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Abstract

Background: Combining natural compounds with chemotherapeutic agents has emerged as a promising approach for

cancer treatment. Curcumin (Cur), a natural polyphenol, is known for its anti-cancer properties, including the ability to induce

apoptosis and arrest cell cycle progression.

Objectives: This study aimed to evaluate the effects of Cur and etoposide (ETO), both individually and in combination, on the

induction of apoptosis in breast cancer (BC) cell lines.

Methods: The impact of Cur and ETO on cell proliferation was assessed using MTT viability assays. Apoptosis induction by

these drugs was evaluated through Annexin V flow cytometry and caspase-3 and caspase-9 activity assays. Quantitative real-time

PCR was employed to measure Bax and Bcl-2 gene expression levels. Western blotting was conducted to determine protein levels

of p53, p21, Bax, and Bcl-2.

Results: A non-significant dose of ETO was selected based on MTT assay results and combined with 75 µM of Cur. Curcumin

enhanced ETO’s pro-apoptotic effect by increasing caspase activities. The combination of Cur and ETO significantly reduced Bcl-2

gene expression while upregulating Bax expression. Furthermore, treatment with this combination elevated the protein levels

of p53, p21, and Bax, compared to ETO or Cur alone, while significantly decreasing Bcl-2 protein levels.

Conclusions: Cur has the potential to amplify ETO-induced apoptosis in BC cells. This combination may offer a promising

therapeutic approach for BC.
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1. Background

In recent years, breast cancer (BC) has become the

most common and deadly cancer among women

worldwide (1, 2). Breast cancer is a heterogeneous

disease, encompassing multiple subtypes (3). Its

pathogenesis is influenced by numerous factors,

including molecular abnormalities, cellular signaling

pathways, and genetic and epigenetic modifications (4).

Thus, deciphering the molecular mechanisms and

genetic alterations underlying this disease is of

paramount importance.

The p53 gene is crucial in cancer prevention, as it

arrests the cell cycle and initiates apoptosis in response

to DNA damage, thereby preventing carcinogenesis.

Dysfunction of p53 is frequently associated with cancer

development, with mutations occurring in 50 - 60% of

cancers, especially in BC (5, 6). Etoposide (ETO), a widely

used chemotherapeutic drug, treats various cancers,

including lung, gastric, prostate, and BCs. Etoposide is

classified as a topoisomerase inhibitor, primarily acting

during the S and G2 phases of the cell cycle. It induces

cell death by inhibiting the second phase of

topoisomerase II activity, thereby preventing DNA
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religation (7, 8). However, ETO’s adverse effects, such as

neutropenia, myelosuppression, and alopecia, limit its

clinical use (9, 10).

Chemoresistance presents a major challenge in

chemotherapy, as cancer cells can reduce the efficacy of

chemotherapeutic drugs, often rendering them

ineffective. It is estimated that a significant proportion

of cancer-related deaths result from the failure of

chemotherapy (11, 12). Consequently, developing more

effective therapeutic strategies for cancer treatment is

critically important.

Polyphenols, found in various plants, offer health

benefits, including anti-inflammatory and antioxidant

effects. Curcumin (Cur), a polyphenol in turmeric, has

therapeutic potential against conditions such as cancer,

asthma, and Alzheimer’s disease due to its antioxidant

and anti-inflammatory properties. It influences several

cellular pathways, including PI3K and NF-κB, thereby

inhibiting inflammation and gene expression linked to

disease progression (13, 14). Although Cur’s anti-cancer

properties are well-researched, its potential synergistic

effects with chemotherapy drugs like ETO, especially in

BC, remain unclear. The mechanisms through which Cur

acts, particularly in overcoming p53-mediated

chemoresistance, are also not fully understood. Given

the challenges of chemoresistance and the severe side

effects associated with conventional chemotherapy,

there is a pressing need for strategies that enhance

treatment efficacy while minimizing toxicity. This study

aims to explore the molecular interactions between Cur

and ETO, focusing on their combined impact on

apoptosis and chemoresistance in BC cells, with the goal

of developing safer and more effective cancer therapies.

2. Objectives

Many aspects of Cur’s role in cancer treatment

remain unexplored. This study aims to investigate

whether Cur sensitizes MCF-7 and MDA-MB-231 human

BC cell lines to ETO and whether it exhibits synergy with

ETO in modulating the expression of the p53 protein, a

key cell cycle regulator.

3. Methods

3.1. Reagents and Cell Culture

MCF-7 and MDA-MB-231 cell lines were obtained from

the Pasteur Institute (Tehran, Iran). DMEM medium,

fetal bovine serum (FBS), and the antibiotics penicillin

and streptomycin were purchased from Idea-Zist

(Tehran, Iran), which also provided culture-grade DMSO.

Etoposide and Cur were sourced from Sigma-Aldrich,

and MTT was procured from Idea-Zist. Cells were

maintained in humidified incubators at 37°C with 5%

CO2. The regular medium was replaced with FBS-free

DMEM one day prior to the assay.

3.2. MTT Assay

Cells were seeded in separate 96-well plates at a

density of 104 cells per well. Fresh DMEM containing

either ETO, Cur, or a combination of both replaced the

medium. After 24, 48, and 72 hours of incubation, a new

medium containing 10% MTT was added to each well.

Following a 4-hour incubation, the MTT-containing

medium was replaced with DMSO to dissolve the

resulting formazan crystals.

3.3. Cell Migration Assay

The wound-healing assay was used to assess the

effects of Cur and ETO on cell migration at 24 and 48

hours. Cells were cultured to over 90% confluence, and a

wound was created using a 5 mL pipette tip. After

washing to remove any unattached cells, the remaining

cells were treated with 75 µM Cur and 10 µM ETO. Images

were taken immediately after treatment, then at 24

hours, and again at 48 hours. Cell migration was

analyzed using NIH ImageJ software, and the migration

rate was calculated as follows:

3.4. Quantitative Real-time PCR

Total RNA was extracted using the Yekta Tajhiz Azma

kit (FABRK 001, Iran), and purity and integrity were

confirmed using a Nanodrop spectrophotometer and

gel electrophoresis. cDNA synthesis was performed in a

20 µL reaction volume, followed by 40 cycles of PCR.

Real-time PCR measured the relative expression of Bax

and Bcl-2 genes using the Amplicon SYBR Green kit, with

GAPDH as an internal reference for normalization.

Thermal cycling was carried out using the QuantStudio3

PCR instrument (Applied Biosystems, Massachusetts,

USA). Primer sequences are listed in Appendix 1 in

Supplementary File. A melting curve plot verified the

specificity of PCR products, and gene expression levels

were quantified based on the average of triplicate

experiments.

Migration rate = [( )] × 100
T0 − Th

T0
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3.5. Western Blot Analysis

Following treatment, cells were lysed in a buffer

containing HEPES, NaCl, EDTA, and Triton X-100. Protein

concentrations were determined via the BCA assay.

Proteins were separated by SDS-PAGE and transferred

onto PVDF membranes. After blocking with skim milk in

TBST, the membranes were incubated with HRP-

conjugated secondary antibodies for 1 hour at room

temperature. Protein bands were visualized using the

ECL method (Sigma-Aldrich, USA) and quantified by

densitometry using ImageJ software.

3.6. Flow Cytometry

The apoptotic status of cells was assessed by flow

cytometry using the Annexin V-FITC/Propidium Iodide

(PI) kit from IQ Products. Following Cur treatment, cells

were harvested, trypsinized, and washed with calcium

buffer. Cells were then centrifuged, resuspended in

calcium buffer containing Annexin V-FITC, and

incubated at 4°C for 20 minutes. After this incubation,

the buffer was replaced with calcium buffer containing

PI, and cells were further incubated for 10 minutes.

Apoptosis levels were analyzed using a Becton Dickinson

flow cytometer, with a focus on Annexin V-FITC/PI

staining patterns.

3.7. Assessment of Caspase-3 and Caspase-9 Activity

The activities of caspase-3 and caspase-9 in cell lysates

were determined using the Caspase-3 Assay Kit,

Colorimetric (Abcam; ab39401, USA). Cells were

harvested, resuspended in lysis buffer, and centrifuged

to obtain cell extracts. Protein content in each sample

was measured, and equal amounts of protein were used

for the assays. Caspase-3 and caspase-9 activities were

determined by incubating the samples with enzyme-

specific colorimetric substrates for 1 hour, followed by

absorbance measurement at 405 nm to assess substrate

cleavage.

3.8. Statistical Analysis

All experiments were performed in triplicate, and

data are presented as mean ± standard deviation (SD).

Statistical analyses were conducted using GraphPad

Prism version 9.0. Group differences were analyzed with

one-way analysis of variance (ANOVA), followed by

Tukey's post-hoc multiple comparison test. A P-value of

less than 0.05 was considered statistically significant.

4. Results

4.1. Curcumin and Etoposide in Combination Significantly
Reduce Breast Cancer Cell Viability

The MTT assay showed that both Cur and ETO

individually inhibited the proliferation of MDA-MB-231

and MCF-7 cells in a dose-dependent manner after 48

hours. For Cur, the lowest effective concentrations were

25 µM for MCF-7 and 50 µM for MDA-MB-231, while for

ETO, the lowest effective dose was 20 µM for both cell

lines. Curcumin had an IC50 of 119.2 µM for MCF-7 (P <

0.001, Figure 1A, and B), though no Cur concentration

achieved a 50% reduction in viability for MDA-MB-231

cells. ETO's IC50 values were 76.4 µM for MCF-7 and 93.6

µM for MDA-MB-231 (P < 0.001, Figure 1C, and D). Results

at 72 hours were consistent with those observed at 48

hours. Combining 10 µM ETO with 25, 50, or 75 µM Cur

showed significantly enhanced efficacy compared to

individual treatments, reducing MCF-7 viability to 73.8%,

68.9%, and 48.6% (P < 0.001, Figure 2A) and MDA-MB-231

viability to 82.6%, 74.7%, and 72.9% (P < 0.01, Figure 2B).

The combination of 10 µM ETO with 75 µM Cur yielded

the lowest Combination Index (CI) values of 0.43 for

MCF-7 and 0.56 for MDA-MB-231, indicating the highest

synergy (Appendices 2 and 3 in Supplementary File).

4.2. Wound Healing Assay

The effects of Cur, ETO, and their combination on cell

migration were evaluated using a wound-healing assay

(Figure 3A and B). Breast cancer cells were treated for 24

or 48 hours with Cur, ETO, or a combination of both. The

results demonstrated a significant reduction in wound

closure speed for both cell lines following ETO

treatment alone at 24 and 48 hours (P < 0.0001, Figure

3C and D). The combined treatment further inhibited

wound closure at both time points, as indicated by

migration indices (P < 0.0001), showing that Cur and

ETO together were more effective than ETO alone.

4.3. Combined Treatment with Curcumin and Etoposide
Significantly Enhances Apoptosis in Breast Cancer Cells

Flow cytometry analysis using Annexin V/PI staining

revealed that ETO alone, but not Cur, led to a substantial

increase in apoptotic cell death in both MCF-7 and MDA-

MB-231 cells. However, the combination of Cur and ETO

resulted in a markedly greater apoptotic effect than

either agent alone. In the MCF-7 and MDA-MB-231 control

groups, baseline apoptosis rates were 2.82% (P < 0.001)

https://brieflands.com/articles/ijpr-150978
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Figure 1. Suppressive effects of curcumin (Cur) and etoposide (ETO) on the viability of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines, assessed using the MTT assay. MCF-7
cells were treated with five different concentrations of Cur (25 - 125 µM) and ETO (10 - 100 µM) for 24, 48, and 72 hours (A and B). MDA-MB-231 cells were treated with five different
concentrations of Cur (25 - 125 µM) and ETO (10 - 100 µM) for 24, 48, and 72 hours (C and D). (* P < 0.05, ** P < 0.01, *** P < 0.001 compared to untreated control).

Figure 2. Viability of MCF-7 and MDA-MB-231 cells treated with etoposide (ETO) alone, and with the combination of 10 µM of ETO and 25, 50, or 75 µM of curcumin (Cur). A, MCF-7
cells were treated with combinations of Cur and ETO for 48 hours; B, MDA-MB-231 cells were treated with three different combinations of Cur and ETO for 48 hours. (* P < 0.05, ** P
< 0.01, *** P < 0.001 compared to untreated control).

and 2.53% (P < 0.001), respectively. When treated

individually, Cur and ETO increased these apoptosis

rates to 13.1% (non-significant) and 19.62% in MCF-7 cells,

and to 6.71% (non-significant) and 15.02% in MDA-MB-231

https://brieflands.com/articles/ijpr-150978
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Figure 3. Migration of MCF-7 and MDA-MB-231 cells following treatment with curcumin (Cur) and etoposide (ETO) for 24 and 48 hours. A and B, the process of wound healing in
both cell lines, comparing untreated groups with those treated with Cur, ETO, and a combination of both at the 24- and 48-hour marks; C and D, The wound area was quantified
using ImageJ, with the resulting values presented as mean ± SD. Statistical significance is indicated as follows: * P < 0.05, ** P < 0.01, **** P < 0.0001, when compared to the
untreated control; #### P < 0.0001, when compared to the group treated with ETO.

cells, respectively. In contrast, the combined treatment

with ETO and Cur significantly elevated apoptosis levels

to 35.2% in MCF-7 cells (Figure 4A and B) and 26.7% in

MDA-MB-231 cells (Figure 4C and D).

4.4. Synergistic Enhancement of Apoptosis Markers by
Curcumin-Etoposide Combination

The combination of Cur and ETO significantly

increased Bax expression and decreased Bcl-2 expression

in both cell lines. In MCF-7 cells, individual treatments

resulted in a 1.64-fold increase in Bax expression with

Cur (non-significant) and a 2.76-fold increase with ETO,

alongside reductions in Bcl-2 by 0.73-fold and 0.48-fold,

respectively. In MDA-MB-231 cells, Bax expression

increased by 1.42-fold with Cur (non-significant) and

2.48-fold with ETO, while Bcl-2 decreased to 0.93-fold

(non-significant) and 0.71-fold, respectively. The Cur-ETO

combination produced a more pronounced increase in

Bax expression (4.46-fold in MCF-7, P < 0.001; 3.1-fold in

MDA-MB-231, P < 0.01) and a greater reduction in Bcl-2

(0.36-fold in MCF-7, P < 0.001; 0.57-fold in MDA-MB-231, P

< 0.01) compared to individual treatments (Figure 5).

Caspase-3 and caspase-9 activities were also enhanced

in MCF-7 cells treated with either Cur or ETO alone, with

Cur increasing these activities to 38.6% and 28.2% and

ETO to 53.7% and 42.4% (Figure 5E and F). In MDA-MB-231

cells, Cur had no significant effect on caspase activity,

while ETO increased activities to 36.3% and 37.2% (Figure

5G and H). The combination of Cur and ETO further

amplified caspase-3 and caspase-9 activities in MCF-7

cells to 84.3% (P < 0.001) and 74.6% (P < 0.001), and in
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Figure 4. Apoptosis rates of MCF-7 and MDA-MB-231 cells after treatment with 10 µM of etoposide (ETO) combined with 75 µM of curcumin (Cur). A and C, flow cytometry plots for
different treatment states for 48 hours; B and D, quantified plots of apoptosis rates of MCF-7 and MDA-MB-231 cells. (*P < 0.05, **P < 0.01, ***P < 0.001 compared to untreated
control; ##P < 0.01 compared to the ETO-treated group).

MDA-MB-231 cells to 69.1% (P < 0.001) and 56.8% (P < 0.01),

respectively (Figure 5).

4.5. Curcumin and Etoposide Synergistically Increase p53,
p21, and Bax Levels While Decreasing Bcl-2

The effects of Cur and ETO on the proteins p53, p21,

Bax, and Bcl-2 were also assessed (Figure 6). Etoposide

significantly elevated the expression of p53, p21, and Bax

in both MCF-7 and MDA-MB-231 cells, while Cur had

minimal effects individually. Specifically, ETO increased

p53, p21, and Bax by 2.46- and 2.67-fold, 3.54- and 2.56-

fold, and 3.76- and 3.86-fold, respectively, in MCF-7 and

MDA-MB-231 cells. Cur caused modest increases in p53

and Bax, by 1.68- and 1.46-fold for p53 and 1.63- and 2.38-

fold for Bax. Additionally, ETO decreased Bcl-2 expression

to 0.67-fold in MCF-7, with no significant effect in MDA-

MB-231 cells.

The combined treatment of Cur and ETO further

enhanced the expression of p53 (4.48-fold in MCF-7, P <

0.001; 2.89-fold in MDA-MB-231, P < 0.01), p21 (6.48-fold in

https://brieflands.com/articles/ijpr-150978
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Figure 5. Relative mRNA expressions of Bax, Bcl-2, and activities of caspase-9 and caspase-3 in curcumin (Cur) and etoposide-treated MCF-7 and MDA-MB-231 cells. A, effects of the
combination of Cur and etoposide (ETO) on the expression of the Bax gene in MCF-7 cells; B, effects of the combination of Cur and ETO on the expression of the Bcl-2 gene in MCF-
7 cells; C, effects of the combination of Cur and ETO on the expression of the Bax gene in MDA-MB-231 cells; D, effects of the combination of Cur and ETO on the expression of the
Bcl-2 gene in MDA-MB-231 cells; E and F, effects of Cur and ETO on the activities of caspase-9 and caspase-3 in MCF-7 cells; G and H, effects of Cur and ETO on the activities of
caspase-9 and caspase-3 in MDA-MB-231 cells. (* P < 0.05, ** P < 0.01, *** P < 0.001 compared to untreated control; # P < 0.05, ## P < 0.01, ### P < 0.001 compared to the ETO-treated
group).

Figure 6. p53, p21, Bax, and Bcl-2 protein levels in curcumin (Cur) and etoposide-treated MCF-7 and MDA-MB-231 cells, assessed through western blotting. A and F, the effects of
Cur and etoposide (ETO) on the protein expression levels of p53, p21, Bax, and Bcl-2; B and G, quantified plots of the impacts of Cur and ETO, individually and in combination, on
the relative protein expression of p53 in MCF-7 and MDA-MB-231 cells; C and H, quantified plots of the impacts of Cur and ETO, individually and in combination, on the relative
protein expression of p21 in MCF-7 and MDA-MB-231 cells; D and I, quantified plots of the impacts of Cur and ETO, individually and in combination, on the relative protein
expression of Bax in MCF-7 and MDA-MB-231 cells; E and J, quantified plots of the impacts of Cur and ETO, individually and in combination, on the relative protein expression of
Bcl-2 in MCF-7 and MDA-MB-231 cells. (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 compared to untreated control; # P < 0.05, ## P < 0.01, ### P < 0.001 compared to the ETO-
treated group).

MCF-7, P < 0.001; 4.46-fold in MDA-MB-231, P < 0.01), and

Bax (5.42-fold in MCF-7, P < 0.001; 5.72-fold in MDA-MB-

231, P < 0.001), while significantly reducing Bcl-2

expression to 0.49-fold in MCF-7 P < 0.01) and 0.29-fold
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in MDA-MB-231 P < 0.001) (Figure 6).

5. Discussion

Chemotherapy has long been the primary treatment

for cancer, although it often results in severe side effects

(15, 16). Recent research has begun to explore combining

chemotherapeutic agents with natural compounds,

such as plant polyphenols, to help reduce these side

effects. The rationale is that combining a

chemotherapeutic drug with a less toxic natural

compound may allow for lower doses of each drug, thus

reducing overall toxicity while enhancing treatment

effectiveness (17, 18). This approach is particularly

valuable, as certain cancers develop resistance to

chemotherapy over time (19, 20). Etoposide is a widely

used chemotherapeutic agent, but it also encounters

issues of resistance in cancers like neuroblastoma, small

cell lung cancer, and BC (21, 22). Combining ETO with

natural compounds targets processes such as apoptosis,

cell migration, and angiogenesis. Apoptosis, in

particular, involves intrinsic and extrinsic pathways,

with key regulators such as p53, Bcl-2 proteins, and

caspases, which are essential targets in cancer therapy

(23, 24).

Natural compounds influence critical signaling

pathways, including Erk1/2, PI3K/Akt, and NF-κB, thereby

impacting cellular mechanisms like oxidative stress and

apoptosis (25). Curcumin, a natural polyphenol, exhibits

anti-inflammatory, antioxidant, and pro-apoptotic

properties (26). In this study, we evaluated the effects of

ETO and Cur on apoptosis in MCF-7 and MDA-MB-231 BC

cell lines. While high doses of ETO and Cur individually

reduced cell viability, their combination significantly

enhanced ETO’s efficacy. Specifically, the combination

lowered the 48-hour IC50 of ETO from 80 µM to 10 µM in

MCF-7 cells, although it did not reach 50% inhibition in

MDA-MB-231 cells. These findings indicate that Cur

potentiates ETO’s effect and may help overcome

chemoresistance (27, 28). This effect might be attributed

to Cur's modulation of various cellular pathways that

contribute to tumor cell survival, including the

inhibition of NF-κB and STAT3 signaling pathways, both

of which play crucial roles in cell proliferation and

survival (29).

The wound-healing assay demonstrated that the

combination of Cur and ETO significantly inhibited

wound closure at 24 hours in both cell lines, suggesting

a reduction in migration. This finding is consistent with

Mohammed et al., who reported that Cur impedes the

migration of MDA-MB-231 cells (30), and Hamsa et al.,

who found that ETO similarly inhibits migration (31).

The synergistic inhibition of wound closure by Cur +

ETO could be attributed to their combined action on

pathways including the inhibition of NF-κB activation,

which plays a crucial role in regulating genes involved

in inflammation, proliferation, and metastasis (32).

Etoposide primarily functions as a topoisomerase II

inhibitor, inducing DNA damage and apoptosis.

However, it also affects cell adhesion molecules and

cytoskeletal dynamics, both essential for cell migration

(33).

The combination of Cur + ETO increased apoptosis

rates by 15.8% in MCF-7 cells and 11.5% in MDA-MB-231 cells

compared to ETO alone. Curcumin alone at 75 µM did

not significantly impact apoptosis; however, in

combination with ETO, it significantly enhanced

apoptosis, indicating a synergistic effect. Dhima et al.

observed that Cur upregulates pro-apoptotic factors

such as p53, Cdk inhibitors, and caspases, as well as

inducing cell cycle arrest, potentially complementing

the effects of ETO (34). In this study, Cur did not

significantly increase p53 levels on its own. Etoposide

showed higher effectiveness in MCF-7 cells than in MDA-

MB-231 cells, possibly due to the lower malignancy and

chemoresistance in MCF-7 cells. The molecular subtypes

of these cell lines MCF-7’s luminal type and MDA-MB-231’s

triple-negative breast cancer (TNBC) may contribute to

these differential responses, though further

investigation is needed to understand the link (35).

The observed synergy in promoting apoptosis may be

attributed to the combined modulation of Bcl-2 and Bax

proteins, along with the significant increase in caspase-3

and caspase-9 activities. Etoposide induces DNA damage,

which activates p53-dependent apoptotic pathways (36).

Curcumin may further sensitize cells to ETO-induced

apoptosis by impacting NF-κB and other survival

pathways, as evidenced by the substantial reduction in

Bcl-2 levels and increase in Bax levels, which establish a

pro-apoptotic environment and enhance caspase

activity in both cell lines (37).

Our results indicate that Cur enhances the effects of

ETO, leading to a greater decrease in Bcl-2 and an

increase in Bax expression, particularly in MCF-7 cells.

Additionally, the levels of p53, p21, and Bax proteins

increased significantly with ETO and ETO + Cur

treatments, while Bcl-2 decreased, with a nearly twofold

increase in p53 levels, especially in MCF-7 cells. The

effects were less pronounced in MDA-MB-231 cells. These
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findings align with Oak et al. (38), who demonstrated

that Cur treatment induces ubiquitination and

destabilization of mutant p53 (Mutp53) but not wild-

type p53 (WTp53) in cancer cells. The synergy between

Cur and ETO in our study is likely due to the

destabilization of Mutp53 by Cur, increasing apoptosis

through upregulation of Bax and tumor suppressor

proteins (p53 and p21) and downregulation of Bcl-2. This

effect varies between MCF-7 and MDA-MB-231 cells, with

MCF-7 cells showing greater sensitivity due to higher

WTp53 levels and lower Mutp53 aggregation, while the

more complex effect observed in MDA-MB-231 cells could

be due to possible Mutp53 destabilization. Ultimately,

the combination of Cur and ETO may help overcome

resistance mechanisms, restoring cell cycle arrest and

apoptosis in tumor cells (39, 40).

5.1. Conclusions

Our study underscores the synergistic enhancement

of ETO efficacy by Cur in BC cells, particularly in MCF-7

cells. The combination reduces cell viability and inhibits

wound closure, suggesting a possible reduction in

metastatic potential. This synergy is attributed to Cur's

modulation of multiple cellular pathways, including

the destabilization of Mutp53, particularly in MDA-MB-

231 cells, which promotes apoptosis and mitigates

chemoresistance. Increased expression of Bax, p53, and

p21, along with reduced Bcl-2 expression and significant

increases in caspase-3 and caspase-9 activities, supports

the pro-apoptotic environment created by this

combination. The differential responses observed

between MCF-7 and MDA-MB-231 cells highlight the

importance of molecular subtypes in determining

treatment efficacy. Overall, the combination of Cur and

ETO represents a promising strategy to enhance

apoptosis and reduce chemoresistance in BC.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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