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Abstract

Background: Mammography is the most reliable and popular method in the clinical diagnosis of breast cancer. Calcifications are
subtle lesions in mammograms that can be cancerous and difficult to detect for radiologists. Computer-aided detection (CAD) can
help radiologists identify malignant lesions.
Objectives: This study aimed to propose a deep learning based CAD system for detecting calcifications in mammograms.
Patients and Methods: A total of 815 in-house mammograms were collected from 204 women undergoing screening mammogra-
phy. Calcifications in the mammograms were annotated by specialists. Each mammogram was divided into patches of fixed size,
and then, patches containing calcifications were extracted, along with the same number of normal patches. A ResNet-50 Convolu-
tional Neural Network (CNN) was trained for classification of patches into normal and calcification groups using training data and
then the performance of the trained CNN was tested with new test data.
Results: The proposed patch learning approach (PLA) showed a classification accuracy of 96.7% in the binary classification of
patches. Therefore, it could detect calcification regions in a given mammogram. The PLA achieved sensitivity and specificity of
96.7% and 96.7%, respectively, with an area under the curve of 98.8%.
Conclusion: The present results highlighted the efficacy of the proposed PLA, especially for limited training data. Direct comparison
with previous studies is not possible due to differences in datasets. Nevertheless, the PLA accuracy in detecting calcifications was
higher than that of deep learning based CAD systems in previous studies. The effective performance of PLA may be attributed to the
manual removal of uninformative patches, as they were not used in the training set.
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1. Background

Breast cancer is the most common cancer and the sec-

ond leading cause of death among women (1). Mammog-

raphy is the primary method for examining changes in the

breast tissue (2). It is recognized as the most common diag-

nostic method for detecting breast cancer in an early stage

(3). Reduction of false positive results in cancer detection is

important in therapeutic processes (4), as they can impose

significant burdens on patients, including high cost, waste

of time, and psychological stress (5). In developing and de-

veloped countries, the accuracy of detecting cancerous le-

sions is less than 50% and above 80%, respectively (6). This

difference is partially due to the use of computer-aided de-

tection (CAD) systems in developed countries.

With the advancement of medical equipment tech-

nologies, various approaches have been proposed for

mammographic CAD systems (7). Since 2000, advances in

diagnostic digital mammography have increased the ac-

curacy of breast cancer detection and reduced the associ-

ated deaths (8). However, detection of suspected abnor-

malities is a difficult task, even for experienced radiolo-

gists. The small size of a lesion compared to the large size of

a mammogram is an important dichotomy in image pro-

cessing techniques for cancer detection (9). The reason for

the large size of X-ray mammograms is the need for detec-

tion of very small calcification particles (10). Overall, iden-

tifying calcifications in mammograms is a subtle and time-

consuming task, which causes eye strain and reduces the

detection accuracy, resulting in the radiologists’ error over

time (11).

To reduce human errors, today, mammography CAD

technologies are employed by radiologists to find sus-

pected lesions. CAD systems can improve the rate of breast
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Figure 1. The conceptual workflow of a region-based convolutional neural network (CNN) for computer-aided detection (CAD). A, Input mammogram; B, CNN core for object
detection; C, Output mammogram with the marked region of a lesion.

cancer diagnosis up to 20% (12). These systems often em-

ploy common deep learning-based region detection algo-

rithms, including convolutional neural network (CNN)-

based models, namely, region-based convolutional neural

network (R CNN), Fast-R-CNN, Faster-R-CNN (12), and You

Only Look Once (YOLO) algorithm (13). Figure 1 illustrates

the conceptual workflow of region detection models, in

which mammograms are fed into the network as input,

and a box surrounding the lesion is marked at the output.

Common CNN structures, such as ResNet (14), VGG (15),

and GoogleNet (16), which have been trained for object

recognition on the ImageNet (17) database, are used in

these region detection algorithms. The input size of these

CNN structures is 224 × 224 pixels, whereas the size of X-

ray mammograms is 2,560 × 3,328 (170 times larger than

the CNN input size). Therefore, data preparation needs to

be performed by downsampling to reduce the image di-

mensions. This resizing, however, results in the loss of in-

formative pixels. However, empirically, only small patches

in a mammogram contain lesions, and mammogram resiz-

ing blurs or eliminates them. An illustration of the nega-

tive impact of mammogram resizing on the CNN input is

shown in Figure 2. To avoid this problem, this study pro-

posed a novel alternative approach for detecting microcal-

cifications in mammograms.

2. Objectives

This study aimed to propose a CAD system for auto-

mated calcification detection in mammograms by train-

ing a model with an in-house dataset.

3. Patients and Methods

3.1. Dataset

A total of 815 mammograms were collected from 204

women (age: 51.43 ± 10.61 years), who were referred to

Dr. Gity Imaging Center and Imam Khomeini Hospital

Mammography Center during 2019 - 2020 (some partici-

pants were referred to these centers more than once). The

left and right craniocaudal (CC) and mediolateral oblique

(MLO) views were considered as separate images. Some

women visited the centers more than once for screening,

and for some women, only one breast or one view was

collected. The mammography device was the Selenia Di-

mensions Mammography System (Hologic Inc., USA). This

study was approved by the ethics board of Shahid Beheshti

University of Medical Sciences, Tehran, Iran. Calcifications

were annotated in the mammograms by specialists. The

mammograms included CC and MLO views.

3.2. Patch Learning

In this study, each mammogram was divided into non-

overlapping, fixed-size patches, which were used as the in-

put to a CNN. By using this approach, the resolution of the
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Figure 2. Mammogram resizing of convolutional neural network (CNN) input. A, Original mammogram with a size of 2560× 3328; B, Resized mammogram with a size of 224
× 224; C, A magnified display of the resized image, showing blurred and destroyed calcification patterns.

lesion image was not deteriorated, thereby enhancing the

detection accuracy. For each patch, the ground truth la-

bel was determined based on the annotations by an expe-

rienced radiologist. If a patch overlapped an annotated re-

gion, it was labelled as a calcification; otherwise, it was la-

belled as normal. Besides, training a CNN with patches as

the input has the advantage of enlarging the training set,

which improves the model training, especially consider-

ing the scarcity of mammogram datasets. We refer to the

proposed approach as the patch learning approach (PLA).

However, classification of malignant versus benign lesions

is not within the scope of this study.

The proposed method aimed to detect and localize cal-

cifications to help radiologists identify suspicious lesions.

First, all images were divided into 224 × 224 patches. Sub-

sequently, all patches containing calcifications were ex-

tracted from all mammograms, where 536 patches were

obtained. It should be noted that if a calcification re-

gion spanned two or more adjacent patches, each of the

adjacent patches was labelled as a calcification. Normal

patches were extracted from all mammograms, which ei-

ther contained or did not contain calcifications in other

patches. Since the total number of normal patches was

much higher than that of calcification patches, to achieve

class size balance, a total of 536 normal patches were ran-

domly selected from all available normal patches, and the

rest of normal patches were discarded. It should be noted

that an imbalance in the class size of the training set leads

to classifier bias, which may degrade classification perfor-

mance. Moreover, in this study, we used balanced class

sizes in the test set to obtain significant performance re-

sults.

To construct the training and test sets, 100 patches,

which were randomly selected from normal and calcifica-

tion classes (a total of 200), were considered as the test

set, while the rest of them (436 mammograms from each

class) were used as the training set. The ground truth la-

bels (based on the radiologist’s annotation) were used to

train the CNN with the training set. On the test data, the

CNN performed a binary classification to classify patches

into normal and calcification groups. The classification ac-

curacy was determined by comparing the CNN output with

the ground truth labels.

An annotated calcification in a mammogram is shown

in Figure 3A, and a magnified image of the marked patch

is displayed in Figure 3B. As shown in Figure 3, calcifica-

tion patches often occupy less than 2% of the mammo-

gram size; therefore, the standard procedure for resizing

mammograms (reduction of image size by downsampling

reduces the image resolution and results in information

loss) blurs calcification spots and must be avoided.
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Figure 3. A, A calcification patch annotated in a mammogram; and B, A magnified lesion patch.

3.3. CNN Structure

A ResNet50 model was used for the binary classifica-

tion of patches with a size of 224× 224 pixels. This model is

a modern CNN, which has been trained on millions of im-

ages and achieved excellent performance in object recog-

nition (14). Accordingly, in this study, it was selected as our

pretrained network. The ResNet50 model was fine tuned

with our mammogram patches by freezing the first 100 lay-

ers. The Adam optimization method, with a 0.0001 learn-

ing rate, was selected with a binary cross entropy loss func-

tion. A batch size of 32 with 120 epochs was used for train-

ing the CNN. Computation was conducted using a Tensor-

Flow2 platform on a computer with Nvidia’ GeForce GTX

1080 GPU. The workflow of the proposed method for de-

tecting calcifications in a new mammogram is presented

in Figure 4.

4. Results

The plots of training and validation accuracy and loss

during CNN training are shown in Figure 5 (5% of the train-

ing set was selected as the validation set). The close lines

in the plots of training and validation indicate the CNN

training efficacy. Our proposed PLA achieved an accuracy

of 96.7% for the binary classification of 200 test patches.

The sensitivity and specificity of PLA were 96.7% and 96.7%,

respectively.

The receiver operating characteristic (ROC) curve is

plotted in Figure 6, where the operating point is shown

with a red dot. The area under the ROC curve (AUC) was

98.8, indicating the effective classification of the model.

Generally, the operating point is selected depending on

the preference, as there is a trade off between sensitivity

and specificity; in other words, sensitivity can be increased

at the expense of specificity, and vice versa. In this study,

an operating point that maximized the classification ac-

curacy was selected. This point was found as the intersec-

tion of the ROC curve with a line with a slope of 1 (balanced

classes) and maximum y-intercept. Figure 7 indicates the

performance of PLA on two representative test mammo-

grams from the digital database for screening mammogra-

phy (DDSM) dataset and our in house dataset, respectively.

By dividing the test set into three age ranges, including

31 - 45 years, 46 - 60 years, and 61 - 75 years, the model perfor-

mance was calculated for each age range, as listed in Table 1.

Based on the results, performance was approximately 97%

and similar for all age groups.

5. Discussion

Daily reading of numerous mammograms, the major-

ity of which are often normal, is a tedious task and may

cause fatigue in radiologists, which in turn increases the

risk of missing abnormalities. Therefore, there is a great

4 Iran J Radiol. 2022; 19(1):e120758.



Shiri Kahnouei M et al.

Figure 4. The mammogram is first divided into patches with a size of 224 × 224 pixels. Next, each patch is separately fed into the convolutional neural network (CNN) for
classification. The CNN classifies each patch into either normal or calcification. Finally, patches classified as calcification are marked.
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Figure 5. The accuracy and loss plots during training for the training and validation sets.
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Table 1. The Classification Accuracy of the Model for Each Age Group (Along with the Number of Patches of Test Data in Each Group)

Age group (y) Population Classification accuracy

31 - 45 58 96.4

46 - 60 79 96.6

61 - 75 63 97.3
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Figure 6. The receiver operating characteristic (ROC) curve for the convolutional
neural network (CNN) classification of normal and calcification patches across 200
test patches. The operating point is shown with a red dot.

demand for automated detection and localization of sus-

picious lesions, as it can avoid missing these lesions. This

study proposed a method for automated detection; how-

ever, determining the malignancy of lesions is outside the

scope of this study. In our future study, we will investigate a

fully automated diagnosis system for determining the ma-

lignancy of detected lesions.

Recently, deep learning has been applied in medical

imaging studies, such as mammography (18). Before the in-

troduction of deep learning, other types of machine learn-

ing (ML) methods (19) were common for detecting lesions

in mammograms. These ML methods require feature en-

gineering, which is difficult and time consuming. Fea-

ture engineering refers to the process of designing and

extracting relevant and useful representations from raw

data. These features need to be designed by human experts.

Previous studies on ML-based detection of lesions in mam-

mograms have used features, such as wavelet (20), curvelet

(20), Fourier transform (21), and edge gradient analysis

(22). These features have been also used as the input to a

classifier to detect or classify lesions (23). However, because

it is difficult to find perfect features, the performance of ML

methods is often inferior to that of deep learning methods.

In deep learning, the network automatically learns useful

features so that there is no need for feature engineering.

Therefore, deep learning methods can be applied directly

in mammograms without any preprocessing.

The CNNs are the most commonly used deep learning

frameworks in mammography CAD systems, which have

shown promising performance in detecting cancerous le-

sions. However, large datasets are needed to train CNNs,

and formation of large specialist annotated mammogram

datasets is expensive and time consuming. Suspected le-

sions in mammograms often occupy less than 2% of im-

age pixels. Therefore, the bulk of a mammogram does not

contain useful information for training a deep learning

model. In previous studies, such as a study by Agarwal et

al. (24), the whole image was fed into CNN models, which

increased the training time substantially, while most of

the data was not informative. As a solution, the proposed

PLA divides the image into fixed-size patches, and only sus-

pected patches, along with the same number of normal

patches, were fed into the CNN for training. This strategy

substantially reduced the training time, as only informa-

tive patches, which comprise a small percentage of each

mammogram, were used for training the CNN.

The proposed PLA also has the advantage of being

adaptable to various sizes of mammograms, as it operates

on fixed-size patches of images. This allows the PLA to be

trained with one dataset and tested by another with a dif-

ferent mammogram size. Table 2 lists the performance

(AUC) of deep learning-based CAD systems for detecting

calcifications in previous studies compared to our pro-

posed PLA; the models and datasets used in these studies

are also demonstrated. Our method outperformed these

previous approaches; however, it should be noted that a

direct comparison is not possible due to differences in

datasets. The higher performance of our system may be at-

tributed to the patch learning algorithm.

In conclusion, the results of this study highlighted the

efficacy of our PLA. Future studies are suggested to focus on

the application of this approach for detecting both masses

and calcifications in mammograms.

6 Iran J Radiol. 2022; 19(1):e120758.
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Figure 7. The performance of the patch learning approach (PLA) on two representative test mammograms from the digital database for screening mammography (DDSM)
dataset (first row) and our in house dataset (second row). The middle column shows the annotations by specialists, and the third column shows the marked patches by the
proposed computer-aided detection (CAD) system.

Table 2. Comparison of Deep Learning-Based Mammography Studies

Studies Databases AUC

Agnes et al. (25) Mini-MIAS 96%

Shen et al. (26) CBIS-DDSM 91%

Wang et al. (27) DDSM, INbreast , and MIAS 88%

Herent et al. (28) MIAS, INbreast, and Journees Francophones de Radiologie 81%

Our proposed PLA In-house dataset and CBIS-DDSM 98%

Abbreviations: AUC, area under the ROC curve; Mini-MIAS, Mini-Mammographic Image Analysis Society; CBIS-DDSM, curated breast imaging subset of the digital database
for screening mammography; INbreast, full-field digital mammographic database; MIAS, Mammographic Image Analysis Society.
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