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Abstract

Background: In order to evaluate the growth rate of lung cancer, pulmonary nodule segmentation is an essential and crucial step.
Segmentation of juxta-pleural pulmonary nodule in CT scans, especially small size ones, is still a challenge.
Objectives: To better support the following radiomics analysis, this study aims to propose and develop a novel segmentation
method for small-size juxta-pleural pulmonary nodules.
Materials and Methods: In this study, we investigated and developed a novel approach based on transition region thresholding
and chain code analysis to segment juxta-pleural pulmonary nodules. First, we cropped the region of interest (ROI) from the lung
CT scans, and enhanced the nodule regions by using an anisotropic diffusion algorithm. Second, to extract the foreground pixels
(including the attached chest wall) from ROIs, we applied an adaptive segmentation process by incorporating a threshold segmen-
tation method with transition region analysis. Third, we smoothed the lung contour by using iterative weighted averaging algo-
rithm. Then, we utilized chain code analysis to repair lung parenchyma boundaries. Finally, we obtained the segmentation result
by overlapping the extracted foreground with the repaired lung parenchyma mask.
Results: To validate the performance of the proposed segmentation approach, we selected 50 juxta-pleural nodules with diameter
ranges from 5 mm to 10 mm from Lung Image Database Consortium (LIDC) database. Compared with the ground truth generated
by radiologists, we achieved an average overlap rate of 76.93% ± 0.06 with a false positive rate of 13.09% ± 0.09.
Conclusion: After comparing and analyzing the segmentation results, we found that our approach outperformed the method re-
ported in other literature. The experimental results demonstrated that our new method is an effective approach to segment small-
size juxta-pleural pulmonary nodules accurately.

Keywords: Pulmonary Nodule, Image Segmentation, Transition Region, Iterative Weighted Averaging, Chain Code

1. Background

Lung cancer has become one of the biggest threats to
human beings in recent years (1, 2). Early diagnosis and
treatment play an important role in improving the sur-
vival rate of patients. For early stage lung cancer, pul-
monary nodule is one of the apparent phenotypes in CT
images. In CT scans, pulmonary nodule presents as a round
opacity ball with a diameter in the range of 3 mm to 30 mm.
Among different types of nodules, small-size pulmonary
nodule with a diameter that ranges from 5 mm to 10 mm
is particularly considerable in clinical diagnosis for radiol-
ogists. By comparing and estimating the nodule’s volume
in different periods, radiologists can distinguish between
malignant and benign nodules based on the volume dou-
bling time of the nodule (3-6).

Since the characteristics of nodules are complex in CT
scan, pulmonary nodule could be portioned into differ-
ent categories. Based on the gray value distributions, nod-
ules can be divided into solid, part-solid, and non-solid
groups. According to the surrounding structures of pul-
monary nodules, they could also be divided into three cate-
gories; namely, solitary, juxta-vessel, and juxta-pleural nod-
ules. Among them, juxta-vessel and juxta-pleural nodules
are defined mainly based on their position or location with
the vessel and pleura. For example, juxta-pleural nodule is
attached to the wall of the lung. Because nodule segmen-
tation is a crucial step for further diagnosis, a number of
studies have investigated and developed different meth-
ods to segment pulmonary nodules (7-13). Although many
researchers proposed many methods to segment nodules,
segmentation of juxta-pleural nodule still remains an is-
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sue. Due to the similar intensity with the attached pleura,
it is difficult to determine the boundary between the nod-
ule and chest wall. Juxta-pleural nodule segmentation is a
difficult and challenging task.

To generate the mask of juxta-pleural nodule, most
of the reported nodule segmentation algorithms get the
complete boundaries of juxta-pleural nodules based on
the lung contour correction method. Messay et al. (8) in-
tegrated image segmentation algorithms, namely thresh-
old segmentation and morphological operation, with ma-
chine learning for segmentation of juxta-pleural nodules
in CT images. Then candidate segmentations were selected
by regression neural network (RNN). A set of extracted fea-
tures were input into the neural network to get an op-
timal segmentation result. Lassen et al. (9) proposed a
semi-automated method for the segmentation of sub-solid
juxta-pleural pulmonary nodules with a user-drawn stroke
on the largest dimension of the nodule. Then, region grow-
ing algorithm was performed based on the intensity anal-
ysis of the nodule images. The attached chest wall was re-
moved by connected component analysis combining con-
vex hull calculation. The segmentation result changes as
the observer’s input changes. Kubota et al. (10) proposed
a novel segmentation method which was composed of
figure-ground separation, nodule core extraction, region
growing, surface voxel extraction, and convex hull opera-
tion. However, these proposed segmentation methods are
not valid when the juxta-pleural nodule presents obvious
lobulation or spiculation.

Though several juxta-pleural nodule segmentation
methods have been investigated and developed, some is-
sues still remain unsolved. For example, the “rolling
ball” method, which could also be considered as a mor-
phological closing operation, is utilized to perform lung
parenchyma correction before nodule extraction. How-
ever, due to the extremely varied nodule sizes, it is difficult
to select a proper rolling ball radius that is suitable to all
circumstances, and still needs quite a lot of human inter-
vention. The traditional convex hull operation based lung
correction method will be failed when it comes to nodules
located in the mediastinum and cardiac region, where the
boundary of lung parenchyma changes into concave. Seg-
mentation approaches combined with machine learning
algorithm can obtain a better result, but it relies on big
data collection and is sensitive to types of nodules (8).

Considering the advantages and limitations of the seg-
mentation algorithms reported in the published litera-
tures, we have developed a juxta-pleural nodule segmenta-
tion approach based on transition region and chain code
analysis. In brief, first, we draw a rectangular region to lo-

cate the nodule region based on the center point position
of nodule. After selecting the region of interest (ROI) in-
teractively, the nodules are segmented automatically. The
segmentation algorithm involves two stages: Transition re-
gion based threshold segmentation and lung contour cor-
rection. To get a better corrected lung contour, an itera-
tive weighted averaging based smoothing technique is em-
ployed before chain code analysis. Our proposed segmen-
tation method aims to better delineate nodules’ ambigu-
ous boundary, as well as correct lung parenchyma bound-
ary properly.

The paper is organized as follows. Materials and meth-
ods are described in Section II, which is divided into 3 sub-
sections of materials, methods and performance evalua-
tion. The experiments and data analysis are reported in
Section III. The advantages or contributions and the limita-
tions of this study are discussed in Section IV. Finally, con-
clusions and future prospective works are described in Sec-
tion V.

2. Objectives

To better support the following radiomics analysis, this
study aims to propose and develop a novel segmentation
method for small-size juxta-pleural pulmonary nodules.

3. Materials andMethods

3.1. Materials

The experiment dataset is collected from Lung
Image Database Consortium (LIDC), which is a
publicly available database aiming to facilitate
computerized medical image analysis research
(https://wiki.cancerimagingarchive.net/display/Public/LIDC-
IDRI). The LIDC database is gathered from clinical thoracic
CT scans. These scans were acquired with (peak) voltage
ranges from 120 kVp to 140 kVp, X-ray current ranges from
40 and 627 mA, slice thickness ranges from 0.6 to 5 mm,
and in-plane pixel size ranges from 0.461 to 0.977 mm. The
convolution kernels used for image construction differ
based on the manufacturer, and mainly classified as “stan-
dard”, “soft”, “slightly enhancing”, and “over enhancing”
(11).

During the establishing procedure of LIDC thoracic CT
database, a two-phase image annotation process (involv-
ing blinded-reading and unblinded-reading phase) was
implemented by four experienced radiologists. Each radi-
ologist independently delineated the boundaries of nod-
ules with considerable diameters less than 30 mm and
larger than or equal to 3 mm. The requested information
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about the marked lesions was recorded in a correspond-
ing XML file. Considering the delineations of nodule con-
tour differ from different radiologists’ point of view, we se-
lected the intersection accepted by at least 3 out of 4 radiol-
ogists as ground truth in our experiment to make our eval-
uation standard more authentic.

We selected 50 juxta-pleural nodules from LIDC
database to evaluate the performance of our method. CT
images of juxta-pleural nodule were selected by radiol-
ogists from Shanghai Pulmonary Hospital. The location
of each nodule in the CT images were already delineated
and recorded in XML files. Table 1 shows the statistical
analysis of the selected nodule images. The average CT
value of the selected nodules was mainly below -100 HU.
The diameter of the selected nodules ranged from 5 mm
to 10 mm, which are accepted as small-size ones in clinical
research. The small-size juxta-pleural nodules are majority
of our study subjects.

Table 1. Distribution of Nodules’ Average Intensity

Average intensity of nodules Count

[-494.35, -364.35] 8

[-364.35, -234.35] 11

[-234.35, -104.35] 19

[-104.35, 25.65] 11

[25.65, 155.65] 1

3.2. Method

According to the CT images, the juxta-pleural pul-
monary nodule, or pleural attached nodule, was located
next to the chest wall. Since the intensity of the chest wall
is similar to the adjacent nodules in CT scan, it is hard to
delineate their boundaries by naked eyes. So, the key issue
for segmenting juxta-pleural nodules is to settle the bor-
derline between the nodule and the chest wall. In this pa-
per, a threshold segmentation algorithm based on image
transition region and chain code analysis were combined
to define the boundary of the nodule. First, the center posi-
tion and boundary of the nodule were delineated by pars-
ing XML. Then, a 50× 50 pixels region of interest (ROI) was
automatically generated. The segmentation approach was
performed on the basis of interactive selection of the 50×
50 pixels ROI. The workflow chart of the proposed segmen-
tation method is presented in Figure 1A.

3.2.1. Image Preprocessing

The ROIs were preprocessed to reduce unwanted noise
and reserve boundary at the same time. Anisotropic diffu-
sion, which was proposed by Perona and Malik in 1990 (14),

was applied on the original cropped CT images. Unlike the
traditional spatial filtering, anisotropic diffusion can blur
the inner part of the object and preserve edge information
at the same time (15).

The anisotropic diffusion is defined as Equation 1.
Equations 2 and 3 exhibit two different forms of the diffu-
sion equation. ‖ ∇I ‖ is recognized as an edge detector. k
refers to gradient threshold, and equals 30. Then the gray
values of pixels were updated by Equation 4.

(1)


∂I
∂t

= div [c (‖ ∇I ‖) .∇I]

I (t = 0) = I0


(2)c (‖ ∇I ‖) =

1

1 +
(
‖∇I‖
k

)2

(3)c (‖ ∇I ‖) = exp

[
−
(
‖ ∇I ‖
k

)2
]

(4)It+1
p = Itp + ∆t

∑
q∈ηp

c
(
∇Itp,q

)
∇Itp,q

p represents the coordinate of current pixel. ηp is
neighborhood space of p. q stands for the coordinate of
pixels in the neighborhood space of p. ∆t is time step,
which equals 1/7. The number of iterations is 15. Image be-
fore and after preprocessing is shown in Figure 1B and 1C.
Figure 1C shows that after image preprocessing, the bound-
ary was enhanced.

3.2.2. Threshold Segmentation Based on Transition Region

The transition region (TR) is defined as the region lo-
cating between the object and background with a width
of several pixels. Owing to frequent and intensive changes
of pixels’ gray level in the transition region, its local vari-
ance is larger than that in other regions with less change
in gray value. The TR based thresholding is built on the
analysis of pixels’ gray value distribution in the transition
region. To settle down a proper gray value threshold, TR
based thresholding concerns more about pixels’ spatial in-
formation compared with the traditional threshold seg-
mentation (16, 17).

In the TR based thresholding method, the transition
region should be extracted before we settle down gray
threshold. The existing transition region extraction meth-
ods are mainly based on pixels’ local entropy (18) and local
complexity (19). The extraction of transition region influ-
ences the final segmentation result in certain degrees. To
better support image segmentation, Li et al. (20) proposes
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Figure 1. A, Flow chart of the proposed segmentation method; B, An original nodule image; C, Image after preprocessing

a salient transition region based image segmentation ap-
proach which performs better in foreground extraction,
and then applies it in the segmentation of single-object
images in the real world. Specially, the transition region
around the object is defined as salient transition region.
To get a proper segmented mask of the object, the salient
transition region is more representative than other transi-
tion regions in the image and is available to settle a more
appropriate threshold to extract the foreground.

Juxta-pleural nodule may have an ambiguous bound-
ary because of its pathological characteristics. It can also
be regarded as “salient transition region” in CT images
(20). The salient transition region is recognized based on
local variance analysis method. After image preprocessing
procedure, the salient transition region based foreground
extraction is implemented by the following steps.

Step 1: The local variance of pixel p(i, j) with a 3 × 3
neighborhood (Ω) is defined as Equation 5 where f(x, y)

and
−
f represents the gray level and mean gray level of pix-

els in Ω separately, and m equals to 3.

(5)

Lv (i, j) = σ2 (Ω)

=
1

m2 − 1

m∑
x=1

m∑
y=1

(
f (x, y)−

−
f

)2

Step 2: The transition region is extracted according to
Equation 6. Threshold segmentation with a threshold of
αLvmax is implemented after the calculation of pixels’ lo-
cal variance. Lvmax denotes the maximum local variance
in nodule image and TR represents the extracted transition
region. (i, j) delineates the coordinates of pixels. In order
to extract sufficient pixels for transition region, α is gen-
erally between 0.1 and 0.5. In this study, the α is set with
an empirical value 0.2 by conducting several experiments.
Figure 2 shows the segmentation results under different
criteria ofα. When settingα to 0.2, we can obtain the high-
est overlap rate in the segmentation result.

(6)TR (i, j) =


0 Lv (i, j) < αLvmax

1 Lv (i, j) ≥ αLvmax
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Figure2. Comparison of segmentation results under different criteria ofα values. A, Ground truth; B, Segmentation result withα = 0.1, Overlap rate = 0.74; C, Segmentation
result withα = 0.2, Overlap rate = 0.84; D, Segmentation result withα = 0.3, Overlap rate = 0.82; E, Segmentation result withα = 0.4, Overlap rate = 0.81; F, Segmentation
result withα = 0.5, Overlap rate = 0.80.

Step 3: The largest connected component in TR is la-
beled as the salient transition region in our segmenta-
tion experiment, and the salient transition region is rep-
resented as STR which locates at the nodule’s boundary, as
is presented in Figure 1A.

Step 4: The segmentation threshold of the ROI is set-
tled based on the average and standard deviation of pix-
els’ gray level in the salient transition region generated in
step 3. The threshold is determined by Equation 7, in which
the parameter 0.85 was settled by experience after several
times of tests. STRm andSTRs represent mean and stan-
dard deviation of pixels’ gray level in salient transition re-
gion respectively. Then we performed the threshold seg-
mentation (Equation 8).

(7)T = STRm − 0.85 STRs

(8)g (x, y) =


0 f (x, y) < T

1 f (x, y) ≥ T


Step 5: After the threshold segmentation, background

regions, such as blood vessel, still remain in ROI, as is
shown in Figure 1A. The foreground in nodule image se-
quence was extracted by 3D connected component label-
ing at last, remaining the largest connected component, as
is shown in Figure 1A.

3.2.3. Lung Contour Correction

The juxta-pleural nodule is excluded in the lung
parenchyma during the initial segmentation step due to
the similar density between the lung nodule and the chest
wall. Lung contour needs to be corrected to get the en-
tire boundary of juxta-pleural nodule. After the fore-
ground is extracted by threshold segmentation, lung con-
tour repair procedure is performed that consists of two
steps: (1) Smoothing the initial boundary of pulmonary
parenchyma by using iterative weighted averaging; (2)
identifying inflection points to repair lung lobe boundary
by chain code analysis.

3.2.3.1. Iterative Weighted Averaging

The curvature of boundary pixel is an important
feature during lung contour correction in our segmen-
tation experiment. The inflection points on the lung
parenchyma contour caused by the appearance of nod-
ule mostly demonstrate larger curvature and change the
boundary convexity (21). However, the perturbation or
noise often occurs on the boundary line, which will influ-
ence the effectiveness of chain code analysis based lung
contour correction. Therefore, it is necessary to perform
boundary smoothing first.

The iterative weighted averaging algorithm is used
quite often to smooth signal by means of averaging the
neighborhood (22). This method has also been used in

Zhou et al.’s paper (23). Let P
(0)
j = (xj , yj) denote the

pixel’s coordinates on lung contour in each slice. The iter-
ation process can be represented in Equation 9, in which

P
(n+1)
j represents the coordinate of point j after (n +

1) times iteration. Figure 3A and 3B shows the ROI and
initial thresholding segmentation respectively. Figure 3C
presents the boundary of pulmonary parenchyma after it-
erative weighted averaging.

(9)P
(n+1)
j =

1

6
P

(n)

j−1
+

2

3
P

(n)

j
+

1

6
P

(n)

j+1

3.2.3.2. Chain Code Analysis

Chain code analysis is a method using the direction
code to describe boundary. The boundary pixels are en-
coded either with 8 connected or 4 connected chain codes.

The chain code analysis encoded with 8 connected
components was performed according to the methodol-
ogy proposed in our previous study (24). Then, we calcu-
lated the difference of chain codes between two adjacent
pixels to identify the sudden changes in curvature or crit-
ical points which are caused by the appearance of juxta-
pleural nodule. Two critical points would be connected if
the distance between them is less than 20 pixels, which is
valid to most of the nodules in the experimental sample.
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Figure 3. Comparison of the segmentation result with and without boundary smoothing before lung parenchyma correction. A, Original image of region of interest region
of interest; B, Result of threshold segmentation based on transition region; C, Result of boundary smoothing; D, Result of the repaired lung parenchyma with boundary
smoothing; E, Result of the repaired lung parenchyma without boundary smoothing; F, Ground truth; G, Segmentation result produced based on D; H, Segmentation result
produced based on E.

The boundary of lung parenchyma mask in ROI was
generated after the pairs of critical points were automat-
ically connected. After correcting the contour of lung
parenchyma mask, the holes were filled by using flood-
fill algorithm. In order to repair all the lung parenchyma
mask in our dataset, we set threshold of the jointed dis-
tance with 20 pixels. The lung parenchyma mask was de-
noted asLm. The final segmentation result was generated
referring to Equation 10, where g(x, y) denotes threshold-
ing segmentation result and S represents the final seg-
mentation result. The juxta-pleural nodule segmentation
result is also shown in Figure 1A.

(10)S = g (x, y)× Lm

3.3. Performance Evaluation

To evaluate the performance of our new method, we
calculated the overlap rate, false positive rate (FP), sensi-
tivity, and modified Hausdorff distance (MHD) to provide a
comprehensive statistical measurement of segmentation
result. Generally, the overlap rate, false positive rate, sen-
sitivity and specificity are commonly used as region-based
evaluation standards, and MHD, which is developed on the
basis of Hausdorff distance, is utilized to measure the mis-
match of different objects. Let A be the segmentation re-
sult produced by segmentation algorithms and M repre-
sent the mask of consensus truth delineated by radiolo-
gists. These four evaluation standards can be presented as
Equations 11 - 14.
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(11)Overlap rate =
A ∩M
A ∪M

(12)FP =
|A ∪M −M |

M

(13)Sensivity =
A ∩M

A ∩M+
−
A ∩M

MHD

= max (hMHD (A,M) , hMHD (M,A)) , hMHD (A,M)

=
1

NA

∑
a∈A

d (a,M) , hMHD (M,A)

=
1

NM

∑
m∈M

d (M,A)

(14)

To further prove the robustness of our proposed seg-
mentation approach, we added conducted additional ex-
periments by using the CT images mixed with Gaussian
noise to the origin ROIs. The variance of Gaussian noise
ranges from 0.001 to 0.05 with a step of 0.005. We calcu-
lated the misclassification error (ME) to quantify and ana-
lyze the robustness of our method under different degrees
of Gaussian noise. ME is defined as Equation 15:

(15)ME = 1−
|B0∩BT |+|F 0+FT |

|B0|+|F 0|

whereB0 andF0 are the background and foreground
of the ground truth (manual segmentation result),BT and
FT are the background and foreground of an image seg-
mentation result respectively, and |.| is cardinality of a set.
The value of ME varies between 0 and 1. A lower value
means better segmentation accuracy.

The segmentation methods proposed in our paper
were implemented in MATLAB 2015a. The platform runs
on 64-bit Windows 10 operating system, 3.2 GHz processor,
and 8 GB of RAM memory.

4. Results

Figure 3 shows an example of the juxta-pleural nod-
ule. In Figure 3G and 3H, we compared and validated
the effectiveness of iterative weighted averaging based
smoothing technique. The experiment shows that the
juxta-pleural nodule can be better segmented after lung
contour smooth. It indicates that the iterative weighted
averaging based segmentation method is an effective way
to improve the segmentation performance. The lung con-
tour correction based on iterative weighted averaging and

chain code analysis draws the border between the thoracic
cavity and the nodule properly.

To compare the effectiveness of transition regions gen-
erated by using different image features, we conducted an
experiment by using TR thresholding method based on lo-
cal variance feature and fuzzy feature based TR method.
We also calculated the average overlap rate generated by
applying local variance feature proposed in our study and
fuzzy feature obtained in FCM algorithm. The results
showed that our new method yielded higher overlap rate
(0.77) than that yielded by FCM algorithm (0.67). It demon-
strated that our method outperformed FCM for segment-
ing small size juxta-pleural nodules in CT scans.

Figure 4 shows examples of our segmentation results
and ground truths. Comparing our results with ground
truths, it can be seen that the results generated by the
proposed method are close to the ground truths by seg-
menting different nodules. Table 2 summarizes and com-
pares the average segmentation result of our new method
and Mukhopadhya’s method by using the same dataset in
this study. The method proposed in Mukhopadhya’s (12)
study was a typical study focused on juxta-pleural nod-
ule segmentation, which was developed on morphologi-
cal and convex hull operation (4, 6, 10, 13). Comparing
with Mukhopadhya’s method, our new method yielded
higher overlap rate (76.93% vs 66.29%), sensitivity (86.65%
vs 77%), and reduced the FPs (13.09% vs 20.30%), MHD (1.03
vs 2.42) and computational time (0.2s vs 0.39s) as well.
To further compare the results generated by using our
new method and Mukhopadhy’s method, we calculated
the P value for each evaluation index. Table 2 illustrates
the results generated by applying our new method and
Mukhopadhy’s method. The results show that our new
method yielded significantly higher performance than
that yielded by Mukhopadhy’s under various evaluation in-
dexes (P < 0.05).

After comparing and analyzing the segmentation re-
sults, we can find that our new method outperforms the
Mukhopadhya’s method. It indicates that our new ap-
proach has a potential to improve the segmentation per-
formance of juxta-pleural nodule. Figure 5A - 5D also shows
the same trend. Figure 5B and 5C illustrates and compares
the results generated by Mukhopadhyay’s method and our
new method, respectively. By using adaptive threshold
yielded based on the histogram of salient transition re-
gion, transition region based thresholding segmentation
algorithm can delineate nodule’s ambiguous edge more
accuracy than Mukhopadhyay’s approach.

In order to further compare the results of our new
method and Mukhopadhyay’s method, we draw the box
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Figure 4. Segmentation results obtained by the proposed approach. A, C, and E, Segmentation results; and B, D, and F, Ground truth
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Table 2. Comparison of the Average Segmentation Results Generated by Using Different Approaches with the Same Dataseta

Mukhopadhyay’smethod Proposedmethod P value

Overlap rate 66.29% ± 0.13 76.93% ± 0.06 0.7 × 10-5

False positive rate 20.30% ± 0.19 13.09% ± 0.09 0.02

Sensitivity 77.0% ± 0.16 86.65% ± 0.08 0.0003

MHD 2.42 ± 2.04 1.03 ± 0.56 0.3 × 10-4

Elapsed time 0.39 s/slice 0.20 s/slice -

Abbreviations: MHD, modified Hausdorff distance; SD, standard deviation.
aValues are expressed as mean ± SD.

plots of these two-different methods in Figure 5E. Accord-
ing to the experimental results shown in Figure 5E, the pro-
posed method elaborates better stability. Both of the two
segmentation methods also were implemented on the im-
ages mixed with 2D Gaussian noise with variance ranges
from 0.001 to 0.05. Figure 5F shows and compares the
mean misclassification error (MME) values generated by
two methods under different variance. It can be seen that
our new method achieved a lower MME value (0.049 vs
0.077), which indicates that our method is more robust
than Mukhopadhyay’s method.

5. Discussion

Since nodule segmentation is a crucial step for fur-
ther quantitative analysis, we developed a new method to
segment juxta-pleural nodules in CT scans. In this study,
we segment juxta-pleural nodules by using transition re-
gion based thresholding and chain code analysis. We first
used an anisotropic diffusion algorithm to enhance the
nodule regions. After enhancing the ROI with preprocess-
ing step, the ROI region was smoothed, and the bound-
ary of nodule was enhanced at the same time. Then, we
extracted the foreground pixels by the method of thresh-
old segmentation based on transition region, and repaired
the boundaries applying a chain code analysis. The tran-
sition region based thresholding method used the gray
value of pixels in transition region to compute the opti-
mal threshold for juxta-pleural nodule region, and chain
code analysis could remove the attached pleural from the
ROI and correct the contour as well. In the contour correc-
tion process using chain code analysis, we applied the iter-
ative weighted averaging based boundary smoothing tech-
nique to smooth the noisy point pairs. By observing the
results of smoothed boundary and un-smoothed bound-
ary (Figure 3), we found that the iterative weighted averag-
ing based boundary smoothing method make a contribu-
tion to improve the segmentation performance. Finally, we
obtained the final segmented pulmonary nodule mask by

multiplying the binary image of foreground and corrected
lung parenchyma mask.

In order to validate and evaluate the effectiveness of
our new method, we computed and compared five eval-
uation indexes (i.e., overlap rate, false positive rate, sen-
sitivity, modified Hausdorff distance, and computational
time) by using 50 juxta-pleural nodules acquired from
LIDC database. We compared and analyzed the segmen-
tation results between our study and a widely used juxta-
pleural pulmonary nodule segmentation approach devel-
oped by Mukhopadhyay (12) by using the same experiment
dataset. Experimental results (i.e., results showed in Ta-
ble 2 and Figure 5) demonstrated that our new method
could improve the segmentation performance by com-
paring with the Mukhopadhyay’s method with the same
dataset. Thus, it can be seen that our new method is an ef-
fective way to improve the segmentation performance by
using transition region based thresholding and chain code
analysis.

Meanwhile, despite the promising result, we also rec-
ognized a number of limitations in this study. First, our
method was tested on a limited dataset involving only 50
juxta-pleural nodules. Hence, robustness of the reported
results in this study needs to be further tested and vali-
dated with a large image dataset. Second, the parameters
used in this study were configured with empirical experi-
ment. Whether and how to configure these parameters au-
tomatically is also a task needed to be explored in the fu-
ture studies. Third, in this study, the proposed segmenta-
tion method was only implemented on 2D images. Though
a 3D segmentation method was not employed, we seg-
mented all the slices of each nodule in CT scans to generate
a 3D segmentation result. We will modify this 2D method
into 3D segmentation algorithm in the future studies. Last,
this is only a technologic developmental study, the clinical
utility of this new method has not been tested. In future
studies, the clinical application of this method should be
investigated and explored.
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Figure 5. Comparison of segmentation results generated by applying our new method and Mukhopadhyay’s method, repectively A, Nodule image; B, Segmentation result
produced by Mukhopadhyay’s approach; C, Segmentation result produced by our approach; D, Ground truth; E, The four evaluation standards of the segmentation results;
F, Comparison of MME values generated by using CT images mixed with different levels of Gaussian noise (MME, mean misclassification error; MHD, modified Hausdorff
distance).
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In conclusion, the analysis of small-size lung nodules’
morphological and intensity information in pulmonary
CT images is critical for radiologist’s diagnosis. To bet-
ter support segmentation of small-size juxta-pleural pul-
monary nodules, we propose and develop a segmentation
approach based on transition region and chain code anal-
ysis. The segmentation scheme is established based on
the gray distribution and morphological features of juxta-
pleural pulmonary nodules. We first applied the thresh-
olding segmentation based on image transition region to
get foreground region in ROI. Then, iterative weighted av-
eraging was combined with chain code analysis to repair
the lung contour. Finally, the segmented foreground re-
gion and the repaired lung parenchyma were multiplied
to generate the final segmentation result.

By applying the dataset collected from LIDC database,
we have achieved an overlap rate of 76.93% with the false
positive rate of 13.09%. The experiment results show our
new method can segment small-size juxta-pleural nodules
effectively and accurately with better robustness when
compared with Mukhopadhyay’s method.

In comparison with the method reported in litera-
tures, the proposed segmentation methodology can out-
perform them in avoiding insufficient segmentation and
boundary leakage. It is also promising for clinical applica-
tion. In future studies, we will optimize our method and
validate the applicability and robustness of the segmenta-
tion approach with larger datasets.
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