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Abstract

Background: Accurate differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC) is important in RCC diagnosis.
Objectives: This study aimed to evaluate the performance of different supervised machine learning (ML) algorithms for RCC based
on computed tomography (CT) examinations.
Patients and Methods: The CT images of known cases of RCC or renal AML were collected and divided into training and testing
groups. The texture features of CT images were drawn and quantified in MaZda software; a total of 352 features were drawn from
each image. Top 10 features with statistical significance for differentiation of RCC from benign tumors in the training group were
selected to establish diagnosis models based on 16 supervised ML algorithms. Next, the models were compared regarding accuracy
and specificity. The trained models were further examined by comparison with data from the testing group.
Results: Among 16 classifiers trained in this study, the logistic regression, linear discriminant analysis, k-nearest neighbor algo-
rithm, support vector machines (SVMs), ridge classifier, AdaBoost classifier, gradient boosting classifier, and CatBoost classifier
showed good performance in discriminating RCC from AML (accuracy, ≥ 0.7; area under the [receiver operating characteristic
[ROC]] curve [AUC] ≥ 0.75) in both training and testing datasets.
Conclusion: Based on the ML algorithms for big data, diagnostic classifiers can be valuable tools for an accurate diagnosis of RCC.
By comparing different algorithms, the present results indicated potential algorithms for the development of RCC diagnostic clas-
sifiers.
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1. Background

There are more than 68,000 new cases of kidney can-

cer and 25,600 deaths related to kidney cancer in China

every year, with the prevalence rates showing a rising an-

nual trend (1, 2). Renal cell carcinoma (RCC) accounts for

more than 90% of all kidney cancer cases (3). Although di-

agnosis of RCC through biopsy is accurate, the invasive and

inconvenient nature of this modality makes it less accept-

able for physicians and patients (4, 5). On the other hand,

computed tomography (CT) examination and other radi-

ological imaging technologies have become the primary

diagnostic tools for RCC, enabling active surveillance (6,

7). The increasing prevalence of CT examination has fa-

cilitated the early detection of RCC (8). Nevertheless, the

most common benign renal tumor, that is, renal angiomy-

olipoma (AML), shares significant similarity with RCC on

CT images (9, 10), which frequently leads to misdiagnosis

and subsequently, management dilemmas, such as unnec-

essary biopsies and treatments (7, 11, 12). Therefore, a better

diagnostic strategy is needed for the active surveillance of

RCC.

Computer systems can accurately transform subtle tex-

ture features into quantitative data, and machine learning

(ML) algorithms can build predictive models from big data

(13). Therefore, computer-aided diagnosis (CAD), empow-

ered by ML algorithms and trained by massive biomedical

images, can provide a promising solution to help physi-

cians establish a diagnosis (14). Developments in recent

years have led CAD to outperform empirical predictions re-
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garding both efficiency and accuracy for diagnosis of can-

cer (15).

Moreover, previous studies have applied the support

vector machine (SVM) algorithm for RCC diagnosis and

clearly distinguished RCC from AML (16, 17). However, the

relatively few features drawn from CT images in these stud-

ies may prevent the application of these models in a more

complicated scenario. Also, benchmarking at baseline be-

tween different algorithms is required for selecting the

most suitable algorithm for RCC CAD, as generalization to

real-world scenarios is rarely discussed in a specific cohort

in these studies.

2. Objectives

The present study aimed to evaluate the performance

of different supervised ML algorithms to diagnose RCC

based on CT examinations.

3. Patients and Methods

3.1. Patients

This retrospective study was approved by the institu-

tional ethics review board of Hunan Cancer Hospital, Hu-

nan, China (No.: 2008-3). A total of 69 patients were in-

cluded in this study as they met the following inclusion

criteria: (1) pathological confirmation of RCC or AML; (2)

diagnosis in the last five years; and (3) undergoing a three-

phase CT scan before any treatment or surgery. All patients

were randomly divided into two datasets, that is, training

and testing sets.

3.2. CT Image Acquisition

The CT images were acquired using a SOMATOM Def-

inition AS VA48A scanner (Siemens, Germany) at the de-

partment of diagnostic radiology of Hunan Cancer Hos-

pital. The CT scanning protocol was applied for all 69

patients. Accordingly, 85 mL of nonionic contrast agent

(Omnipaque 350, GE Healthcare, USA) was administered

at a rate of 3 mL/s. The CT scan protocol included three

phases: Unenhanced phase (UP), corticomedullary phase

(CMP, with a 25-sec delay after contrast injection), and

nephrographic phase (NP, with a 50-sec delay after contrast

injection). In the diagnostic process, no pathophysiologi-

cal condition requiring an adjustment based on the proto-

col was found.

3.3. CT Image Texture Extraction

The E3D software (e3d-med.com) was used for marking

the region of interest (ROI) (18). The ROI was contoured

by experienced physicians at our hospital. The texture fea-

tures of ROI were then extracted, digitalized, and quan-

tified in MaZda software according to its manual (19-21).

Briefly, 352 features were drawn from seven categories (Ap-

pendix 1), which were as follows: Autoregressive model

(AR model, including coefficients of neighboring pixels,

reflecting coarse-to-fine stratification), geometric parame-

ters (GP, including the characteristics of ROI, such as loca-

tion, orientation, size, and geometric and topological de-

scriptors), gradient model (GM, a direction which changes

in the grayscale intensity, representing the image intensity

distribution), gray-level co-occurrence matrix (GLCM, com-

puted from the intensities of pairs of pixels, describing

homogeneity), gray-level run-length matrix (GLRLM, calcu-

lated in four directions, that is, horizontal, vertical, 45°,

and 135° angles, indicating image coarseness), the Haar

wavelet (HW, spatial frequencies at multiple scales, iden-

tifying coarseness), and grayscale histogram (GH, includ-

ing characteristics reflecting image uniformity). All fea-

tures were normalized by the 3-sigma method. Next, the

weight of each feature was evaluated by the minimum

redundancy-maximum relevance (mRMR) algorithm (22),

and the top 10 weight features were selected to train and

test the diagnostic ML models (Figure 1).

3.4. Diagnostic ML Models

The training and testing of ML models were performed

in Python 3.7, using the Scikit-learn package (23). The

following supervised ML algorithms were used with de-

fault parameters: AdaBoost classifier, CatBoost classifier,

decision tree classifier, extra-trees classifier, extreme gra-

dient boosting, Gaussian process classifier, gradient boost-

ing classifier, k-nearest neighbor classifier, linear discrim-

inant analysis, logistic regression, multi-level perceptron

(MLP) classifier, naive Bayes classifier, quadratic discrimi-

nant analysis, random forest classifier, ridge classifier, and

SVM (linear kernel). All models were run under default pa-

rameters (Appendix 2), with a prediction value ≤ 0.5 indi-

cating a benign tumor and > 0.5 indicating RCC. Besides,

the performance of the models was evaluated by the re-

ceiver operating characteristic (ROC) curve. The accuracy

of diagnosis (ACC), sensitivity, and specificity were calcu-

lated as follows (24):

(1)Accuracy =
TP + TN

TP + TN + FP + FN
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Figure 1. The experimental design and workflow of the study

(2)Sensitivity (true positive rate) =
TP

(TP + FN)

(3)Specificity =
TN

TN + FP

where TP represents a true positive, TN represents a

true negative, FP represents a false positive, and FN repre-

sents a false negative.

4. Results

The age of the patients is presented in Table 1. There was

no significant difference in terms of sex or age between the

two groups. A total of 5,360 CT images were obtained from

69 patients. The samples were further divided into a train-

ing dataset (28 RCC and 20 AML cases; 3,653 CT images) and

a testing dataset (12 RCC and 9 AML cases; 1,707 CT images)

(Table 1).

The workflow and strategies applied in this study are

presented in Figure 1. Briefly, the CT images were digitized

in the E3D software, and the ROI was marked manually. A

total of 352 radionics features were extracted in seven cat-

egories (Table 2). The weight of each feature was evaluated

by the mRMR algorithm (22), and the top 10 features (Fig-

ure 2) were selected for the training and testing diagnos-

tic models using 16 supervised ML algorithms. The mod-

els were established by the training dataset and validated

Table 1. The Characteristics and Groups of Patients

Items AML (N = 29) RCC (N = 40) P-value

Age (y, mean ± SD) 51.8 ± 9.06 49.2 ± 10.6 0.277 a

Sex (male/female) 7/22 18/22 0.127 b

Training set (N & i. No.) 20 & 1,565 28 & 2,088

Testing set (N & i. No.) 9 & 690 12 & 1,017

Abbreviations: AML, angiomyolipoma; RCC, renal cell carcinoma; SD, standard
deviation; N, patient number; i.no, CT image number.
a P-value on t-test.
b P-value on chi-square test.

by the testing dataset. The performance of the models was

mainly evaluated by the ROC curve, area under the ROC

curve (AUC), and ACC.

For the training group, all established models, except

for the MLP classifier, showed promising performance (Fig-

ure 3A). Nonetheless, overfitting was observed, as the AUCs

of some models were close to one (Figure 3A). In the test-

ing group, as expected, the models generally had lower

AUCs (Figure 3B). However, models built by the AdaBoost

classifier, CatBoost classifier, gradient boosting classifier,

k-nearest neighbor classifier, linear discriminant analysis,

logistic regression, ridge classifier, and SVM (linear kernel)

exhibited discriminating potentials for the testing dataset,

with AUC of ≥ 0.75 and ACC of ≥ 0.70 (Figure 4A and B).

In contrast, three models in the testing group, includ-
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Table 2. Extracted Features for Machine Learning (ML)

Feature type Number of features extracted Number of selected features Top 10 features Feature weight

Geometric parameters 73 1 GeoY 0.0868

Histogram 9 2
Variance 0.1188

Kurtosis 0.0143

Gray-level concurrence matrix 220 3

S(1,0) SumVarnc 0.0158

S(0,4) Correlat 0.0177

S(4,4) AngScMom 0.0254

Gray-level run-length matrix 20 0 - -

Gradient model 5 0 - -

Autoregressive model 5 0 - -

Haar wavelet 20 4

WavEnLL_s-1 0.0156

WavEnHH_s-3 0.0153

WavEnHH_s-4 0.0245

WavEnLH_s-5 0.0132

Figure 2. Top 10 features for the training and testing diagnostic models. The weight of each feature is calculated by the mRMR algorithm; the top 10 features are selected by
weight.
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Dai T et al.

Figure 3. The receiver operating characteristic (ROC) curves of the training (A) and testing (B) diagnostic models for the diagnosis of renal cell carcinoma (RCC).

Figure 4. Performance of the tested diagnostic models: A, Area under ROC (AUC); B, Accuracy of diagnosis (ACC); C, Sensitivity; and D, Specificity.

ing the decision tree classifier, Gaussian process classifier,

and MLP classifier, had AUCs below 0.6 (Figures 3A and 4A),

suggesting a poor discrimination power. The SVM model

showed the most promising result. Since the AUC values

were similar for the tests of training and testing datasets

(0.73 and 0.79, respectively), the model had good stabil-

ity. The ACC of the SVM model (linear kernel) was also

the highest in the test (Figure 4). The specificity of the

tested models was majorly higher than their sensitivity,

and some algorithms with high AUCs had a low ACC (Fig-

ure 4); therefore, better performances could be achieved

with fine-tuning parameters.

5. Discussion

In this study, 16 algorithms were compared for dis-

criminating RCC from AML. After quantification in MaZda

software, 3-sigma normalization, and weight measure-

ment using the mRMR algorithm, the top 10 weight fea-

tures were fed into all the models with default parame-
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ters. Unlike deep learning algorithms, these algorithms

showed high explainability, as the main features were

clearly defined and carefully selected based on the rank-

ing of weights. Some of the algorithms showed reason-

able results based on the AUC of ROC, specificity, and sensi-

tivity analyses. Among all tested algorithms, the SVM (lin-

ear kernel) model and AdaBoost classifier yielded the most

promising results for the further development of RCC CAD

systems.

The SVM algorithm is one of the most common algo-

rithms in CAD development (25, 26). The high prevalence

of SVM in our study is consistent with previous research,

which found the SVM algorithm to be sensitive for RCC di-

agnosis (16, 17). In these studies, the AUC of SVM algorithm

ranged from 0.8 to 0.9. However, no testing dataset was ap-

plied in their models to evaluate overfitting. The present

study improved the credibility of SVM algorithm by bench-

marking multiple models and applied a carefully designed

dataset with properly divided training/testing sets. The Ad-

aBoost classifier had the highest AUC in the testing dataset

(Figure 4A). Previous studies have also reported the high

AUC of AdaBoost classifier and its potential application in

medical imaging processing, particularly in CT imaging

(27, 28). However, in the current study, its ACC was only

0.74 due to significant discrepancy between sensitivity and

specificity (Figure 4B - D). Therefore, for the AdaBoost clas-

sifier, the default threshold setting could not achieve the

finest resolution, and more adjustments were required.

Research also suggests that the AdaBoost algorithm is sen-

sitive to noise signals, but is less likely to be overfitting;

therefore, it is widely tested in ML diagnostic studies (29-

31).

Although the results of 16 supervised ML algorithms

were different in the present study, each algorithm had its

own merits and limitations. The results were greatly influ-

enced by factors, such as data quality, data size, context,

feature selection, and manual processing. Therefore, to es-

tablish a CAD system that can function in the real world,

it is important to compare and examine different strate-

gies repeatedly. Meanwhile, classification of training and

testing datasets can greatly affect the results. In the cur-

rent study, to mimic real-world diagnostics using limited

resources, the training and testing sets were divided by pa-

tients; therefore, when evaluating the models, the interfer-

ence of patient-specific factors could be minimized. In our

parallel experiment, the training and testing sets were di-

vided by images, which resulted in strong overfitting for

many algorithms (Appendix 3). Also, due to the limited

number of patients, the characteristics of RCC against AML

were not fully recognized by the algorithms. Besides, the

relatively small number of patients might have caused bias

during model establishment (32).

To reduce the complexity of comparisons, all models

in this study were run under a default setting at a cutoff

point of 0.5 (0: AML, 1: RCC). Since the present study aimed

to perform ML algorithm benchmarking for the diagnosis

of RCC, a cutoff point of 0.5 was considered, without any

probability threshold optimization. Besides, it should be

noted that supervised ML algorithms are original with de-

fault parameters, and not all optimization strategies can

be considered suitable for the model framework to im-

prove performance. This idea was based on the intuitive

concept that the models should be consistently improving

in terms of performance. It also suggests the need for fur-

ther optimization of the current models (e.g., increasing

the number of patients, diversifying the source of images,

and running models under optimized settings and cutoff

points).

Beyond the supervised ML algorithm used in this study,

unsupervised ML and deep learning algorithms are be-

ing increasingly applied in CAD development to reduce re-

liance on manual annotation and provide unknown de-

tails from radionics (13). The simple experimental design

of the current study aimed to provide a baseline bench-

marking of 16 algorithms to further indicate the potential

application of ML algorithms in CAD systems with highly

explainable feature extraction and a rather simple param-

eter design.

In conclusion, diagnostic classifiers based on ML algo-

rithms for big data were potentially valuable tools for the

accurate diagnosis of RCC. The present study suggested

candidate algorithms that might show the best perfor-

mance.

Supplementary Material

Supplementary material(s) is available here [To read

supplementary materials, please refer to the journal web-

site and open PDF/HTML].
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E, Rudnicki M, Stempczyńska J, editors. Computers in Medical Activity,

Advances in Intelligent and Soft Computing. Berlin, Germany: Springer;

2009. p. 73–84.

20. Strzelecki M, Szczypinski P. MaZda User’s Manual. Lodz, Poland: In-

stitute of Electronics Lodz University of Technology; 1998, [cited

2022]. Available from: http://www.eletel.p.lodz.pl/mazda/download/
mazda_manual.pdf .
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