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Abstract

Background: The application of vincristine (VCR) in treating a range of cancers is well-documented, showcasing its

considerable effectiveness. Nevertheless, its clinical application is constrained by its impact on healthy tissues and various

organ systems. Specifically, it can compromise kidney function, resulting in toxicological concerns. Studies have demonstrated

that vincristine contributes to nephrotoxicity via the induction of oxidative stress.

Objectives: The present research focused on assessing the influence of mitochondrial transplantation in mitigating the

mitochondrial and cellular toxicity associated with VCR in renal proximal tubular cells (RPTCs).

Methods: This investigation evaluated specific toxicity metrics, including cell death, reactive oxygen species (ROS) generation,

decreased mitochondrial membrane potential (MMP), glutathione (GSH) concentration, succinate dehydrogenase (SDH)

activity, lipid peroxidation (LPO), and adenosine triphosphate (ATP) levels. Freshly prepared active mitochondria were obtained

from the kidneys of Wistar rats.

Results: The data demonstrated the cytotoxic effects of VCR on RPTCs. It was further observed that vincristine triggered

oxidative stress, characterized by heightened ROS levels, diminished GSH content, decreased SDH activity, and increased lipid

peroxidation. Furthermore, VCR caused notable damage to both mitochondrial and lysosomal membranes, along with a

significant decrease in ATP content. The innovative strategy of mitochondrial transplantation mitigated oxidative stress,

alleviated mitochondrial membrane damage, and prevented ROS-mediated apoptosis signaling induced by vincristine in RPTCs.

Our results also indicated an increase in ATP levels within these cells.

Conclusions: Our investigation suggests that the proposed treatment modality may prove beneficial in addressing drug-

induced nephrotoxicity.
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1. Background

Vincristine (VCR), a vinca alkaloid, is a common

chemotherapy medication used to treat an array of

cancers, including leukemia, lymphoma, and Hodgkin's

disease. Approximately 8% to 15% of VCR is excreted in

the urine as an unchanged parent drug, indicating the

susceptibility of the kidneys to the cytotoxic effects of

VCR. It is assumed that 25% of cardiac output is directed

to the kidneys, rendering them one of the most

susceptible organs to the toxicity of chemical

therapeutics. Additionally, their crucial role in the

excretion and elimination of numerous substances

exposes them to various toxicants. Therefore,

nephrotoxicity has become a major limiting factor in

using VCR as an antineoplastic agent (1).
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Chemotherapeutic agents, in general, have proven to

be mitotoxic in various cell types, including renal and

neuronal cells, leading to kidney impairment and

chemotherapy-induced peripheral neuropathy (CIPN)

through mitochondrial dysfunction (2). This

dysfunction manifests as compromised adenosine

triphosphate (ATP) and reactive oxygen species (ROS)

production, the release of cytochrome c, and the

opening of a redox-sensitive channel called the

mitochondrial permeability transition pore (mPTP),

which consequently causes a drop in mitochondrial

membrane potential (MMP) and eventually leads to cell

death (3, 4).

In studies regarding vincristine-induced peripheral

neuropathy (VIPN) in the spinal cords of mice, it has

been concluded that VCR treatment leads to a

considerable rise in ROS and malondialdehyde (MDA)

levels, resulting in oxidative stress and lipid

peroxidation (LPO), respectively (5-7). Lipid

peroxidation, a biochemical reaction, precipitates

changes in plasma membrane structure and

permeability (8-10). Vincristine also triggers cytochrome

c release from mitochondria and a substantial decrease

in Bcl-2, an anti-apoptotic protein, thereby facilitating

apoptosis (5-7). Furthermore, VCR impacts another

member of the Bcl-2 family, known as Bax, which serves

as a pro-apoptotic factor. The onset of the apoptotic

process within cells is believed to be linked to an

elevated ratio of Bax to Bcl-2 (11-13). Even at low

concentrations, VCR can lead to mitochondrial

transport dysfunction and the upregulation of proteins

implicated in ATP synthesis and oxidative

phosphorylation (14, 15).

Vincristine exposure has been shown to decrease

glutathione (GSH) concentrations in cells as a

consequence of oxidative stress (16) and to cause a

notable decline in the expression of succinate

dehydrogenase (SDH) in Ramos cells. The expression

levels of SDH can function as an oxidative damage

biomarker, where heightened expression is associated

with a diminished buildup of ROS (17). The

administration of VCR leads to an increase in the size

and total volume of lysosomes, causing lysosomal

membrane permeabilization and destabilization, which

ultimately results in apoptotic cell death (18). In 1981, it

was demonstrated that following VCR and vinblastine

(VBL) treatment, crystalline and paracrystalline

structures appeared in the lysosomes of tubular cells in

the kidneys of mice. These structures were deemed to

result from autophagy induced by VCR and VBL and

mitochondrial aggregation in autophagosomes (19). The

necrotic effect of VCR on renal proximal tubular cells

(RPTCs) in mice and dogs, causing damage to the brush

borders, has been elucidated (20, 21). In 2019, necrosis of

both proximal and distal tubules was reported, with a

range of mechanisms implicated, including reduced

renal antioxidant activities involving GSH enzymes,

upregulation of Bax, downregulation of Bcl-2, elevated

MDA levels, and decreased ATP and MMP, all of which

play pivotal roles (1). Other investigations have

confirmed these mechanisms as well (22, 23).

Oxidative stress occurs when there is an imbalance

between the generation of free radicals, often

exacerbated by mitochondrial dysfunction, and the

compromised capacity of antioxidant defenses (24, 25).

The association between mitochondrial dysfunction and

a wide range of pathological changes and diseases has

been well-documented (26). Conditions such as

diabetes, cardiovascular diseases, renal disorders,

neurodegenerative diseases, various types of cancer, and

even aging are all linked to faulty mitochondria (27).

Mechanistically, mitochondrial dysfunction is

characterized by a substantial loss of ATP and MMP,

along with an overproduction of ROS and other reactive

species (28).

Potential therapeutic interventions aimed at

restoring mitochondrial function could focus on

increasing ATP production, enhancing antioxidant

scavenging capacity, and preserving mitochondrial

homeostasis within the renal system. This may be

achieved by transferring freshly isolated mitochondria

to affected cells (24, 25). Mitochondria exhibit a unique

mechanism of fission and fusion, continually merging

through fusion and dividing through fission. This

dynamic process allows healthy mitochondria to fuse

with damaged ones, eliminating impaired areas to

preserve mitochondrial functionality through

mitophagy (29, 30).

Mitochondrial transplantation involves introducing

functional external mitochondria into cells

compromised by mitochondrial defects, with the goal of

restoring cellular viability and preventing further

disease progression (28). The foundation of this concept

originates from the work of Clark and Shay in 1982, who
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first demonstrated the capability of mammalian cells to

uptake isolated mitochondria through endocytosis (31).

Previous research has shown that treating

Parkinson’s model cells with mitochondria resulted in

considerable improvements, including increased ATP

and GSH levels, reduced ROS levels, and prevention of

apoptosis (27). Another study highlighted the role of

mitotherapy in improving cognitive and motor

performance in aged mice by reducing oxidative stress

(28). Hayashida et al. demonstrated that mitochondrial

transplantation significantly alleviated ischemia-

reperfusion injury (IRI) in specific tissues (32). Similarly,

McCully et al. reported that replacing damaged

mitochondria due to ischemia revitalized cellular

functionality and reconstructed mitochondrial DNA

(mtDNA) (33). Notably, only damaged cells uptake

transplanted mitochondria, as healthy cells already

possess functional mitochondria (34).

Research on the positive effects of mitochondrial

therapy in drug-induced toxicity has shown that

mitotherapy can mitigate liver toxicity associated with

acetaminophen (35). In 2022, Hernandez-Cruz et al.

suggested that mitotherapy may serve as a viable

intervention for cadmium (Cd)-induced kidney injury

stemming from mitochondrial dysfunction (36). Acute

kidney injury (AKI) is another condition linked to

mitochondrial impairment, and mitotherapy has

proven to be a promising treatment to reduce apoptosis

in renal tubular cells triggered by IRI (37).

2. Objectives

The present research, therefore, explores the cellular

mechanisms underlying the nephrotoxicity of VCR, a

topic that has received limited attention in previous

literature, while also elucidating the protective role of

transplanting isolated mitochondria from rat kidneys in

restoring VCR-affected RPTCs.

3. Methods

3.1. Chemicals

All the chemicals utilised in this experiment were

procured with the highest possible quality from Merck

and Sigma companies (Germany).

3.2. Animals

All the animals used in our experiments (male Wistar

rats) were purchased from the Pasteur Institute (Tehran,

Iran), weighing between 200 - 230 grams and aged 5 - 9

weeks. They were maintained at a temperature of 20 -

22°C with a humidity level of 50 - 60% and a 12-hour

light/dark cycle. After purchase, the male rats were

allowed to acclimate to their environment for

approximately one and a half weeks before the

experiments commenced. All experimental procedures

were reviewed and approved by the Ethical Committee

for the Treatment of Experimental Animals at Iran

University of Medical Sciences (IR.IUMS.AEC.1401.034)

and were conducted in accordance with the guidelines

of this committee. The RPTCs were isolated from male

Wistar rats (38, 39).

3.3. Isolation and Preparation of RPT Cells

Renal proximal tubular cells isolation was carried out

based on enzymatic methods (38, 39). The Wistar rats

were anesthetized using 40 mg/kg ketamine and 10

mg/kg xylazine, and at the end of the experiments, they

were euthanized via cervical dislocation. The kidneys

were perfused with Ca-free Hanks' balanced salt solution

(HBSS) containing 0.5 mM EGTA. The tissue was then

digested with collagenase type II in HBSS containing 4

mM CaCl₂ and 1% penicillin-streptomycin. The kidney

cortices were decapsulated and cut into 0.5 mm thick

pieces. The RPTCs were obtained by passing the mixture

through 120 µm and 60 µm mesh filters, respectively.

Earl’s solution (pH 7.4) was used to wash and pellet 10⁶
cells/mL of RPTCs before resuspension. This process was

conducted in round-bottom containers rotating in a

37°C water bath. Finally, the cells were suspended in 28

mM HEPES solution and incubated under a gas mixture

of 10% O₂, 85% N₂, and 5% CO₂.

3.4. Evaluation of Cellular Viability

Cell toxicity was assessed by measuring the release of

lactate dehydrogenase (LDH) using LDH assay kits from

Sigma-Aldrich. A 10 µL sample was mixed with 1 mL of

the indicator solution, and the absorbance was recorded

at 37°C in 30-second intervals over a period of 4 minutes.

A relative factor was applied to convert the absorbance

rate at 340 nm to enzyme activity units. The LDH activity

for all treated groups was expressed as µM per minute

per liter (40).
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3.5. Evaluation of Mitochondrial Functionality

In this study, differential ultracentrifugation

(Hettich, Universal 320R, Tuttlingen, Germany) was used

to isolate fresh and active mitochondria from the

kidneys of Wistar rats (41, 42). The kidneys were

extracted and minced in a cold isolation buffer

containing mannitol, EDTA, and sucrose.

Homogenization was performed using a glass

homogenizer, and the homogenate was centrifuged at

4°C for 10 minutes to remove damaged cells and nuclei.

Following this, 250 µL of bovine serum albumin (BSA)

solution was added to the supernatant, which was then

filtered through 40 µm and 5 µm filters, respectively. The

filtrate was centrifuged at 10,000 × g for 10 minutes to

pellet the mitochondria.

The mitochondrial pellet was resuspended and

centrifuged again at 10,000 × g for 10 minutes. The final

mitochondrial suspension was prepared in a

homogenizing buffer containing Tris-HCl (0.05 M),

MgCl₂ (2.0 mM), KCl (20 mM), sucrose (0.25 M), and

Na₂HPO₄ (1.0 mM) at 4°C with a pH of 7.4. The

concentration of mitochondrial proteins (80 µg/mL)

was determined using the Coomassie Blue protein-

binding assay with BSA as a standard (43). All

subsequent mitochondrial assessments were

normalized to samples containing 0.5 mg/mL of

protein. The activity of mitochondrial SDH, a marker of

mitochondrial function, was evaluated using MTT

reduction at 570 nm with an ELISA reader (Tecan,

Rainbow Thermo, Männedorf, Switzerland) (44).

3.6. Experimental Arrangement

The concentration of 10⁶ cells/mL of RPTCs was

suspended in Earle's solution (pH = 7.4) after adding 1.5

mL of VCR at 37°C for 2 hours. The process of isolating

fresh mitochondria from rat kidneys and their

subsequent dilution to the required doses was carried

out at 4°C. The RPTC medium was then replaced with

one containing mitochondria and was kept in round-

bottomed containers rotating in a water bath at 37°C for

4 hours.

3.7. Measurement of Succinate Dehydrogenase Activity in
Renal Proximal Tubular Cells

This method is based on the color change of yellow

tetrazolium powder to insoluble purple-black formazan

crystals, which involves mitochondrial SDH. In this

study, the reduction of MTT by SDH in the presence of

both VCR (200 µM) and isolated mitochondria (80

µg/mL) was measured using an ELISA reader at 570 nm

(44).

3.8. Measurement of Reactive Oxygen Species Concentrations

The rate of ROS production in RPTCs after

mitochondrial transplantation was quantified by

adding 1.6 µM of diacetyldichlorofluorescein (DCFH-DA)

to the cells. Upon penetration into RPTCs, DCFH-DA

undergoes hydrolysis to form non-fluorescent DCFH,

which reacts with ROS to produce fluorescent

dichlorofluorescein (DCF). The fluorescent intensity of

DCF, indicative of ROS production, was measured at

excitation and emission wavelengths of 500 nm and 520

nm, respectively, using a spectrofluorometer (Shimadzu

RF5000U). The results were reported as fluorescence

intensity units per 106 cells (45).

3.9. Assessment of Mitochondrial Membrane Potential in
Renal Proximal Tubular Cells

Mitochondrial membrane potential analysis was

performed using Rhodamine 123 (Rh123), a cationic

fluorescent dye. A 0.5 mL suspension of RPTCs was

centrifuged, and the resulting pellet was re-suspended

in 2 mL of medium containing 1.5 µM Rh123, followed by

incubation at 37°C for 10 minutes. The Rh123 content in

the RPTC suspensions was determined by measuring

fluorescence using a spectrofluorometer (Shimadzu

RF5000U) at excitation and emission wavelengths of

490 nm and 520 nm, respectively. The fluorescent

intensity of Rh123 was calculated based on the

fluorescence differences between Rh123 in control and

treated groups (46).

3.10. Investigation of Lipid Peroxidation in Renal Proximal
Tubular Cells

Lipid peroxidation, as an oxidative stress marker, was

evaluated by measuring malondialdehyde (MDA) levels.

The MDA produced in the sample was quantified by

measuring the absorbance of the supernatant at 532 nm

using an ELISA reader (Tecan, Rainbow Thermo) (47).

3.11. Measurement of Glutathione level in Renal Proximal
Tubular Cells

https://brieflands.com/articles/ijpr-159628
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After the addition of 0.5 mL of 10% trichloroacetic

acid (TCA), the RPTCs were centrifuged at 11,000 rpm for

2 minutes. Subsequently, 0.5 mL of the obtained

supernatant was diluted with 4.5 mL of EDTA buffer, and

1 mL of this mixture was added to 2.8 mL of phosphate-

EDTA buffer. Finally, 100 µL of ortho-phthalaldehyde

(OPA) solution was added. The resulting mixture was

incubated at 25°C for 15 minutes, and the fluorescence

absorbance was measured at excitation and emission

wavelengths of 350 nm and 420 nm, respectively, using

a Shimadzu RF5000U spectrofluorometer (48).

3.12. Evaluation of Lysosomal Membrane Damage

This research employed acridine orange to assess

lysosomal membrane destabilization. As a weak base,

acridine orange accumulates in lysosomes through

proton trapping, producing red fluorescence at high

concentrations within intact lysosomes and green

fluorescence at lower concentrations in the cytosol and

nucleus. The RPTCs were treated for 4 hours based on

the designated groupings, followed by washing with

phosphate-buffered saline (PBS) and a subsequent 20-

minute incubation with acridine orange at 37°C in a

dark environment. The RPTCs stained with acridine

orange were subjected to centrifugation at 1,000 × g for 1

minute to separate them from the culture medium. The

cells were subsequently washed twice with PBS to

eliminate any residual acridine orange. Finally, the

fluorescence intensity of the cell suspensions was

assessed using a fluorescence spectrophotometer at

excitation and emission wavelengths of 495 nm and 530

nm, respectively (49).

3.13. Adenosine Triphosphate Level Assay

The pre-incubation of 106 cells/mL of VCR-treated

RPTCs with 5-(N-ethyl-N-isopropyl) amiloride (EIPA) (100

µM) (50), cytochalasin D (10 µM) (51), and methyl-β-

cyclodextrin (1 mM) (52) was performed to evaluate the

process of mitochondrial uptake. The pre-incubation

was carried out in specific flasks for 30 minutes. The

isolated mitochondria (240 µg/mL) were then added to

each flask and subsequently incubated at 37°C with 5%

CO₂ for 4 hours. Finally, the inhibitory effects of

mitochondrial transplantation on ATP levels were

assessed (53).

3.14. Statistical Analysis

The outcomes were presented as mean ± SD, with

one-way ANOVA used as the primary method of analysis,

followed by post hoc tests. Additionally, GraphPad Prism

9 (GraphPad Software, La Jolla, CA) was utilized for both

statistical and graphical analyses, with a significance

level set at P < 0.05.

4. Results

4.1. The Evaluation of Mitochondrial Functionality in Isolated
Mitochondria

To assess the proper function of isolated

mitochondria, the MTT assay was performed at 570 nm

to measure SDH activity in the mitochondria. As shown

in Figure 1, SDH activity did not exhibit any significant

differences during the incubation periods of 1, 2, and 4

hours.

4.2. The Cytotoxic Effect of Vincristine on Renal Proximal
Tubular Cells and Determination of IC50 for Vincristine

A significant reduction (P < 0.0001) in cell viability

was observed in rat RPTCs after a 2-hour incubation with

200 µM VCR, as shown in Figure 2.

4.3. Optimal Protective Concentration of Mitochondrial
Transplantation Against Vincristine -Induced Renal Proximal
Tubular Cells Damage

Lactate dehydrogenase leakage, indicative of VCR-

induced cytotoxicity, was prevented by co-incubating

RPTCs with 80 µg/mL of freshly isolated mitochondria,

as illustrated in Figure 3. Therefore, 80 µg/mL was

considered the optimal protective concentration of

isolated mitochondria against VCR-induced RPTC

damage.

4.4. The effect of Mitotherapy on Restoring Succinate
Dehydrogenase Activity

Vincristine application impaired SDH activity, which

was measured using the MTT assay, where MTT is

reduced to purple formazan at 570 nm. As reported in

Figure 4, mitotherapy significantly restored SDH activity

in RPTCs (P < 0.0001).

4.5. The Aftermath of Mitotherapy on Reactive Oxygen
Species Generation

https://brieflands.com/articles/ijpr-159628
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Figure 1. Mitochondrial functionality. No considerable difference in succinate dehydrogenase (SDH) activity compared to time zero.

Figure 2. Vincristine (VCR) cytotoxicity and its IC50 determination. The IC50 for VCR was considered to be 200 µM. Values were depicted as mean ± SD (n = 5). **P < 0.01 and ****P <

0.0001 in comparison to control.

According to the results obtained (Figure 5), VCR

(200 µM) significantly (P < 0.0001) increased ROS levels

in cells compared to the control group. Mitochondrial

transplantation (80 µg/mL) significantly reduced ROS

levels in VCR-treated RPTCs (P < 0.0001), indicating that

isolated mitochondria can mitigate oxidative damage

caused by VCR.

4.6. The Effect of Mitotherapy on Mitochondrial Membrane
Potential Collapse in Renal Proximal Tubular Cells

The MMP collapse is considered one of the causes of

mitochondrial dysfunction. As shown in Figure 6, VCR

https://brieflands.com/articles/ijpr-159628
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Figure 3. The best protective concentration of isolated mitochondria against VCR-induced cytotoxicity. The best protective concentration of isolated mitochondria against VCR-
induced cytotoxicity was considered to be 80 µg/mL. Values were depicted as mean ± SD (n = 5). **P < 0.01 and ***P < 0.001 in comparison to control.

Figure 4. The effect of mitotherapy on restoring succinate dehydrogenase (SDH) activity. The SDH activity decreased in vincristine (VCR) group in comparison to control group
(****P < 0.0001) whereas, mitotherapy increased SDH activity in comparison to VCR group (****P < 0.0001). Values were depicted as mean ± SD (n = 5).

(200 µM) induced a significant collapse in MMP

compared to the control group. Mitochondrial

transplantation (80 µg/mL) demonstrated a significant

protective effect against VCR-induced MMP collapse in

RPTCs (P < 0.0001).

4.7. The Reducing Impact of Mitotherapy on Lysosomal
Damage

As indicated in Figure 7, lysosomal damage was also a

consequence of VCR toxicity. The VCR at a concentration

https://brieflands.com/articles/ijpr-159628
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Figure 5. The response of reactive oxygen species (ROS) generation to mitotherapy. The amount of ROS generation increased in vincristine (VCR) group in comparison to control
group (****P < 0.0001) whereas, mitotherapy decreased ROS generation in comparison to VCR group (****P < 0.0001). Values were depicted as mean ± SD (n = 5).

Figure 6. The effect of mitotherapy on mitochondrial membrane potential (MMP) collapse in renal proximal tubular cells (RPTCs). The drop in MMP was significant in
vincristine (VCR) group compared to control group (****P < 0.0001) whereas, mitotherapy prevented MMP collapse compared to VCR group (****P < 0.0001). Values were depicted
as mean ± SD (n = 5).

of 200 µM caused significant lysosomal membrane

damage (P < 0.0001) in RPTCs, while subsequent

mitochondrial transplantation (80 µg/mL) significantly

reduced this lysosomal damage (P < 0.0001).

4.8. The Enhancing Effect of Mitotherapy on Glutathione
Levels

The results obtained (Figure 8) indicated that VCR

(200 µM) significantly reduced GSH levels in RPTCs (P <

https://brieflands.com/articles/ijpr-159628
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Figure 7. The reducing impact of mitotherapy on lysosomal damage. The damage to lysosomal membrane was significant in vincristine (VCR) group compared to control group
(****P < 0.0001) whereas, mitotherapy decreased lysosomal damage compared to VCR group (***P < 0.0001). Values were depicted as mean ± SD (n = 5).

Figure 8. The enhancing effect of mitotherapy on glutathione (GSH) levels. The GSH levels were reduced in vincristine (VCR) group compared to control group (****P < 0.0001)
whereas, mitotherapy increased GSH levels compared to VCR group (***P < 0.0001). Values were depicted as mean ± SD (n = 5).

0.0001), which is crucial in initiating oxidative stress.

Additionally, mitochondrial transplantation (80 µg/mL)

substantially improved GSH levels in RPTCs (P < 0.0001).

4.9. The Reducing Effect of Mitotherapy on Lipid Peroxidation

The results shown in Figure 9 indicate that VCR (200

µM) significantly increased MDA levels in RPTCs (P <

https://brieflands.com/articles/ijpr-159628
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Figure 9. The reducing effect of mitotherapy on lipid peroxidation. The MDA levels were increased in vincristine (VCR) group compared to control group (****P < 0.0001)
whereas, mitotherapy reduced the MDA levels compared to VCR group (****P < 0.0001). Values were depicted as mean ± SD (n = 5).

Figure 10. Determination of mitochondrial uptake mechanism. Cytochalasin D prevented the protective effects of mitotherapy on adenosine triphosphate (ATP) indicating the
internalization mechanism of isolated mitochondria. Values were depicted as mean ± SD (n = 5). **P < 0.01 vincristine (VCR) group vs mitotherapy and *P < 0.05 mitotherapy vs
cytochalasin D group.

0.0001). Mitochondrial transplantation (80 µg/mL) was

subsequently found to considerably reduce MDA levels

and lipid peroxidation in RPTCs (P < 0.0001).

4.10. Determination of the Uptake Mechanism of
Transplanted Mitochondria into Renal Proximal Tubular
Cells

https://brieflands.com/articles/ijpr-159628
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According to our results, pre-incubation with

cytochalasin D reduced the protective effects of

mitochondrial transplantation, indicating the

involvement of an internalization mechanism for

isolated mitochondria. As illustrated in Figure 10, ATP

content did not improve with mitotherapy following

cytochalasin D treatment. Additionally, VCR significantly

reduced ATP content in the cells (P < 0.0001).

5. Discussion

This study aims to analyze the mitochondrial toxicity

associated with VCR and to determine the impact of

mitotherapy in mitigating the toxic effects of VCR on

RPTCs.

Chemotherapy commonly causes proximal tubular

impairment through mitotoxicity. Given that a

considerable amount of VCR is excreted unchanged via

this part of the kidneys, the importance of studying

VCR-induced nephrotoxicity becomes even more

prominent (1). Previous studies have indicated that the

nephrotoxic effects of VCR primarily stem from a

disruption in redox balance. This imbalance triggers

several pathological events, including elevated levels of

ROS and MDA, diminished ATP synthesis, a reduction in

MMP, and decreased activities of SDH and GSH.

Collectively, these factors contribute to oxidative

damage and ultimately result in cellular apoptosis.

Earlier investigations have also revealed the

profound effect of VCR on Bcl-2 family members, as it

suppresses Bcl-2, an anti-apoptotic protein, and

promotes Bax, a pro-apoptotic protein. The release of

cytochrome c into the cytosol is another indication of

VCR-induced oxidative stress (5-7). Upon administration

of VCR, there is a notable increase in the size and total

volume of lysosomes, which results in the

destabilization and permeabilization of their

membranes, thereby leading to cell death via apoptosis

(18).

The elevated production of ROS from compromised

mitochondria can affect the integrity of the lysosomal

membrane, potentially leading to the release of

lysosomal contents into the cytoplasm. Furthermore,

research indicates that these reactive species can

activate phospholipase A2 (PLA2), resulting in the

destabilization and increased permeability of the

lysosomal membrane (54-56). The interaction of free

radicals with intra-lysosomal free iron facilitates the

production of highly reactive hydroxyl radicals through

a Fenton-type reaction. This mechanism plays a key role

in triggering lysosomal membrane permeabilization

(LMP) by promoting ongoing lipid peroxidation of

lysosomal membranes, which leads to the formation of

lipofuscin and further damage to lysosomal membrane

proteins (57, 58). Alternatively, lysosomal membrane

permeability may be induced prior to any

mitochondrial impairment, as lysosomal enzymes can

target the mitochondrial membrane and promote the

formation of ROS. This, in turn, could further increase

the vulnerability of the lysosomal membrane to damage

(59).

The kidneys are characterized by a high

mitochondrial content, second only to that of the heart,

which is essential for meeting the energy demands of

various cellular processes. During these processes,

especially ATP production, the emergence of reactive

species, notably ROS, is unavoidable (24, 25). The

generation of ROS during oxidative phosphorylation to

produce ATP is significantly influenced by

mitochondria. The mitochondrial membrane potential

serves as a regulatory factor for the rate of ROS

production within these organelles. However, excessive

accumulation of ROS may induce sustained opening of

the mPTP, culminating in a surge of ROS and the risk of

oxidative stress and mitochondrial injury. This

mitochondrial damage results in the release of

cytochrome c, loss of ATP and MMP, downregulation of

Bcl-2, and an increase in ROS levels (60, 61). It is well-

established that any form of mitochondrial dysfunction

is responsible for the pathophysiology of renal injury

(26). Oxidative injury is considered one of the important

causes of renal fibrosis, as any renal abnormality could

lead to excessive generation of ROS (25, 62).

Since mitochondrial dysfunction is a fundamental

mechanism in drug-induced kidney toxicity,

mitotherapy can be used to replace inefficient

mitochondria with healthy ones. In a study conducted

by Arjmand et al. in 2022, the effect of transplanting

freshly isolated mitochondria on gentamicin-induced

toxicity in RPTCs was investigated (63). In another

research endeavor, the influence of freshly isolated

mitochondria on the toxicity of favipiravir in RPTCs was

evaluated. The results of the statistical analysis

indicated that the introduction of healthy

mitochondria significantly reduced cellular toxicity,
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ROS generation, MMP disruption, lysosomal injury, GSH

depletion, and caspase-3 activation caused by favipiravir.

Additionally, this intervention led to an increase in ATP

production, Bcl-2 expression, and the ratio of GSH/GSSG

in RPTCs (64).

In a comparable research study focusing on the

drugs ifosfamide and doxorubicin, it was demonstrated

that healthy mitochondria can be efficiently taken up by

RPTCs, and their incorporation alleviates the

cytotoxicity associated with oxidative damage from

these agents in rat kidney tubular cells (65, 66). Thus,

mitochondrial transplantation represents a potent

therapeutic option for mitigating kidney toxicity

resulting from chemical substances.

Ischemia-reperfusion (I/R) is a contributing factor to

mitochondrial malfunction, which is associated with

significant kidney injuries, including acute kidney

injury (AKI) and chronic kidney disease (CKD). This

malfunction can lead to elevated levels of ROS and

malondialdehyde (MDA), while simultaneously

reducing ATP production and MMP. Additionally, the

antioxidant capacities of superoxide dismutase (SOD)

and GSH are significantly compromised, leading to

redox imbalance. The loss of MMP triggers the opening

of mitochondrial permeability transition (MPT) pores,

resulting in the release of cytochrome c into the cytosol.

The decreased ratio of Bcl-2 to Bax ultimately leads to

cell death (67). Mechanisms such as chemotherapy and

I/R have been implicated in tubular cell death, which is

associated with the generation of mitochondrial ROS

and the opening of MPT pores (68).

Falone et al. hypothetically linked the apoptotic

death of cancerous cells to mitochondrial impairment,

manifested by ROS release, cytochrome c discharge from

the cells, and a notable loss of ATP and MMP (69).

Therefore, replacing damaged mitochondria with

functional ones could therapeutically address these

issues (67). Mitochondrial transplantation (MT) is an

emerging experimental method that has shown

promising outcomes in addressing mitochondrial

abnormalities linked to cardiac and kidney dysfunction,

predominantly influenced by oxidative stress (27, 70).

Evidence from animal studies has demonstrated that

restoring mitochondrial function and preventing

apoptosis in cardiomyocytes are some of the notable

benefits of mitotherapy. Direct introduction of isolated

mitochondria into the myocardium affected by

ischemia-reperfusion injury was conducted by the

McCully group, revealing significant improvement in

ventricular function within a few days (71, 72). The

incorporation of mitochondria leads to a reduction in

oxidative damage, as evidenced by decreased lipid

peroxidation products within the lesion areas of

cardiomyocytes (73). Additionally, research by other

investigators has elucidated the therapeutic effects of

delivered mitochondria in the ischemic heart, including

reduced ROS production, prevention of apoptosis, and

increased ATP content (24, 71, 74).

Findings from previous studies suggest that intra-

arterial injection of mitochondria serves as an effective

strategy for protecting the kidneys from I/R injury,

significantly improving renal function and mitigating

renal damage (75).

In a diabetic nephropathy model, the administration

of mitochondria effectively abolished ROS production

by restoring the levels of superoxide dismutase 2 (SOD2)

and preventing apoptosis through the upregulation of

Bcl-2 protein. In another model of kidney damage,

mitochondrial transplantation (MT) also promoted SOD

and ATP levels while reducing apoptosis by increasing

Bcl-2 expression (70). Additionally, a study involving the

intravenous injection of mitochondria into the brains

of Parkinson’s disease (PD) model mice demonstrated

that mitochondrial transplantation suppressed PD

progression by reducing free radical generation and

decreasing apoptotic cells. Moreover, mitochondrial

transfer has been introduced as a promising

intervention to combat stroke, showing a significant

reduction in cellular redox imbalance and apoptosis in a

rodent ischemic brain model (76, 77).

Our research began by confirming that actin-

dependent endocytosis serves as the mechanism for

mitochondrial internalization. We further substantiated

that the toxicity of VCR is derived from an imbalance in

redox processes. Our data demonstrated that exposure

of RPTCs to VCR resulted in a significant increase in ROS

and MDA, a considerable decrease in ATP and MMP, a

notable reduction in SDH activity and GSH antioxidant

capacity, as well as damage to the lysosomal membrane

structure. These findings are consistent with prior

research.

Additionally, our data illustrated that the

introduction of freshly isolated mitochondria to

damaged RPTCs significantly reversed the
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Figure 11. Schematic representation of vincristine (VCR)-induced nephrotoxicity through mitochondrial impairment and the protective effect of mitochondrial
transplantation. Transferring the freshly isolated mitochondria into VCR-damaged renal proximal tubular cells (RPTCs) diminishes oxidative stress by reducing ROS and MDA
formation, increasing succinate dehydrogenase (SDH) activity, GSH concentrations and adenosine triphosphate (ATP) levels.

aforementioned changes, corroborating the principles

established in mitochondrial medicine research. In

essence, the findings indicate that VCR is inherently

nephrotoxic, and the application of mitotherapy may

offer a beneficial therapeutic strategy. A schematic

representation of the present study is depicted in Figure

11.

5.1. Conclusions

This study presents the transplantation of freshly

isolated mitochondria as a potential therapeutic

approach for addressing kidney injury induced by VCR.

The findings indicate that mitochondrial transfer

mitigates VCR-related cytotoxic effects in rat RPTCs.

Furthermore, this intervention reduces oxidative stress

and preserves the integrity of both mitochondrial and

lysosomal membranes, effectively preventing the

activation of cell death signaling pathways triggered by

VCR in rat RPTCs.
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