
Iran J Pharm Res. January-December 2025; 24(1): e159348 https://doi.org/10.5812/ijpr-159348

Published Online: 2025 April 14 Research Article

Copyright © 2025, Mohammad-Alizadeh et al. This open-access article is available under the Creative Commons Attribution 4.0 (CC BY 4.0) International

License (https://creativecommons.org/licenses/by/4.0/), which allows for unrestricted use, distribution, and reproduction in any medium, provided that the

original work is properly cited.

How to Cite: Mohammad-Alizadeh M, Asgharzadeh A, Tatari M. Investigation of the Antioxidant and Cellular Toxicity Activities of Gold Nanoparticles

Synthesized Using Cichorium intybus Extract on a Liver Cancer Cell Line. Iran J Pharm Res. 2025; 24 (1): e159348. https://doi.org/10.5812/ijpr-159348.

Investigation of the Antioxidant and Cellular Toxicity Activities of Gold

Nanoparticles Synthesized Using Cichorium intybus Extract on a Liver

Cancer Cell Line

Mohammad Mohammad-Alizadeh 1 , Ahmad Asgharzadeh 1 , * , Maryam Tatari 1

1 Shirvan Branch, Islamic Azad University, Shirvan, Iran

*Corresponding Author: Shirvan Branch, Islamic Azad University, Shirvan, Iran. Email: asg.ahmad@yahoo.com

Received: 7 January, 2025; Revised: 17 March, 2025; Accepted: 4 April, 2025

Abstract

Background: Liver cancer is increasing in different parts of the world and is the fourth leading cause of cancer death globally.

Objectives: The present study aims to synthesize and analyze the characterization of gold nanoparticles (AuNPs) synthesized

by Cichorium intybus extract and evaluate their antioxidant and cellular toxicity activity against liver cancer cells (HepG2).

Methods: The synthesized AuNPs were characterized using X-ray diffraction (XRD), field emission scanning electron

microscopy (FESEM), and fourier-transform infrared spectroscopy (FTIR). The antioxidant activity of the nanoparticles was

assessed using the DPPH test, and their cytotoxicity activity was analyzed using the MTT method.

Results: The results indicate that the AuNPs are crystalline materials with a particle size of less than 100 nm, with a mean

particle size of 23.94 nm. The FTIR study reveals the presence of biochemical groups that act as reducing factors. The results

demonstrate that antioxidant activity increases with concentration, with 87% inhibition of DPPH free radical scavenging

observed at 250 µg/mL. Cell toxicity results in liver cancer cell lines (HepG2) demonstrated significant cytotoxicity in a time- and

dose-dependent manner. The percentage of cell viability at a concentration of 1000 µg/ml after 24, 48, and 72 hours was

determined to be 45%, 51%, and 22%, respectively.

Conclusions: The present study revealed the simple cost-effective and environmentally friendly method that could be

employed from food to pharmaceutical industries.
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1. Background

Today, nanoscience has offered new opportunities for

the treatment of various disorders. The eco-friendly,

anti-cancer, antimicrobial, and antioxidant potential of

nanoparticles has been extensively explored (1-5).

Among nanomaterials, gold nanoparticles (AuNPs) have
attracted significant attention due to their potential

uses in medicinal and pharmacological studies (6, 7).
The AuNPs are typically considered harmless materials

to employ as medicine-carrying and antimicrobial

resources (8). The AuNPs have garnered extensive
attention in cancer treatment due to their low toxicity,

great stability, simplicity of cellular uptake, and
outstanding optical activities (9, 10).

The utilization of AuNPs in cancer treatment involves

two main strategies. First, AuNPs can be employed as
drug-delivery structures to enhance targeted

distribution and efficiency (11). They can facilitate drug
delivery in tumor tissues through the enhanced

permeability and retention effect (12, 13). Treatments can

be directly bound to the surface of AuNPs through
various interactions (14, 15). The surface of AuNPs can be

modified to simplify drug delivery.

In recent years, the antioxidant activities of metal

and metal-oxide nanoparticles have been considered in
several studies (16-18). Antioxidants play an essential role

in industries; for example, they act as additives to

inhibit lipid oxidation (19, 20). Lipid oxidation is

responsible for unpleasant flavors and odors in food,
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making them unsuitable for consumption. To extend

the shelf life of food products, companies frequently use

synthetic antioxidants, such as butylated
hydroxyanisole (BHA), a chief additive in the food

industry (21). Although synthetic antioxidants are
generally considered nontoxic, their use has some

issues, as toxic effects have been detected in vitro and in

vivo studies (22-24). It is proven that BHA can activate
endocrine disorders and is also associated with liver

cancers (25-27). Other studies have recognized the
presence of synthetic phenol antioxidants in humans,

such as in adipose tissues, serum, and urine (28, 29).

Based on these facts, the use of synthetic antioxidants in

foods is strictly limited in different countries. To

overcome these problems, it is essential to find natural
antioxidant alternatives that have low toxicity for

human cells. These alternatives should be non-toxic and
possess high antioxidant properties, allowing them to

replace synthetic antioxidants.

Cichorium intybus from the Asteraceae family consists

of several secondary metabolites, with main

distribution regions in Europe and Asia. Various

preparations of C. intybus are used to treat several

illnesses. The literature review demonstrates that C.
intybus L., the most well-known species of the Cichorium

genus, has shown a wide range of ethnobotanical uses

and has been widely employed for culinary purposes

(30).

2. Objectives

The present study explores the antioxidant and

cytotoxicity effects of biosynthesized AuNPs against

liver cancer cells. The present work describes an easy
method to fabricate AuNPs using C. intybus extract as

eco-friendly, inexpensive stabilizing, and reducing

agents. It also characterizes them using fourier-

transform infrared spectroscopy (FTIR), field emission

scanning electron microscopy (FESEM), and x-ray
diffraction (XRD).

3. Methods

3.1. Materials and Reagents

All materials with analytical grade were purchased

from Sigma-Aldrich, USA, for chemicals and were used as
precursors for the preparation of AuNPs. The plant

materials were collected from Kashmar (located in the

northeast of Iran) on 10 May 2024.

3.2. Preparation of Herbal Extract and Gold Nanoparticle
Synthesis

Five grams of powdered leaves were added to 100 mL

of deionized water and stirred continuously for 24

hours at room temperature to ensure thorough
extraction of the bioactive compounds. The resulting

solution was filtered using Whatman filter paper to
remove any particulate matter. The clear filtrate was

stored in an Erlenmeyer flask and kept at 3°C to preserve

its bioactivity for subsequent nanoparticle synthesis.

For the synthesis of AuNPs, a stock solution was

prepared by dissolving 10 mg of HAuCl4 in 10 mL of

deionized water. Subsequently, 10 mL of this stock

solution was added to 90 mL of the herbal extract,

resulting in a final volume of 100 mL. The mixture was

shaken regularly at room temperature for 4 hours to

facilitate the reduction of Au3+ ions and the formation

of AuNPs. The synthesized AuNPs were then centrifuged

at 10,000 rpm for 10 minutes to separate the

nanoparticles from the reaction mixture. The
supernatant was discarded, and the pellet containing

AuNPs was washed once with distilled water to remove

any unreacted components and impurities. This

washing step was repeated to ensure the purity of the

nanoparticles. The washed nanoparticles were then

dried in a vacuum oven at 40°C for 24 hours to obtain

powdered AuNPs. The dried nanoparticles were stored

in an airtight container to prevent any contamination

or oxidation until further use.

The green-fabricated AuNPs samples were exposed to

various instrumental procedures such as FESEM (MIRA3,
TESCAN), XRD (XRD Theta/Theta, Explorer, Italy), and FTIR

(AVATAR 370 FT-IR, Thermo Nicolet, USA) analysis.
Powdered AuNPs (obtained after washing) were used for

characterization. For absorption spectra, FTIR, and

FESEM analysis, powdered AuNPs were used to obtain
their corresponding data.

3.3. DPPH Radical Scavenging Test

The antioxidant capacity of the AuNPs was assessed

using the DPPH test, with BHA serving as a positive

control. The free radical scavenging activity of AuNPs

and standard BHA was determined using the stable

radical DPPH. One milliliter of different concentrations

(0, 125, 250, 500, and 1000 μg/mL) of AuNPs was mixed

with 1 mL of freshly prepared DPPH (1 mM in ethanol)

solution and vortexed thoroughly. The solution was

then incubated at 25°C in the dark for 30 minutes. The

absorbance was recorded at 517 nm using a

spectrophotometer. The free radical scavenging activity
was expressed as the percentage of inhibition,
determined using the following formula:
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3.4. Cytotoxicity of Gold Nanoparticles

The cell toxicity of the AuNPs was examined using the

diphenyltetrazolium bromide (MTT) assay, a

colorimetric method for assessing cell metabolic

activity (31). Cell development was conducted in RPMI

and DMEM media, supplemented with 100 μg/mL

penicillin and 10% FBS, and then transferred to the

incubator. Briefly, HepG2 cells were seeded in a 96-well

plate and incubated for 24 hours. Various doses (0, 15.6,

31.2, 62.5, 125, and 250 μg/mL) of green-fabricated NPs

were added. During this time, after each day of

incubation, 20 μL of MTT dissolved in phosphate-

buffered saline (PBS) was added to each well. At the end

of the stage, the media was discarded, and the formed

formazan crystals were dissolved in dimethyl sulfoxide

(DMSO). Subsequently, the plates were shaken, and the

absorbance was measured at 590 nm.

3.5. Statistical Analysis

The results of the MTT test, antioxidant activity, and

significant differences were analyzed using SPSS

software and one-way ANOVA with a statistical cut-off of

P < 0.05. Graphs were drawn using Microsoft Excel

software. The findings were presented as the mean ± SD,

with three replications performed for each test.

4. Results

4.1. X-ray Diffraction Results in Biosynthesized Gold
Nanoparticle

The XRD analysis of the synthesized AuNPs reveals a

highly crystalline structure, consistent with the

reference pattern for gold (Au) with a cubic crystal

system (Figure 1). The diffraction peaks observed at

2Theta values of 37.9883°, 44.2480°, 64.4947°, and

77.3025° correspond to the (111), (200), (220), and (311)

planes, respectively. These peaks align closely with the

standard reference data (PDF code: 00-001-1172) (32),

indicating the presence of face-centered cubic (fcc) gold.

4.2. Fourier-Transform Infrared Results and Interpretation

The FTIR spectrum of the plant extract exhibits

characteristic peaks at various wavenumbers, indicating

the presence of multiple functional groups (Figure 2).

Notable peaks include those at 535.81 cm-1, 608.53 cm-1,

and 665.63 cm-1, which are likely associated with C-H

bending vibrations (33). Peaks at 760.68 cm-1 and 829.31

cm-1 correspond to aromatic C-H bending, while the

peaks at 1058.43 cm-1 and 1157.83 cm-1 are indicative of C-
O stretching and C-O-C stretching vibrations,

respectively (34). The presence of peaks at 1246.41 cm-1

and 1322.00 cm-1 suggests C-N stretching and C-H

bending vibrations. Additionally, the peaks at 1641.57 cm-

1 and 1737.91 cm-1 correspond to the amide I band (C=O
stretching) and carbonyl stretching vibrations,

respectively (35). The broad peak at 3380.71 cm-1 is

attributed to O-H stretching vibrations, indicating the

presence of hydroxyl groups (36).

4.3. Electronic Microscopy and Spectrophotometric Analysis
Results of Biosynthesized Gold Nanoparticle

The FESEM images of the AuNPs provide detailed
insights into their morphology and distribution (Figure

3). The high-magnification image on the left, with a scale

of 200 nm, reveals that the AuNPs are predominantly
spherical. The particles appear to be well-dispersed with

minimal agglomeration, indicating a uniform synthesis
process. The surface of the nanoparticles is smooth,

which is characteristic of high-purity AuNPs.

The particle size distribution (PSD) of the AuNPs was

analyzed using FESEM images, with measurements

conducted using ImageJ software and statistical analysis

performed with SPSS software (Figure 3). The histogram

overlaid with a bell curve represents the frequency of

particles within specific size ranges, indicating a normal

distribution of particle sizes. The mean particle size of

approximately 23.94 nm suggests that the majority of

the AuNPs are within the nanoscale range, consistent

with the high-resolution FESEM images. The standard

deviation of 12.533 nm indicates some variability in

particle sizes, which is typical for nanoparticles

synthesized through green synthesis methods (37-39).

This variability can be attributed to factors such as the

dose of the reducing agent, reaction time, and

temperature during the synthesis process.

The PSD analysis reveals that the AuNPs exhibit a

relatively narrow size distribution, with most particles

falling within the range of 10 to 40 nm. The bell curve

suggests a normal distribution, indicating that the

synthesis method produces nanoparticles with

consistent sizes. The presence of a few larger particles, as

indicated by the tail of the distribution, may be due to

occasional agglomeration or variations in the synthesis

conditions. Hence, the PSD analysis, combined with the

FESEM images, confirms the successful synthesis of

(%) of inhibition = (AbsorbanceControl 

− AbsorbanceTest )/(Absorbance Control) × 100
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Figure 1. The PXRD analysis of the synthesized gold nanoparticles (AuNPs)

AuNPs with a mean size of 23.94 nm and a relatively
narrow size distribution. This consistency in particle

size enhances the potential applicability of the AuNPs in

various fields, including catalysis, electronics, and

biomedicine (40-43).

The difference between the PSD mean particle size

(23.94 nm) and the crystallite size (8.31 nm) suggests

that each gold nanoparticle is likely composed of

multiple crystallites (44, 45). This is a common
observation in nanomaterials, where individual

nanoparticles can consist of several smaller crystalline

regions. The larger particle size from the PSD analysis

also accounts for any surface coatings or organic

residues from the plant extract, which are not
considered in the crystallite size calculation (46, 47).

The lower magnification image on the right, with a

scale of 500 nm, provides a broader view of the

nanoparticle distribution across the surface. This image

shows that the AuNPs are evenly distributed, forming a

relatively homogeneous layer. The absence of large

aggregates suggests that the synthesis method

effectively prevents particle agglomeration, which is

crucial for maintaining the exclusive activity of

nanoparticles (48, 49). The uniform distribution and

spherical morphology of the AuNPs are essential for

their potential applications (50-52). Therefore, the

FESEM images confirm the successful synthesis of high-

quality AuNPs with desirable morphological

characteristics.

The energy-dispersive x-ray spectroscopy (EDX)
analysis (Figure 4) conducted on the AuNPs reveals

critical details about their elemental composition,

confirming the high purity and concentration of gold

within the sample. The EDX spectrum exhibits distinct

energy peaks specifically associated with gold,
including Au Mβ, Au Mα, Au Ll, and Au La lines. These

characteristic peaks, unique to gold, substantiate the

successful synthesis of AuNPs with a notable degree of

purity, an essential requirement for advanced

nanotechnology applications. The Au La line displayed
an intensity of 3.6 with a relative error of 1.48%,

signifying a robust signal that supports the presence of

gold with minimal background interference. Gold was

quantified at 100% by both weight and atomic percent,

with no significant detection of other elements,
validating the high purity of the AuNPs. The PAP (Phi-

Rho-Z) correction was applied, enhancing the reliability
of the data by compensating for any potential matrix
effects.

The EDX analysis included a preliminary scan for

other potential elements to confirm the purity of the

sample. Elements such as iron (Fe), tantalum (Ta),
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Figure 2. Fourier-transform infrared spectroscopy (FTIR) spectra of A, the plant extract; and B, biosynthesized gold nanoparticles (AuNPs). The spectra display characteristic
peaks corresponding to various functional groups.

iridium (Ir), dysprosium (Dy), rhenium (Re), and

osmium (Os) were flagged with a 100% detection

probability in general identification algorithms.

However, these elements were absent from the actual

sample spectrum, with no peaks of significant intensity,

reinforcing the conclusion that the AuNPs were devoid

of notable impurities.

In this analysis, an accelerating voltage of 15.0 kV was

used to generate definitive energy peaks in EDX

spectroscopy, enhancing elemental analysis reliability. A

beam current of 10,000 nA provided a high signal-to-

noise ratio for precise gold peak detection with minimal

background interference. The analysis at 35,000x
magnification allowed detailed visualization of the

nanoparticle composition. Both live and preset times

were 10 seconds, optimizing high-resolution spectra

capture while minimizing noise. The detector, equipped

with a 0.1 µm dead layer, minimized interferences for

accurate low-energy x-ray detection. A 20 µm gold layer

on the detector enhanced sensitivity to gold emissions,

and a 10 mm2 active area provided clear spectral results.

The silicon detector crystal, 3.0 µm thick with a 15 nm

aluminum coating, was ideal for detecting x-rays across

gold’s energy range.

The UV/Vis absorption spectrum of AuNPs provides

valuable information about their optical properties and

size distribution. The spectrum displays a distinct peak

in the absorbance curve around the 520 - 540 nm range,

which is characteristic of the surface plasmon

resonance (SPR) of AuNPs (Figure 4). This SPR peak arises

due to the collective oscillation of conduction electrons

on the nanoparticle surface when exposed to light, and

it is a key feature of metallic nanoparticles (53).

4.4. Antioxidant Activity Results of Gold Nanoparticle

The DPPH radical is widely used in evaluating free

radical scavenging activity due to the simplicity of the

reaction (54). The absorption properties of the DPPH

radical demonstrate the effectiveness of the green-

fabricated AuNPs formed from the extract, compared
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Figure 3. A, Field emission scanning electron microscopy (FESEM) images of gold nanoparticles (AuNPs) show the spherical morphology and smooth surface of the AuNPs; B,
particle size distribution (PSD) of AuNPs

with BHA as a positive control. As shown in Figure 5,

AuNPs can scavenge DPPH radicals in a dose-dependent

manner, with antioxidant activity increasing as the dose

of nanoparticles is enhanced. Moreover, the results

indicate that AuNPs are more effective than BHA, an

industrial antioxidant, suggesting that AuNPs have
greater potential than industrial antioxidants. By

increasing the concentration of biosynthesized AuNPs,

the percentage inhibition of DPPH free radicals

increases. At a concentration of 250 µg/mL, the

percentage inhibition of DPPH free radicals for

biosynthesized AuNPs and BHA was observed to be 87.5%

and 92.4%, respectively.
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Figure 4. A, Energy-dispersive x-ray spectroscopy (EDX) spectrum of gold nanoparticles (AuNPs). The spectrum confirms the presence and high purity of gold in the
nanoparticles; B, UV/Vis absorption spectrum of AuNPs

Figure 5. The inhibitory result of the fabricated gold nanoparticles (AuNPs) on DPPH free radicals compared to butylated hydroxyanisole (BHA) as a positive control. Asterisk
symbols show a significant difference between experimental groups (*** P < 0.001).

4.5. Cytotoxicity Results of Gold Nanoparticles Against
Cancer Cell Line (HepG2)

As displayed in Figure 6, the induction of cellular

toxicity by the biofabricated AuNPs is dependent on

both the dose and duration of treatment. As the

concentration of nanoparticles increases, the death rate

of cancer cells also rises.

5. Discussion

The comparison of the FTIR spectra of the AuNPs and

the plant extract indicates that several functional

groups from the plant extract are present on the surface

of the AuNPs. Peaks such as those at 760.81 cm-1, 1641.57

cm-1, and 1737.91 cm-1 in the plant extract are also

observed in the AuNPs spectrum, suggesting that these

groups are involved in the reduction and stabilization

https://brieflands.com/articles/ijpr-159348
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Figure 6. Cytotoxicity effect of gold nanoparticles (AuNPs) on cancer cell line (HepG2). Asterisk symbols show a significant difference between experimental groups (*** P <
0.001).

of the AuNPs. The presence of new peaks at 495.88 cm-1

and 2339.88 cm-1 in the AuNPs spectrum may indicate

interactions between gold and organic molecules from

the plant extract, which are crucial for the formation

and stabilization of the nanoparticles (55-59). Overall,

the FTIR analysis confirms that the green synthesis

method effectively incorporates functional groups from

the plant extract onto the surface of the AuNPs,

contributing to their stability and potential

applications in various fields.

Li et al. examined the antioxidant properties of

flavonols, AuNPs, and flavonol-AuNPs using the DPPH

method. Their results showed that flavonol-AuNPs

exhibited significantly higher antioxidant properties

compared to both flavonol and AuNPs when examined

separately (60). Another study examined the

antioxidant properties of AuNPs fabricated by
Spatoglossum asperum. The results showed that

synthesized AuNPs, with a 20 nm diameter, significantly

scavenged the DPPH free radical, showing 73.21%

inhibition at a dose of 50 µg/mL (61).

Biosynthesized AuNPs were observed to induce

cytotoxicity in HepG2 cells, and the results were

consistent with other reports stating that synthesized

AuNPs induced oxidative stress in a dose-dependent

manner, as evidenced by a decline in ROS creation and

lipid peroxidation (62, 63). The cell toxicity mechanism

of AuNPs generally involves the over-generation of ROS,

which mediates apoptosis, causes upregulation of the

BAX gene, and activates the caspase cascade while

suppressing Bcl2 (64-66).

Table 1 shows the antioxidant and cytotoxicity
properties of some investigations of green synthesized

AuNPs and their properties. However, physicochemical

procedures are extensively employed for the large-scale

production of AuNPs to meet their exponentially
growing potential uses in biomedical fields. The use of

unsafe and expensive materials poses a significant
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Table 1. Comparison of Some Studies of Plant-Mediated Synthesized Gold Nanoparticles

Source
Size

(nm) Morphology Findings Reference

Martynia annua 21 Spherical
The AuNPs exhibit robust DPPH scavenging activity and effective reducing power; the AuNPs exhibit robust DPPH
scavenging activity and effective reducing power. (71)

Allium cepa 6 - 54 Spherical The AuNPs had lower activity when compared to normal antioxidants. (72)

Nepeta bodega 20.5 Spherical
The AuNPs exhibited concentration-dependent cytotoxicity on the human liver (HepG2) and breast (MCF-7)
cancer cells, which were around 77.4 and 71.2% at 300 µg/mL, respectively.

(73)

Pandanus
canaranus

37.4 Spherical
As the concentration of AuNPs increased, the findings of cell viability reduced in the lung cancer cells (A549
cells).

(74)

Ginkgo biloba 18 Spherical The AuNPs exhibited promising in vitro dose and time-dependent antiproliferative effects against human
nasopharyngeal carcinoma cells.

(75)

Coleus
scutellarioides

40 Spherical A concentration-dependent impact of AuNPs on human breast cancer cells. (76)

Curcuma longa 10 - 15
Semi-

spherical
The AuNPs had more antioxidant activity when compared to BHA; the % lung cancer cell viability decreased
significantly in all of them as the AuNPs dose increased. (77)

Thespesia lampas 43 Spherical The AuNPs were significantly effective (50.47%) against head and neck cancer cells at a higher dose of 100 μg mL-1;
the NPs had significant antioxidant activity when compared to standard antioxidants.

(78)

Cucurbita
moschata

≤ 100 Spherical
The AuNPs exhibited better antiproliferative activity with 47.19% viability in lung cancer cells and 42.76% in

human ovarian cancer cells at a 50 μg/mL concentration.
(79)

Papaya 44.4 Spherical The AuNPs displayed a significant antioxidant effect (93.24% DPPH scavenging and 74.23% SOD inhibition at 100
µg/mL.

(80)

Abbreviations: AuNPs, gold nanoparticles; BHA, butylated hydroxyanisole.

challenge in the production of nanoparticles (67).

Consequently, the challenges associated with

conventional fabrication methods have motivated

researchers to explore green, safe, and cost-effective

approaches for the fabrication of AuNPs to meet the

growing industrial demand (68-70). The photo-

fabrication of AuNPs is recognized as an important

method due to its eco-friendly and renewable

properties. However, the use of commercially valuable

herbs as reducing agents affects the effectiveness of the

fabrication process. Therefore, there is a pressing need

to shift focus towards discovering the reduction

potential of herbal-mediated wastes for the fabrication

of AuNPs. While numerous studies have confirmed the

promising biocompatibility of AuNPs, comprehensive

toxicological in vitro and in vivo assays are critical

before AuNP-based treatments can be safely employed in

humans.

5.1. Conclusions

In this work, AuNPs were fabricated using an extract

of C. intybus. The synthesized nanoparticles were fully
characterized by FESEM, PXRD, and FTIR, with a diameter

size of 23.94 nm. It appears that the extract of C. intybus

prevented the aggregation of AuNPs. The extract is

primarily responsible for the fabrication of AuNPs, and

the nanoparticles demonstrated significant cellular

toxicity effects against cancer cells in a time- and

concentration-dependent manner. Additionally,

antioxidant experiments indicate that these

nanoparticles can be employed as alternatives to

synthetic antioxidants. The simplicity, low cost, and

effectiveness of this procedure suggest an alternative to

conventional synthetic approaches for AuNPs. The

environmentally friendly fabricated AuNPs can be

valuable and effective in the pharmacology and food

industries.
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