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Abstract

Background: Nowadays, medical imaging has an important role in radiotherapy and treatment planning process. Despite the
increasing usage of the magnetic resonance imaging (MRI) in the external radiotherapy (RT) design process, computed tomography
(CT) remains a basic imaging modality in radiotherapy because of its relation with electron density value. In conventional external
radiotherapy, MRI is used in functional tissue structures with registration on the CT image, which causes systematic errors during
the registration of MRI and CT images.
Objectives: The main purpose of this paper was to investigate the possibility of removing the CT simulator and replacing it with
pseudo-CT for the electron density calculation in radiotherapy treatment planning.
Materials and Methods: The pseudo-CT images were generated for 10 randomly chosen patients with brain disease. The data con-
sisted of image voxels chosen within the segmented area of the brain in both MRI and CT images. The relationship between electron
density information in CT images and MRI intensity value was derived from simple polynomial models.
Results: It was found that the MRI intensity value is related to the Hounsfield unit (HU) value within different parts including the
skull bone, sinus, and brain in CT images. The mean errors of the conversion model were 0.7479, 0.334 and -0.043 HU in the brain,
skull, and air regions respectively, with the simple polynomial model in the upper slice.
Conclusion: The proposed method generated pseudo-CT images from different segmented parts of the brain of MRI series. The
application requires segmentation of the cortical bones in MR images. The result indicated that finding a complex model does not
necessarily lead to achieving a better result.
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1. Background

Nowadays, computed tomography (CT) is critical for
the technical aspects of three dimensional (3D) conformal
radiotherapy and image-guided external radiation ther-
apy dose planning. CT images provide a relationship be-
tween tissue electron density and voxel values to set up ac-
curate dose calculations, which depend on the attenuation
properties of the tissue and generation of digitally recon-
structed radiographs (DRRs) (1). In recent years, interest
has been developing in replacing CT scan images with MRI
images in the treatment planning process. This is due to
the fact that MRI provides a high soft tissue contrast that
could improve the determination of target tissue and the
accuracy of risk volume delineation in organ at risk (OR).
The advantages of planning directly on MRI scans include
numbers of functional imaging options, no ionizing radi-

ation for the patient, and reduction in costs (1-4).

Higher contrast in the soft tissue can lead to better sep-
aration of tumor tissue from the organ at risk and deter-
mine the exact size of the tumor area (5). Furthermore,
MRI can be used before, during, and after treatment for pa-
tient follow-up without being concerned about patients re-
ceiving ionizing radiation (6). MRI is going to be used as
a tool for image-guided radiotherapy (IGRT), where MRI-
Cobalt and MRI-Linac are being developed and even these
machines have been used in some limited radiation ther-
apy centers (7). In the treatment planning dose calculation
in MR-Linac, the entire patient volume is assumed as wa-
ter equivalent electron density. Furthermore, assuming a
homogeneous density compared with planning heteroge-
neously can lead to dose discrepancies greater than 2%. So,
the tissues in the MR image were classified into different

Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License
(http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly
cited.

http://iranjradiol.com
http://dx.doi.org/10.5812/iranjradiol.82804
https://crossmark.crossref.org/dialog/?doi=10.5812/iranjradiol.82804&domain=pdf


Yousefi Moteghaed N et al.

classes such as soft tissue and bone (and in some cases air)
by manual contouring from T1-weighted MR images and
every class was assigned an electron density (8).

Nowadays, based on fusion of MRI images with CT scan
slices in soft tissue structures, both images can be taken
advantage of simultaneously (9). Nevertheless, in addi-
tion to increased extra costs and scan time using multiple
modalities, fusion techniques have limitations (10). In MRI-
only based systems in which the CT modality is eliminated
completely, in addition to solving the extra cost, time and
limitation issues, brain segmentation could be performed
more accurately and more comfortably (11).

Alongside all these advantages, geometric distortions
due to non-uniformities of the magnetic field, gradient
nonlinearity, and patient-induced susceptibility are some
limitations that must be properly investigated in an MRI-
only radiation planning to produce accurate treatment
planning and dose calculation. (12-14). Also, a significant
problem in MRI-alone radiation planning systems, how-
ever, is that scans cannot be calibrated to electron density
value due to different imaging protocols. There are differ-
ent methods to provide an electron density map, one of
which is rigid registration of MRI images on CT images. Un-
fortunately, this method will be so difficult when the pa-
tient’s position is slightly different between MRI and CT
imaging (2, 14, 15). Several researchers have investigated
the possibility of removing CT modality from radiation
therapy planning and implementing an MR-only simula-
tion system (16-19). Different methods have been devel-
oped to estimate the electron density information from
MRI for external radiation therapy in recent years. Bulk
density assignment involves applying an area of interest
within the MRI to single homogeneous density values for
manual contouring. The main benefit of the method is its
manageability, though the calculation results may not be
as accurate as CT for constructing reliable DRRs (14, 15, 20-
24). Atlas-based registration methods involve registering
target MRI to a single CT to generate a substitute CT, which
can be a simple approach, unlike accurately mapping com-
plex anatomy. Atlas-based approaches are currently the
only fully automated methods for generating pseudo-CT
images by converting a single standard MRI sequence to
CT, and are more robust to intensity differences between
images. The main disadvantage is that the registration al-
gorithms used may be unable to deform atlas images to
match anatomical properties which are missing from an
atlas-training set (25).

A semi-automated segmentation has been proposed
through a deformable registration of a selected atlas (26).
A conjugated electron-density mapping atlas and whole
MRI atlas based on the manually delineated MRI scans have
been generated by Dowling et al. (16). An optimization ap-

proach based on the robust block-matching has been pro-
posed which utilizes a half-way space definition to main-
tain inverse-consistency (27). Also, a half space transform
and its inverse have been optimized simultaneously by a
robust symmetric registration algorithm (28). Synthesiz-
ing CTs from MR images has been done using an iterative
multi-atlas approach due to morphological similarity of
the mapped atlases to the target (29). To learn the inten-
sity mapping with atlas-based approaches, most regres-
sion methods rely on a training set of co-registered CT-MR
scans. Other studies have investigated the use of Gaussian
Mixture Regression and Random Forest Regression for cre-
ating a pseudo-CT image from dual ultra-short echo time
(dUTE) and m-Dixon MRI images (30, 31). In addition to the
two methods mentioned, another way in creating pseudo-
CT images is voxel-based methods that are embedded in
two groups based on the use of functional MRI sequences:
the standard sequences and the ultrashort echo time se-
quences (UTE). In the study (32), pseudo-CTs were gener-
ated using a voxel-based, weighted summation method us-
ing ultrashort echo time phase images from a weighted
combination of water fat maps and unwrapped UTE phase
maps. CT image HUs values and T1/T2 weighted MRI inten-
sity values were utilized to generate a model conversion
technique from MR intensity by applying a second-order
polynomial model (33). In (34), a voxel-wise tissue clas-
sification was applied to derive pseudo-CT for optimiza-
tion ion radiotherapy treatment plans. Pseudo-CT was
created with an inversely modulated radiotherapy (IMRT)
plan based on an assigning electron density to an anatomic
image (35). The purpose of the study (36-38) is to establish
pseudo-CT generation using an undersampled ultrashort
echo time (UTE)-mDixon pulse sequence by a linear combi-
nation of the fuzzy c-means (FCM) membership functions.
In the studies (38-40), substitute CT images were derived by
Gaussian mixture regression.

2. Objectives

The CT scan, despite numerous benefits, does not re-
veal accurate information about the soft tissue contrast,
which is often difficult to distinguish the target tissues of
the organ at risk and to determine the volume of the tu-
mor in a typical RT programming. Also, the main challenge
is that the brain MRI cannot map the bone very well. The
bone signal is lost before being read because of the short
T2 value, and there is no direct correlation between the in-
tensity of the resonance imaging and electron density. CT
images include such information, as the intensity in these
images is directly related to the electron density of the tis-
sue and provides an accurate geometry of the bone. The
main goal of this study was to investigate the possibility
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of removing the CT simulator from the therapeutic pro-
cess and replacing it with pseudo-CT images and calculat-
ing the electron density values for designing patient treat-
ment planning. It is investigated whether there is a rela-
tionship between MRI intensity and CT-HU value within dif-
ferent brain regions. The purpose is to find a simple and
efficient model that could provide electron density infor-
mation from the MRI images to generate the synthetics-CT
images with an acceptable error rate that could be used in
clinical RT treatment planning. Segmentation of the bones
was performed by the Fuzzy C-means algorithm in these
images.

3. Materials and Methods

The MRI was performed by a 1.5 T SIEMENS medical
scanner. Repetition time (TR) was 400 ms, Echo time (TE)
was 10ms, flip angle was 90, Bandwidth (BW) was 90.9 kHz,
and matrix size was 512 × 512. The brain CT images were
taken by a SIEMENS scanner, at 120 kVp with the slice thick-
ness of 2mm, and 512 × 512 in-plane image dimensions.

Ten randomly chosen patients were prescribed exter-
nal brain RT (five men and five women, age 20 to 71 years,
mean age of 45 years). The patient’s agreements were ob-
tained after they were informed about the whole proce-
dure of the study.

This project did not have any effect on the treatment
planning of these patients. Eight patients were included
in the generation of the model, while two others were con-
sidered for independent validation. At first, the series of
CT images and MRI images were segmented by the FCM
clustering algorithm including soft tissue (brain), air and
bone. Clustering is an unsupervised learning algorithm
whereby the samples are divided into categories whose
members are similar to each other that are called clusters.
The cluster is, therefore, a set of objects that are similar to
each other and are identical to objects in other clusters.
Indeed, agents were selected for input samples and then
based on their similarity with the samples, the selected
cluster could be determined, which was repeated until the
agents of clusters did not change (41). For each patient
10, 25 and 5 voxels were chosen randomly within the skull
bone, brain, and sinus area, respectively. The correspond-
ing MRI intensity values and CT values of different voxels
in different areas created the data points for the generation
and validation of the models. The skull voxels were chosen
uniformly within the segmented bone volume.

The purpose was to assess the overall relationship be-
tween MRI intensity and CT-values in different segmented
parts of the brain with sufficient accuracy for radiation
therapy planning. The electron density values should be
determined from the MRI intensity values. We considered

the air regions in CT and MRI series as similar. The model
fit is illustrated in Figure 1 for the brain and skull region.

We can use simple polynomial models (1st and 2nd or-
der) for these parts.

(1)CT intensity = B +A MRintensity

Brain: A = 0.01563, B = 1042
Skull: A = -0.9004, B = 2381

(2)CT intensity = C +B MRintensity +A MR2
intensity

Brain: A = 3.955 ×10-6, B = 0.013, C = 1043
Skull: A = 0.003709, B = -1.915, C = 2429
Where, MRintensity and A, B, C represent the MR intensity

value and fitting parameters of the regression model, re-
spectively. The parameters include complex functions of
the tissue component fractions as well as T1 and T2 value
within a voxel of MR image. The order for the polynomial
fit was chosen based on the mean absolute error between
pseudo-CT and simulated CT. Figure 2 displays the whole
process of the algorithm by a simple flowchart.

4. Results

We chose two simple models for different segmented
parts of the brain and bone area to be applied on the test
MR images. Figure 3 reveals the simple result of the pro-
cess.

As the figure indicates, the head area is segmented into
different regions by the FCM algorithm. Considering the
interrelationships between the data extracted from the im-
age series, and applying them on the test MR values to form
pseudo-CT images, the desired result could be achieved.

Figure 4 presents the results of applying the 1st poly-
nomial model to different slices of the head. Two simple
models for different segmented parts of the brain and skull
region were selected for application to the test MR images.

Two models were applied to test the segmented im-
ages in order to demonstrate model functionality. The dif-
ference between the three segments in the original and
pseudo-CT image can be observed in Figure 5.

For further investigation, Figure 6 reveals the his-
togram chart of the differences between a selected region
in the head and skull region of a pseudo-CT image and the
original CT scan using the two models presented in the pre-
vious section.

The pseudo-CT images could be compared with the
original CT images to verify their characteristics. Possibly,
the simplest and the most common measurement scale
is the measure of voxel-wise mean absolute error and the
mean error as below:
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Figure 1. The relationship between MRI intensity and Hounsfield unit (HU) number of voxels within the brain and skull bones

Acquisition of images, each subject 
having CT and MRI scan 

Yes

Preprocessing and denoising of 
images 

MRI and CT 
pre-aligned 

Divided subjects into training and test 
data 

Image segmentation 

Generation of data point based on corresponding HU and MRI 
intensity values of voxels 

Utilize statistical methods to generate a pseudo-CT 
prediction model based on the MR Intensity vectors 

and extracted CT intensity value 

Evaluate test Intensity value into pseudo-CT 
prediction model 

Generating pseudo-CT 
image 

CT/MR registration 

Receive patient MR data associated 
with a new patient 

Segment image voxels of each patient’s MR 
scan according to tissue class 

Extract MRI intensity values of voxels 

No

Figure 2. The whole process flowchart

(3)MAEvox =
1

N

N∑
n=1

|CT (n)− sCT (n)| ,

(4)MAEvox =
1

N

N∑
n=1

(CT (n)− sCT (n)) ,

Where, N is the total number of MR voxels in the differ-
ent segments, where the CT and pseudo-CT are arranged in
a vector of 1 * N. They contain the intensity values of the CT
and the pseudo-CT in the same location. Table 1 provides
the results of the mean absolute error and the mean error
for different sections of the head, by applying the polyno-
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Figure 3. An example of segmentation of images with the aim of creating pseudo-CT using regression models

mial models with the 1st and the 2nd order.

5. Discussion

A relationship has been indicated between the inten-
sity of MR image and CT-based planning (relative electron
density information) within the different brain regions
with this type of MRI protocol. There is no need for special
protocol and multiple MR series to replace CT. The regres-
sion relationships between MRI intensity and the relative
electron density value from synthetic CT were obtained via
the first- and 2nd-order polynomial regression models. An
advantage of the proposed method is better distinction
of tumor tissue from normal tissue in pseudo-CT images
rather than typical CT scan images. It is due to the differ-
ences in tumor and normal tissue intensity in MR image
and this difference could also be observed after mapping
in pseudo-CT image. So the exact tumor delineation can be

performed in pseudo-CT as well as MR image. The provided
conversion models were validated inside different regions
of the head in an independent patient group by choosing
the voxels randomly and manually. The results suggested
that the 2nd-order model did not generate less error than
the first-order model. Because the amount of errors were
too close and it could be concluded that by making models
more complex, we cannot necessarily expect better results.
The correlation values, resulting from the pseudo-CT im-
ages and measured CT scans of the patient that were being
tested were 0.9682, 0.6389, and 0.7296 in different areas of
the brain, skull, air, and sinuses, respectively. It is found
that this level of correlation is appropriate in the brain re-
gion. The parameter value for the structural similarity in-
dex (SSIM) in these images was also equal to 0.8080, 0.9823,
and 0.8921, respectively.

The SSIM can be used for measuring image quality by
pseudo-CT image and original CT images as the reference
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Figure 4. Pseudo-CT generation using regression models for three different slices of the head

image. In the following, the correlation and SSIM value
between the whole complete pseudo-CT image and mea-
sured images were 0.8567, and 0.6023, respectively. In this

article, there were less error rates than similar methods
in voxel-based articles. In a study conducted by Kapanen
and Tenhunen, results are obtained on the pelvic bone area
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Figure 5. Images in the first row show the original MRI and CT slices. The 2nd and 3rd rows show the pseudo-CT images generated by the 1st-order polynomial model along
with their differences between the original and pseudo-CT in the brain, skull, and air region. The 4th and 5th row represent the pseudo-CT images which are generated by the
2nd-order polynomial model along with their differences between original and pseudo-CT in the brain, skull, and air region respectively.

and the MAE of the conversion model was 135 HU, while
in this article, distinct models have been created on dif-
ferent brain regions with the use of FCM and contouring
segmentation (23). The presented model creates appropri-
ate images in terms of graphical observations of the struc-
ture of the skull bones and mean square errors. According

to the imaging protocol (T1/T2*-weighted), in Kapanen and
Tenhunen’s study, the results were sensitive to bone seg-
mentation errors (23). Nonetheless, in this study, with the
help of convenient segmentation techniques, separation
of the skull bone from the air region was appropriate and
we were able to separate these areas fairly well and create
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Figure 6. Images in the first column represent the original CT slices. Images in the second column show the pseudo-CT images generated by the two models, and images in
the third and fourth columns indicate the differential histograms between the original and pseudo-CT images in the brain and skull region, respectively.

pseudo-CT images with presented regression models. An-
dreasan et al. used a Gaussian mixture regression (GMR)
model with k-means clustering and an EM algorithm to
train the model and generate the pseudo-CT by dUTE proto-
col and add the mDixon images. Nonetheless, these images

are not a common protocol in MRI imaging and can limit
clinical applications. In addition, the value of the mean ab-
solute prediction error was carried out as 148HU in their
study (42). Other methods such as patch-based regression
model and multi-atlas approach based on affine registra-
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Table 1. MAE and ME Results for Polynomial Models in the Sub-Image Part

Error
Brain: 1st order; skull: 1st order Sub-image 1st model Brain: 2nd order; skull: 2nd order Sub-image 2nd model

Brain Skull Air Brain Skull Brain Skull Air Brain Skull

Upper slice

ME 0.7479 0.334 -0.0433 7.0088 -40.944 0.7477 0.34 -0.0433 11.523 10.266

MAE 23.55 33.999 2.395 19.6195 116.528 23.60 33.91 2.395 14.498 117.051

Middle slice

ME -0.53 -0.082 0.0145 16.759 -61.276 -0.53 -0.060 0.0145 16.20 -60.335

MAE 19.40 50.53 1.226 18.5366 119.635 19.43 50.41 1.226 18.118 119.780

Abbreviations: MAE, mean absolute error; ME, mean error

tions were implemented by Anderson, and 87, and 97 HU
mean absolute error (MAE) errors were gained (30, 43). The
results show that the errors obtained in this study reached
the desired level. As a future work, the clinical uncertainty
which is related to computing the electron density value
by presented conversion models could be clinically tested
and become more acceptable.
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