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Abstract

Background: Brain segmentation from diffusion tensor imaging (DTI) into white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF) with acceptable results is subjected to many factors.
Objectives: The most important issue in brain segmentation from DTI images is the selection of suitable scalar indices that best
describe the required tissue in the images. Specifying suitable clustering method and suitable number of clusters of the selected
method are other factors which affects the segmentation process significantly.
Materials andMethods: The segmentation process is evaluated using four different clustering methods with different number of
clusters where some DTI scalar indices for 10 human brains are processed.
Results: The aim was to produce results with less segmentation error and a lower computational cost while attempting to mini-
mizing boundary overlapping and minimizing the effect of artifacts due to macroscale scanning.
Conclusion: The volume ratios of the best produced outputs with respect to the total brain size are 16.7% ± 3.53% for CSF, 35.05% ±
1.13% for WM, and 48.2% ± 2.88% for GM.
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1. Background

The segmentation of medical images of the brain has
an important impact in modeling and diagnosing the
brain’s structure and function. However, the segmentation
process still cannot be accomplished in an automatic man-
ner; therefore, simple segmentation methods, such as the
threshold method, are still used in a large scope and ex-
perts enhance the produced results manually. The selec-
tion of suitable threshold value to separate gray matter
(GM) (that constitutes almost 50% of whole brain compo-
nents (1-3)), white matter (WM) (that constitutes almost 37%
of whole brain components (1-3)), and cerebrospinal fluid
(CSF) (that constitutes almost 13% of whole brain compo-
nents (1-3)) is also another question of whether many val-
ues are suggested even within the same medical imaging
modality (4-7).

1.1. Diffusion Tensor Imaging (DTI)

Live tissue in any part of the body is assumed to be
almost uniform (8), which is reflected in medical images
such as magnetic resonance imaging (MRI) (9) and com-
puted tomography scan (CT-scan) (10) as areas of almost

the same greyscale. Other modalities such as diffusion ten-
sor imaging (DTI) (11) can produce more data that describe
tissues’ fiber structure in terms of eigenvalues and eigen-
vectors (11-16). More details about DTI can be found in the
appendix.

1.2. Rotational Invariant Quantities

The direction of the fibers varies from one location
to another location; thus, rotational invariant quanti-
ties (called also scalar indices) are required to describe
the diffusion of each element in the sample (scalar in-
dices are presented as following formulas). Many meth-
ods are derived to provide the rotational invariant quan-
tities of diffusion, which include mean diffusivity, ratio-
nal anisotropy, fractional anisotropy, skewness, linear-
anisotropy, planner-anisotropy, and isotropy (11-15). By
processing DTI data using rotational invariant quantities,
more meaningful images can be produced to help in dis-
tinguishing between different tissues referring to their
structure (Figure 1).

Mean diffusivity (MD):

(1)MD =
1
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Fractional anisotropy (FA):
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Rational anisotropy (RA):
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Linear anisotropy (CL):

(4)CL =
λ1 − λ2∑3

i=1λi

Planner anisotropy (CP):

(5)CP =
2(λ2 − λ3)∑3

i=1λi

Spherical anisotropy (CS):

(6)CS =
3λ3∑3
i=1λi

Diffusion volume (DV):

(7)DV =
∏3

i=1
λi

The diffusion volume (DV) scalar index (17, 18) reflects
the relative amount of water in tissues, referring to the
working methodology of the MRI scanner that depends on
the spinning property of water molecules in tissue (11, 19,
20). Regions with large amounts of water, such as blood
and CSF, thus have large values and regions with small
amounts of water, such as fats, muscles, WM, and GM, have
lower values (2, 3, 16, 18, 20).

1.3. Segmentation Problems

In general, according to the resolution limitation of
the scanner, it is only possible to generate macroscale im-
ages such that the unit area in an image will represent the
average property of the corresponding group of tissues at
that zone (11, 13). The limitation of the macroscale will lead
to a problem in the boundary that separates two different
types of tissues in the image; during the segmentation pro-
cess, it would be difficult to assume whether a point at that
boundary belongs to the first tissue or to the other tissue,
or whether there is a boundary overlapping problem. The
noise produced from artifacts is another problem in medi-
cal imaging that affects the segmentation process for areas
of the same type of tissue (16, 21, 22)

1.4. Image Segmentation Methods

In general, the segmentation of the brain structure
from MRI, diffusion weighted imaging (DWI), and DTI has
been accomplished using the boundary-based methods
and the hybrid methods, particularly the level-set method
or using labeling (23); however, region-based methods are
more widely used in medical image segmentation (13, 18,
21, 22, 24-28)

Region-based methods rely on clustering algorithms
such as Otsu’s (29), K-means (30), expectation maximiza-
tion (EM) (31), C-means (32), and the simple manual thresh-
old method. The Markov random field (MRF) and its mod-
els, such as iterated conditional modes (ICM), are widely
used in region-based image segmentation processes (21, 22,
27, 28). It should be taken into consideration that there is
no unique solution for the segmentation problem (21, 22,
28) whereby changing the number of clusters leads to dif-
ferent results.

2. Objectives

This paper is a comparative study of different cluster-
ing techniques applied on some DTI scalar indices that can
be used in the segmentation of the brain’s DTI images.
Here, problems of suitable scalar index selection, suitable
clustering algorithms, and the suitable number of clus-
ters are addressed by taking into consideration minimiz-
ing boundary overlapping and minimizing the effect of ar-
tifacts during the segmentation process.

3. Materials andMethods

3.1. Data Acquisition and Preprocessing

Datasets of 10 healthy human brains were acquired
from John Hopkins medical institute. These datasets con-
sist of volumes of brain DTI data. Each brain DTI volume
contains 50 slices of 256×256 voxels per slice. Each dataset
has a file consisting of 35 gradient orientations used to
calculate tensor data (eigenvalues and eigenvectors). (The
voxel width = 0.9375 mm, the voxel height =0.9375 mm,
and the space between two successive slices = 2.5 mm in ev-
ery slice).

DTI-Studio (a special utility that manages raw DTI data)
was used to calculate the three eigenvalues and their corre-
sponding three eigenvectors for every voxel in addition to
some of the scalar indices. Before performing the segmen-
tation process; the scalp, skull, skin, and other noisy mate-
rials surrounding the brain tissues were removed (this is
the only manual operation in the segmentation process).
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3.2. Parameters and Data Selection

A clear understanding of the detailed structure of the
brain components in addition to the working principal of
the DTI scanner will lead to better selection of the suit-
able scalar index that best describes the targeted tissue ac-
cording to its biological characteristics (2, 3). From these
characteristics, it is concluded that CSF contains the largest
amount of water and WM and GM contain the least. More-
over, the arrangement of the contained water for each of
these components differs, as the water content of CSF is
completely free (isotropic), but that of WM is arranged in
axon cells (very restricted or highly anisotropic). The ar-
rangement of the water content of GM is not as sharply re-
stricted as WM and not as free as CSF. Thus, it is possible to
employ the eigenvalues, the MD or the DV in the classifica-
tion of the CSF and non-CSF regions, and rational quanti-
ties such as the FA, the RA, or the VR, could be employed to
differentiate between the WM and non-WM regions.

It was reported that the eigenvalues of CSF diffusion are
more than double the GM and WM values (4) and a thresh-
old in the MD map that is greater than 1.05 × 10-3 mm2/s
will separate the CSF and non-CSF components (5). How-
ever, a threshold in the normalized FA map that is greater
than 0.25 (if the CSF is not removed and greater than 0.35 if
the CSF has been removed) would be sufficient to separate
the WM and non-WM components (6, 7) where it is proven
to provide a good estimation of different tissues structures
(14). This baseline information could be used as reference
to identify the quality of the produced results later on.

Region-based segmentation methods are widely used
in medical imaging segmentation, which makes them the
preferred choice for this task. However, the selection of the
best clustering algorithm with a suitable number of clus-
ters is another issue that is addressed in this paper in which
accurate results, lower computational costs, and the guar-
antee of artifact reduction are taken into consideration.

3.3. CSF/Non-CSF Tissue Segmentation

To analyze the data on the 10 brains included in this
study, the MD and the DV scalar indices were used to gener-
ate MD and DV images, respectively. These images are nor-
malized greyscale images (Figure 2).

Referring to the biological and physiological data of
brain components and the working methodology of the
MRI scanner, lighter regions in these images correspond to
regions with more water, and this represents CSF. However,
darker regions correspond to regions with less water than
lighter ones, representing WM and GM (non-CSF).

Four clustering methods are applied to the MD and
DV images with different numbers of clusters: Otsu’s, K-
means, EM, and ICM methods (using MATLAB tool box (15)).

When Otsu’s method is being applied to MD images and
the number of clusters is set to two, then it is written as
Otsu2-MD and so on for other settings.

For the MD images (Figure 3), when two clusters are
used, the produced clustering maps are significantly un-
readable (Figure 3 A - D) because the non-CSF tissues’ in-
tensities are closer to the CSF regions’ intensities. In this
case, it would be better to use three (Figure 3 E - H) or four
clusters (Figure 3I - L) to produce more readable clustering
maps.

However, for the DV images (Figure 4), when two clus-
ters are used, the produced clustering maps are quite read-
able (Figure 4A - D) because the non-CSF tissues’ intensities
are closer to the background color; even when increasing
the number of clusters to three (Figure 4E - H) or four clus-
ters (Figure 4 E - H), slight changes are produced.

Regions with a lighter color (white) within MD-based
clustering maps correspond to regions that are most likely
to be considered CSF regions. It should be noted that there
is a significant reduction in these white regions with an
increasing number of clusters, which reflects the signifi-
cant effect of the number of clusters on MD-based cluster-
ing maps.

This is not the case for DV-based clustering maps, in
which all of the non-black colors of DV images represent re-
gions that are the most likely to be considered CSF regions.
With an increasing number of clusters, the change in non-
black regions (occupying more points from the boundary
between the CSF and non-CSF regions) is relatively small,
which makes DV-based clustering maps less sensitive to
the change in the number of clusters.

The best methods for the segmentation of CSF/non-CSF
tissues that achieve the closest ratios to real measurements
are as follows: Otsu3-MD, K-means3-MD, K-means7-DV, K-
means8-DV, and ICM2-DV. However, the selected method is
ICM2-DV in which the reduction of noise produced due to
artifacts is guaranteed. Further justification for these re-
sults will be provided later.

3.4. WM/Non-WM Tissue Segmentation

According to the brain structure, the remarkable fea-
ture of WM is its higher anisotropy than other parts of
the brain; the FA scalar index can be used to identify the
WM/non-WM parts of the brain. Referring to the biological
and physiological data of the brain components, lighter
regions in FA images (Figure 5A) correspond to tissues of
high anisotropy, which represents WM. However, darker
regions correspond to regions of less anisotropy than the
lighter ones; this represents GM and CSF (non-WM).

By applying the used clustering methods (Otsu, K-
means, EM, and ICM) to FA images after removing the CSF
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Figure 1. Some scalar indices of a human brain where A, Mean diffusivity; B, Fractional anisotropy; C, Rational anisotropy; D, Linear anisotropy; E, Planner anisotropy, and F,
Spherical anisotropy.

regions using the ICM2-DV method (Figure 5), the pro-
duced FA-based clustering maps (Figure 6) face the non-
unique solution of clustering problem. Regions with a
lighter color (white) within FA-based clustering maps cor-
respond to regions that are most likely to be considered
the WM regions; significant reductions in these regions in-
crease the number of clusters, except for the ICM method
in which the reduction is relatively much smaller.

The best methods for the segmentation of the WM/non-
WM tissues that achieve the closest ratios to real mea-
surements are ICM3-FA and EM3-FA. However, the selected
method is ICM3-FA for two reasons: the reduction of the
noise produced due to artifacts and the lowest relative er-
ror compared to the threshold method. Further justifica-
tion for these results will be provided later.

3.5. Brain Tissue Reconstruction

Finally, it is possible to reconstruct the brain into maps
that show brain tissues as regions with different colors
(Figure 7).

The ICM2-DV method is used to identify the CSF regions,
the ICM3-FA method is used to identify WM regions, and
the remaining parts are the GM regions. The volume ratios
of these maps are 16.7% ± 3.53% for CSF, 35.05% ± 1.13% for
WM, and 48.2% ± 2.88% for GM, and these results are close
to the ratios reported in the literature (13% for CSF, 37% for
WM and 50% for GM).
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Figure 2. Cross-section in a human brain that shows A, The mean diffusivity image that is produced from the mean diffusivity scalar index; and B, The diffusion volume image
that is produced from the diffusion volume scalar index for the same slice.

4. Results

4.1. CSF/Non-CSF Tissue Segmentation Results

By measuring the CSF ratio (that is derived from Otsu’s,
K-means, EM, and ICM methods) with respect to the to-
tal brain size as well as measuring the CSF relative error
(RE) with respect to the CSF regions of a reference model
(which are extracted from the MD images using the thresh-
old method) for different numbers of clusters (2 to 10 clus-
ters in the case of Otsu, K-means, and EM and 2 to 6 in the
case of ICM) for both the MD and the DV images (Tables 1
and 2), the variation in the CSF ratio is decreasing (because
one cluster is selected to represent the CSF and the other
cluster for the non-CSF) to zero with a relatively fast rate in
accordance to the increase in the numbers of clusters for
Otsu’s, K-means, and EM methods.

However, in the ICM method, the CSF ratio decreased
rapidly at the beginning and then decreased at a lower rate
(Figure 8).

This is not the case for DV clustering maps; as the num-
ber of clusters increase, the CSF ratio increases (because all
clusters are selected to represent CSF except one cluster for
non-CSF) at relatively low rates (Figure 9).

Referring to the calculated relative errors, the best set-
tings for the segmentation of CSF tissue that achieve the
closest CSF ratios to the reference model would be as fol-
lows: Otsu3-MD (16.84% ± 3.27%), K-means3-MD (16.77% ±
3.23%), K-means7-DV (17.43% ± 2.79%), K-means8-DV (17.95%
± 2.89%), and ICM2-DV (16.74% ± 3.53%). The selected set-
ting is ICM2-DV, which achieves a closer CSF ratio to the
measured values in the literature, the RE is relatively small,
the computational cost is relatively small, and noise reduc-
tion is guaranteed.

4.2. WM / Non-WM Tissue Segmentation Results

By measuring the produced WM ratio with respect to
the total brain size as well as measuring the WM relative
error with respect to the WM regions of a reference model
(which are extracted from FA images using the threshold
method) for different numbers of clusters (2 to 6 clusters)
for FA images (Table 3), the variation in the WM ratio de-
creases at a relatively fast rate in accordance with increas-
ing numbers of clusters for Otsu’s, K-means, and EM meth-
ods.

However, in the ICM method, the WM ratio decreased
rapidly at the beginning and then decreased more slowly
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Figure 3. Clustering maps of an mean diffusivity image using different methods. A, Otsu2-MD; B, K-means2-MD; C, EM2-MD; D, ICM2-MD; E, Otsu3-MD; F, K-means3-MD; G,
EM3-MD; H, ICM3-MD; I, Otsu4-MD; J, K-means4-MD; K, EM4-MD; L, ICM4-MD.

(Figure 10). The best setting for segmenting the WM and
non-WM tissue that achieves a closer WM ratio to the mea-
sured values in the literature as well as the minimum RE
with a noise reduction guarantee would be ICM3-FA.

5. Discussion

The segmentation of DTI images of the brain into WM,
GM, and CSF with acceptable results is subjected to many
factors. The most important issue of brain segmentation
from DTI images is the selection of suitable scalar indexes
that best describe the required tissue in the images. Speci-
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Figure 4. Clustering maps of a diffusion volume image using different methods. A, Otsu2-DV; B, K-means2-DV; C, EM2-DV; D, ICM2-DV; E, Otsu3-DV; F, K-means3-DV; G, EM3-DV;
H, ICM3-DV; I, Otsu4-DV; J, K-means4-DV; K, EM4-DV; L, ICM4-DV.

fying the suitable clustering method and the suitable num-
ber of clusters of the selected method are other factors that
significantly affect the segmentation process. The selec-
tion of the recommended segmentation setting is based
on five factors: (a) the tissue ratio with respect to the total
brain volume compared to the reference model, (b) the RE
of a tissue with respect to the reference model, (c) a guaran-

tee of artefact reduction, (d) a low computational cost, and
(e) the selection (for MD and FA images) or elimination (for
DV images) of one cluster only to support the automatic
function.

Four clustering methods, Otsu’s, K-means, EM, and
ICM, are used for CSF/non-CSF tissue segmentation using
both MD images and DV images as these images’ scalar in-
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Figure5. A, Normalized fractional anisotropy map; B, Cerebrospinal fluid clustering map (ICM2-DV clustering map); C, Normalized fractional anisotropy image after removing
cerebrospinal fluid.

Table 1. Average Cerebrospinal Fluid Ratio and Average Relative Error of Mean Diffusivity Images

# of Clusters Otsu K-Means EM ICM

CSF (%) RE (%) CSF (%) RE (%) CSF (%) RE (%) CSF (%) RE (%)

2 82.21 ± 24.28 391.61 ± 229.54 69.60 ± 29.83 327.84 ± 264.14 99.02 ± 0.06 472.50 ± 161.90 98.99 ± 0.06 472.34 ± 161.93

3 16.84 ± 3.27 7.79 ± 3.79 16.77 ± 3.23 8.13 ± 3.58 30.85 ± 3.80 76.25 ± 24.62 26.85 ± 2.81 54.49 ± 24.35

4 8.69 ± 4.00 52.48 ± 17.93 9.55 ± 2.75 48.95 ± 6.78 9.40 ± 5.44 46.19 ± 29.43 15.81 ± 3.24 48.35 ± 64.26

5 1.60 ± 3.01 91.34 ± 15.70 3.67 ± 2.22 79.92 ± 10.63 1.80 ± 0.49 89.76 ± 3.78 14.52 ± 3.68 66.75 ± 66.74

6 0.48 ± 0.78 97.28 ± 4.46 1.45 ± 0.32 91.99 ± 1.26 1.11 ± 0.11 93.72 ± 1.30 12.20 ± 2.34 41.28 ± 22.81

7 0.00 ± 0.00 100.00 ± 0.00 1.03 ± 0.12 94.24 ± 0.90 0.88 ± 0.08 95.04 ± 0.89 - -

8 0.00 ± 0.01 99.99 ± 0.03 0.82 ± 0.11 95.39 ± 0.73 0.77 ± 0.10 95.69 ± 0.67 - -

9 0.13 ± 0.28 99.29 ± 1.60 0.64 ± 0.13 96.44 ± 0.61 0.62 ± 0.08 96.52 ± 0.56 - -

10 0.00 ± 0.00 100.00 ± 0.00 0.50 ± 0.06 97.20 ± 0.49 0.50 ± 0.08 97.23 ± 0.44 - -

Abbreviations: CSF, cerebrospinal fluid; RE, relative error.

dices reflect the relative amount of water content in tis-
sues. Regions within MD-based clustering maps that are
most likely to be considered CSF regions are assumed to
occupy only one cluster in these maps (to enable the auto-
matic segmentation process); however, for DV-based clus-
tering maps, all clusters are considered CSF regions except
one cluster that represents non-CSF regions. The computa-
tional cost for the ICM method is much higher than Otsu’s,
K-means, and EM methods. However, the ICM method
would guarantee the elimination of any existing noise in
data; thus, the recommended setting for CSF segmentation
is when the ICM method is used with two clusters within
DV images to build a clustering map (ICM2-DV).

The same four clustering methods are used for
WM/non-WM tissue segmentation using FA images, as
these images’ scalar indices reflect the relative amount
of tissue anisotropy. Regions within FA-based clustering
maps that are the most likely to be considered WM regions
are assumed to occupy only one cluster in these maps,
where other clusters are considered non-WM regions.
The best setting for segmenting WM and non-WM tissues
would be ICM3-FA. The EM3-FA is the second-best method
to achieve the second smaller RE; however, this RE is larger
than ICM3-FA (about 240%), which makes ICM3-FA the best
choice.

Removing CSF regions from the FA images before ap-
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Figure 6. Clustering maps of an fractional anisotropy image using different methods. A, Otsu2-FA; B, K-Means2-FA; C, EM2-FA; D, ICM2-FA; E, Otsu3-FA; F, K-Means3-FA; G, EM3-FA;
H, ICM3-FA; I, Otsu4-FA; J, K-Means4-FA; K, EM4-FA; L, ICM4-FA.

plying the clustering algorithms did not significantly af-
fect the results. However, it reduces the opportunity of
overlapping between CSF and other non-CSF tissues, as FA
images represent rational quantities but the MD and the
DV images represent non-rational quantities. One impor-

tant factor should be taken into consideration when using
ICM with FA images: the number of iterations should be
sufficiently large (more like 30 iterations) to obtain satu-
rated clustering maps.

Finally, it is possible to separate brain components
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Figure 7. Clustering maps of the brain components at different levels with level ID in the corner (WM = White, GM = Light gray and CSF = Dark. A, level ID = 48; B, level ID = 45;
C, level ID = 42; D, level ID = 39; E, level ID = 36; F, level ID = 33; G, level ID =30; H, level ID = 27; I, level ID = 24; J, level ID = 21; K, level ID = 18; K, level ID = 15; M, level ID = 12; N, level
ID = 9; O, level ID = 6; P, level ID = 3.

with less segmentation error and a lower computational
cost by employing DV images in segmenting CSF/non-
CSF components using the ICM method with two clus-
ters (ICM2-DV) in which the foreground cluster represents
CSF regions and by employing FA images in segment-
ing WM/non-WM components using the ICM method with
three clusters (ICM3-FA) in which only one cluster repre-
sents WM regions. The removal of CSF before the WM/non-

WM segmentation process will minimize the overlap be-
tween CSF and non-CSF tissues. The volume ratios of the
produced output with respect to the total brain size are
16.7% ± 3.53% for CSF, 35.05% ± 1.13% for WM, and 48.2% ±
2.88% for GM; these results are close to the ratios reported
in the literature (1-7) (13% for CSF, 37% for WM, and 50% for
GM).
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Table 2. Average Cerebrospinal Fluid Ratio and Average Relative Error of Diffusion Volume Images

# of Clusters Otsu K-Means EM ICM

CSF (%) RE (%) CSF (%) RE (%) CSF (%) RE (%) CSF (%) RE (%)

2 8.05 ± 2.92 57.78 ± 10.45 7.62 ± 2.85 60.10 ± 10.4 24.30 ± 3.50 38.98 ± 11.35 16.74 ± 3.53 8.86 ± 2.49

3 10.78 ± 3.08 42.29 ± 7.17 10.12 ± 2.92 45.90 ± 7.05 24.30 ± 3.50 38.98 ± 11.35 18.89 ± 3.12 10.63 ± 5.46

4 14.27 ± 3.20 22.01 ± 8.73 12.87 ± 2.82 30.06 ± 4.61 26.51 ± 3.07 57.02 ± 53.88 20.80 ± 3.25 20.03 ± 8.68

5 13.17 ± 3.22 27.79 ± 13.38 15.28 ± 3.27 16.82 ± 2.99 34.32 ± 4.62 99.65 ± 49.21 22.52 ± 3.13 29.58 ± 12.13

6 13.64 ± 4.53 28.23 ± 10.19 16.18 ± 3.49 11.86 ± 3.23 34.32 ± 4.62 99.65 ± 49.21 24.22 ± 3.02 39.28 ± 15.91

7 14.11 ± 2.40 22.67 ± 8.47 17.43 ± 2.79 8.64 ± 4.39 34.32 ± 4.62 99.65 ± 49.21 - -

8 14.13 ± 2.55 22.37 ± 8.66 17.95 ± 2.89 8.02 ± 4.43 34.32 ± 4.62 99.65 ± 49.21 - -

9 14.37 ± 3.76 22.08 ± 9.54 18.68 ± 3.13 9.63 ± 5.49 34.32 ± 4.62 99.65 ± 49.21 - -

10 15.67 ± 2.60 14.39 ± 3.70 19.15 ± 3.20 11.49 ± 4.90 35.34 ± 4.11 104.24 ± 43.97 - -

Abbreviations: CSF, cerebrospinal fluid; RE, relative error.

Table 3. Average White Matter Ratio and Average Relative Error of Fractional Anisotropy Images

# of Clusters Otsu K-Means EM ICM

WM (%) RE (%) WM (%) RE (%) WM (%) RE (%) WM (%) RE (%)

2 50.04 ± 3.12 44.81 ± 5.09 49.73 ± 3.18 43.98 ± 4.47 82.29 ± 3.53 129.95 ± 18.79 82.22 ± 3.52 131.47 ± 18.99

3 23.32 ± 1.22 38.95 ± 2.76 23.12 ± 1.38 39.53 ± 2.62 35.1 6± 0.69 11.60 ± 2.34 35.05 ± 1.13 4.77 ± 3.15

4 12.03 ± 0.96 68.52 ± 2.34 11.32 ± 0.71 70.36 ± 1.99 6.96 ± 0.42 81.70 ± 2.15 21.87 ± 0.89 38.94 ± 4.14

5 7.07 ± 0.60 81.46 ± 1.72 6.39 ± 0.43 83.27 ± 1.23 3.20 ± 0.28 91.58 ± 1.24 16.20 ± 1.05 54.75 ± 4.18

6 4.32 ± 1.60 88.63 ± 4.10 4.00 ± 0.27 89.55 ± 0.42 1.77 ± 0.27 95.32 ± 1.00 14.83 ± 0.86 58.55 ± 4.12

Abbreviations: WM, white matter; RE, relative error.

Number of Clusters Effect on CSF Ratio Using Different
Clustering Methods for MD Images
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Figure 8. Average CSF ratio (with respect to total brain volume) versus various num-
bers of clusters for Otsu’s, K-means, EM, and ICM methods when employed for the
MD map. (CSF, cerebrospinal fluid; MD, mean diffusivity).

Supplements

Supplementary material(s) is available at below link:
http://iranjradiol.com/?page=download&file_id=56267

Number of Clusters Effect on CSF Ratio Using Different
Clustering Methods for DV Images
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Figure9. Average CSF ratio (with respect to total brain volume) versus various num-
bers of clusters for Otsu’s, K-means, EM, and ICM methods when employed for the DV
map. (CSF, cerebrospinal fluid; DV, Diffusion Volume).
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Number of Clusters Effect on WM Ratio Using Different
Clustering Methods for FA Images
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