.79 0.70 0.86

Morgan Fingerprint Voting Classifier a 0.80 0.72 0.85

MCDs Voting Classifier a 0.91 0.74 0.96

Abbreviations: MCDs, Mordred chemical descriptors; AUC, area under the curve.

a Random Forest classifier + extra trees classifier + light gradient boosting machine, NA, not acceptable results.

of the MCDs and the complementary strengths of the

classifiers within the ensemble.

The performance of our binary classification model

was evaluated using the receiver operating

characteristic (ROC) curve, which plots the true positive
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Figure 5. Summary plot of the distribution of importance for each feature overall molecule based on the results of extra trees classifier with Mordred chemical descriptors
(MCDs)

Table 4. The First Ten Important Features in Permeability Prediction Based on Extra Trees Classifier with Mordred Chemical Descriptors Using Shapley Additive exPlanations
Library

Abbreviation Complete Name

Lipinski Lipinski's rule of five

nHBDon number of hydrogen bond donor

GhoseFilter Ghose filter

ATSC0c centered moreau-broto autocorrelation of lag 0 weighted by gasteiger charge

nAcid acidic group count

n4Ring membered ring count-4

NsOH number of sOH

TopoPSA (NO) topological polar surface area (use only nitrogen and oxygen)

nHBAcc number of hydrogen bond acceptor

nG12FHRing 12-or-greater-membered fused hetero ring count

rate (TPR) against the false positive rate (FPR) at various

classification thresholds. As shown in Figures 2 to 4, our

models—extra trees classifier with ECFP6, Morgan

Fingerprint, and MCDs—achieved AUC values of 0.93,

0.94, and 0.94, respectively, indicating excellent

discriminative power.

The ROC curve was smooth and symmetrical across

the entire region, suggesting consistent model

performance across different thresholds. This high AUC

value signifies that the model can reliably distinguish

between positive and negative classes. The balance

between TPR and FPR, as depicted by the ROC curve,
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indicates that the model maintains strong sensitivity

and specificity across varying thresholds. This robust

performance underscores the model's ability to

generalize effectively to various scenarios.

4.3. Importance of Molecular Descriptors

We focused on the most significant molecular

descriptors from the Mordred library, which have

meaningful and verifiable implications in drug

discovery. Utilizing the SHAP library, we identified the

key descriptors influencing our model's outcomes.

Lipinski's Rule of Five emerged as the most critical

feature. This well-established guideline assesses whether

a chemical compound with specific biological or

pharmacological activity possesses properties that

would make it likely to function as an orally active drug

in humans. The rule suggests that an orally active drug

should have no more than one violation of the following

conditions: Molecular mass less than 500 Da, no more

than five hydrogen bond donors, no more than ten

hydrogen bond acceptors, and an octanol-water

partition coefficient (log P) not greater than 5 (38).

Additionally, a variant of Lipinski's Rule for

compounds targeting the CNS is Lipinski's Rule for CNS

medications. This rule specifies a maximum of three

hydrogen bond donors (HBDs), seven hydrogen bond

acceptors (HBAs), a molecular weight (MW) under 400

Da, and a CLog P of at least five. Previous studies suggest

that compounds adhering to this CNS-specific rule are

more likely to penetrate the CNS effectively, thereby

increasing their therapeutic potential (39).

As illustrated in Figure 5, key descriptors from the

Mordred library were identified, with Lipinski's Rule of

five emerging as the most critical. The plot

demonstrates that compounds adhering to Lipinski's

rules are more likely to be permeable through the BBB.

The number of hydrogen bond donors (nHBDon)

significantly impacted our findings, with most

molecules showing positive SHAP values. This indicates

that an increase in hydrogen bond donors generally

enhances BBB permeability, which contrasts with the

typical understanding that higher polarity reduces

lipophilicity (40).

Interestingly, this finding diverges from a previous

study by Yu et al., which combined machine learning

and deep learning to develop a more interpretable

approach to generalized rules for CNS drugs. Yu et al.

found that the number of hydrogen bond donors was

one of the essential features for classification, with a

coefficient of -0.19. This negative coefficient indicates

that an increase in hydrogen bonding reduces BBB

penetration, aligning with the conventional

understanding. Their model, which used a support

vector machine (SVM) combined with a graph

convolutional network, achieved an F1 score of 0.96 and

an AUC of 0.97 on a dataset of 940 marketed drugs (41).

It is worth noting the discrepancy in the effect of the

number of hydrogen bond donors observed in our

study compared to Yu et al.'s findings. Another essential

feature identified in our study was the number of acidic

groups, which aligns with Yu et al.'s results. Their

findings showed a coefficient of -0.16 for the number of

acidic groups, indicating a similar impact on BBB

permeability (41).

4.4. Comparative Analysis with Previous Studies

The size of a dataset can significantly influence the

performance of machine learning models. Larger

datasets often encompass more diversity and outliers,

which can complicate the predictive task and make

achieving higher accuracies more challenging.

Moreover, imbalanced datasets can bias the model,

resulting in poor predictive performance for the

minority class (42). For example, in Saber et al.'s study,

they utilized a dataset comprising 1,383 BBB+ and 310

BBB- cases, yielding a BBB+/BBB- ratio of 4.46, which is

more imbalanced compared to our study's ratio of 1.74

(7,775 molecules). Despite this higher imbalance, Saber

et al. achieved superior accuracy and F1 scores, with

their SVM and QDA models achieving accuracies of 0.96,

F1 scores of 0.98, and MCC scores of 0.88 and 0.87,

respectively (12). In contrast, our study, which used a

larger and more diverse dataset, resulted in a best-

performing model (a voting ensemble model trained on

MCDs) with an F1 score of 0.91 and an MCC of 0.74. This

highlights the challenges introduced by greater dataset

diversity.

To address the issue of imbalanced datasets, Wang et

al. employed the Synthetic Minority Over-sampling

Technique (SMOTE), which generates synthetic data to

mitigate imbalance. Their study, which included 2,358

molecules (1,812 BBB+ and 546 BBB-), used various

fingerprints and feature selection methods. Their most

effective models, which combined SVM and KNN with

SMOTE techniques, achieved an accuracy of 0.97,

sensitivity of 0.99, specificity of 0.89, and an AUC of
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0.919 (43). Despite their dataset's higher imbalance,

their models demonstrated superior sensitivity but a

lower AUC compared to our model. This underscores the

importance of addressing data imbalance to achieve

reliable predictive performance.

Another strategy for enhancing model performance

without increasing dataset size is leveraging multiple

data inputs. In Tang's 2022 study, they used a training set

of 4,364 compounds (3,125 BBB+ and 1,239 BBB-) and a

test set of 2,670 compounds (1,258 BBB+ and 1,412 BBB-).

Their final dataset included 3,125 positive and 3,962

negative cases. Tang's study integrated three types of

data inputs: Tabular data, SMILES text data, and chemical

compound graphs. The model achieved an AUC of 0.83,

sensitivity of 0.85, specificity of 0.64, accuracy of 0.74,

and MCC of 0.49. The combination of text and tabular

data yielded the best AUC of 0.82, with tabular data

features such as 14-bit MACCS and 338-bit Morgan

fingerprints emerging as the most significant (44).

Although their study demonstrated lower accuracy and

AUC compared to our model (accuracy of 0.88 and AUC

of 0.96), it highlights the potential benefits of

incorporating diverse input types. Exploring additional

data inputs, such as text data and images, could further

enhance model performance and represents a

promising direction for future research.

4.5. Conclusions

In conclusion, our study demonstrated that the Light

GBM model performed exceptionally well when using

ECFP6 as input features, while the extra trees classifier

excelled with Morgan fingerprints and MCDs. Our

recommended ensemble model, which integrates the

extra trees, random forest, and gradient boosting

classifiers, achieved impressive results, including an

AUC of 0.96, an F1 Score of 0.91, and an MCC of 0.74.

Key molecular descriptors identified in our analysis

were Lipinski's rule of five (2D), the number of hydrogen

bond donors (nHBDon, 2D), the Ghose filter (2D),

centered Moreau-Broto autocorrelation of lag 0

weighted by Gasteiger charge (ATSC0c, 2D), and the

acidic group count (nAcid, 2D). These findings align

with previous studies that have established a correlation

between Lipinski's Rule and the number of acidic

groups with the permeability of CNS drugs, further

validating the robustness and applicability of our

models in predicting BBB permeability.
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