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Abstract

Background: Deep learning methods used for bone age assessment (BAA) mostly employ the whole hand or regional convolutional
neural networks without carpal bones; therefore, their application is insufficient in young children.
Objectives: This study aimed to improve the accuracy of BAA in young children by integrating a carpal bone analysis and to achieve
a similar BAA accuracy for all age groups.
Patients and Methods: A hybrid Greulich-Pyle (GP) and modified Tanner-Whitehouse deep learning model for BAA was trained by
integrating an additional carpal bone analysis of an open dataset. A total of 453 hand radiographs from a single institution were
selected for external validation. To create the reference standard, three human experts conducted a BAA, based on the GP Atlas, and
then, interobserver agreement was evaluated. The model performance was estimated by comparing the mean absolute difference
(MAD) and the root mean square error (RMSE) between the two BAA models, including one with a carpal bone analysis (M1) and one
without a carpal bone analysis (M2), and the reference standard. The MAD of each model was compared between sex and age groups
with respect to four major developmental stages, that is, pre-puberty, early and mid-puberty, late puberty, and post-puberty.
Results: The M1 model showed a higher accuracy with a lower MAD (0.366; 95% confidence interval [CI]: 0.337 - 0.395) compared to
the M2 model (0.388; 95% CI: 0.358 - 0.418) for all age groups, with a significant difference (P < 0.001). The RMSE values versus the
reference standard were 0.483 and 0.505 years for the M1 and M2 models, respectively. According to sex and developmental stage
distributions, the M1 model had a greater predictive ability compared to the M2 model for pre-pubertal patients, regardless of sex
(P = 0.008 for males and P = 0.022 for females).
Conclusion: Based on the present findings, the integration of a carpal bone analysis into the BAA model improved its accuracy,
especially in young children.
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1. Background

Bone age assessment (BAA) is defined as a clinical
procedure for evaluating the skeletal maturity of
pediatric patients (1). Discrepancies between bone
and chronological age indicate abnormal skeletal
development. Hand-wrist radiographs, including images
obtained using the Greulich-Pyle (GP) method (2) and
Tanner-Whitehouse 3 (TW3) approach (3), are commonly
used to determine skeletal maturity. Generally, GP is
an atlas-based method, which compares a patient’s
radiograph with an atlas of representative age, whereas
TW3 is a scoring system based on the osseous stages and
events at each level.

The deep learning technology based on artificial
neural networks has rapidly evolved in recent years,
particularly in the field of medical imaging (4, 5).
Convolutional neural networks (CNNs) allow for a
successful classification of thoracic abnormalities (6),
neuroanatomic structure segmentation (7), detection and
classification of breast cancer (8), and performance of
BAA (9-12). A BAA is an ideal method for an automated
image evaluation, as a single study contains few images,
and the results are relatively standardized. Therefore,
various automatic and deep learning methods have been
proposed for BAA.

Most of the proposed methods used for BAA employ
a deep learning approach on the whole hand (9-11, 13, 14)

Copyright © 2023, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License
(http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly
cited.

https://doi.org/10.5812/iranjradiol-136311
https://crossmark.crossref.org/dialog/?doi=10.5812/iranjradiol-136311&domain=pdf
https://orcid.org/0000-0002-1215-8708
https://orcid.org/0000-0002-3815-5599


Kim SU et al.

or an extracted region of interest (ROI) (12). Although
these methods enhance the clinical efficacy and accuracy
of BAA, their application in young children is insufficient,
as some previous studies excluded patients under the age
of 4 years (9, 11), and others lacked a carpal bone analysis
(12), which is important for skeletal maturity assessment in
infants and toddlers (3). Generally, the carpal bones play an
important role in determining the bone age of infants and
toddlers during pre-puberty before these structures begin
to overlap (3). Besides, since the survival rates of infants
in all preterm and birth weight categories have improved
(15), a BAA is needed in young children.

2. Objectives

In this study, we proposed augmenting BAA by
integrating a carpal bone analysis to improve its accuracy
in young children and to achieve a similar BAA accuracy
for all age groups.

3. Patients and Methods

This study was approved by the institutional review
board and the ethics committee of our institution (IRB No.
2020AN0475). The need for informed consent was waived,
because data were collected retrospectively and analyzed
anonymously.

3.1. Datasets

Two public datasets were used for training in this
study. The first dataset was obtained from the Radiological
Society of North America (RSNA) pediatric bone age 2017
challenge and included 14,236 hand radiographs from
Stanford University and Colorado University (16). The
second dataset was retrieved from the digital hand atlas
(17), which includes 1,375 hand radiographs from the
University of Southern California. We used 10% of the
datasets as the validation set and 200 images as the test set.

For external validation, a total of 453 participants
were selected through stratified random sampling among
patients who had visited the pediatric department and
underwent left-hand radiography in our institution.
Individuals with congenital anomalies (i.e., Down’s
syndrome, Noonan syndrome, congenital adrenal
hyperplasia, and methylmalonic acidemia) were excluded,
along with individuals with poor-quality images. The
reference standard for the external validation set was
the average independent bone age estimated by three
reviewers (reviewer 1, a pediatric endocrinologist with
29 years of clinical experience, and reviewers 2 and 3,
musculoskeletal radiologists with 19 and 12 years of

clinical experience, respectively). The three reviewers
independently estimated the bone age based on the GP
Atlas, with the first digit after the decimal point (y). The
reviewers tried to appraise the bone age according to the
GP standard if possible; nonetheless, they were allowed
to use the calculated median age based on their level of
experience. If there was a discrepancy of more than two
years, the image was re-evaluated until consensus was
reached.

3.2. Model Development

The proposed BAA model relied on hybrid TW3 and
GP artificial intelligence (AI)-based automatic bone
age measurements (18). The proposed BAA method is
illustrated in Figure 1. First, multiple regions based
on TW3 were automatically detected using the CNN
algorithm. Next, each ROI and the holistic hand image
were automatically classified based on the maturity level,
using the CNN algorithm. To achieve greater accuracy
and detailed evaluation than the nine stages of TW3, in
our model, we applied 34 stages with six-month intervals
of 1.5 to 18 years in age for maturity. For the maturity
classification of each CNN model training, we used the
physicians’ ratings as the reference standard. Finally,
each ROI and all holistic hand features were integrated
and classified to estimate the final bone age for the input
image.

To compare the accuracy of BAA, the model was applied
to two separate models with different radiographic areas.
Our proposed model (M1) used eight regions (radius, ulna,
distal phalanges, middle phalanges, proximal phalanges,
metacarpal of the third digit, metacarpal of the first digit,
and carpal region), whereas the former model (M2) applied
seven regions (radius, ulna, distal phalanges, middle
phalanges, proximal phalanges, metacarpal of the third
digit, and metacarpal of the first digit) without a carpal
region (Figure 2).

The entire BAA procedure was fully automated.
The model was implemented using an open-source
machine-learning library (TensorFlow Version 0.9.0;
Google, Mountain View, CA, USA).

3.3. Statistical Analysis

To validate the reference standard, the intraclass
correlation coefficient (ICC) was measured for the
assessment of interobserver agreement among the
three reviewers by considering the following values
and levels of agreement: 0 - 0.20, poor; 0.21 - 0.40, fair;
0.41 - 0.60, moderate; 0.61 - 0.80, substantial; and 0.80 -
1, almost perfect (19). The results of the two BAA models
and the findings of the reviewers are summarized as
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Figure 1. An overview of the hybrid model of Greulich-Pyle (GP) and modified Tanner-Whitehouse 3 (TW3) methods for bone age assessment with two different regions of
interest (ROIs)

mean, standard deviation (SD), median, minimum, and
maximum values. To measure the predictive accuracy
of the models, the root mean square error (RMSE) and
mean absolute difference (MAD) of each model were
measured as model performance metrics; the latter was
calculated based on a 95% confidence interval (CI). A BAA
was considered equivalent to the reference standard when
the upper limit of the 95% CI of MAD was < 0.5 years.
Overall, the smaller the MAD is, the closer the predictions
are to the ground truth.

The absolute differences between the two models were
compared via paired t-test, and Bland-Altman plots (20)
were used to correlate the predictions to the ground
truth. Additionally, the MAD of each model was compared
between sex and age groups with respect to four major
developmental stages of the skeletal system: Pre-puberty
(males ≤ 9 years; females ≤ 7 years), early and mid-puberty
(9 years < males ≤ 14 years; 7 years < females ≤ 13 years),
late puberty (14 years < males ≤ 16 years; 13 years < females
≤ 15 years), and post-puberty (males > 16 years; females
> 15 years) (9). P-values less than 0.05 were considered
statistically significant. All other analyses were conducted
in SPSS Version 20.0 for Windows (IBM SPSS Statistics for
Windows Version 20.0, released in 2011; IBM Corp., Armonk,

NY, USA) and SAS Version 9.4 (SAS Institute Inc., Cary, NC,
USA).

4. Results

Figure 3 presents the age distribution of the
participants. According to the developmental stage
distribution, the largest group included 339 participants
in early and mid-puberty (74.8%; 74 males and 265 females),
while 53 patients (11.7%; 42 males and 11 females) in
pre-puberty were included in this study. The ICC (95% CI)
of reviewers 1 - 3 was 0.993 (95% CI: 0.990 - 0.995), which is
sufficiently high, allowing for the use of the average BAA
value as a reference standard.

A performance summary of the two models on the test
dataset is presented in Table 1. The mean bone age ± SD
of the M1 model, M2 model, and reference standard was
11.12 ± 2.60, 11.14 ± 2.59, and 11.19 ± 2.63 years, respectively.
According to the Bland-Altman plots, more than 95% of the
predictions across both models were within one year of the
ground-truth age (Figure 4). In the M1 model, there were
19 predictions with an absolute difference of more than
one year (range, 1.01 - 1.99 years), whereas in the M2 model,
there were 22 predictions (range, 1.01 - 1.95 years). The
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Figure 2. Comparison of the regions of interest (ROIs) of two bone age assessment (BAA) models. A, The model with a carpal bone analysis, including DP, MP, PPMC, MC1,
radius, ulna and carpal bones; B, The model without a carpal bone analysis, including DP, MP, PPMC, MC1, radius, and ulna. DP, distal phalanges; MP, middle phalanges; PPMC,
proximal phalanges/metacarpal; MC, metacarpal

cumulative percentages of absolute differences within six
months between the reference standard and the models
were 72.4% and 70.6% for M1 and M2 model, respectively.

The MAD between the models and the reference
standard was 0.366 year for the M1 model (95% CI: 0.337
- 0.395) and 0.388 year for the M2 model (95% CI: 0.358 -
0.418), both of which were below 0.5 year (Table 2). The
RMSE value was 0.483 for the M1 model and 0.505 for the
M2 model. The M1 model achieved a higher accuracy with
a lower MAD compared to the M2 model for all age groups
(P < 0.001). The M1 model yielded better predictions than
the M2 model in all age groups, regardless of sex (P = 0.002
for males and P = 0.003 for females).

According to the developmental stage and sex
distribution, the M1 model showed a lower MAD compared
to the M2 model in pre-pubertal males, pre-pubertal
females, and early and mid-pubertal females (P = 0.008, P
= 0.022, and P = 0.008, respectively). Particularly, the M1
model reduced the 95% CI upper limit of MAD to < 0.5 for
pre-pubertal males (MAD = 0.364; 95% CI: 0.362 - 0.465),
which could be considered equivalent to the reference
standard.

5. Discussion

The present study investigated the clinical significance
of carpal bone analysis in improving the accuracy of
BAAs. Additionally, a hybrid model was established
by incorporating a carpal bone analysis using an open
dataset. Both models demonstrated human expert-level
accuracy, with an upper 95% CI of < 0.5 for the MAD
between the BAA models and the reference standard. The
MAD values for the M1 and M2 models were 0.366 and
0.388 years, respectively, which are similar to or lower than
those reported in previous research (21-23). The current
study showed that the model integrating a carpal bone
analysis was more accurate than the model without a
carpal bone analysis. Particularly, the model using a carpal
bone analysis showed significantly improved accuracy in
pre-pubertal patients.

The classical method of BAA in children is based on
bone growth in the phalanges, carpal bones, and wrist
joints. Carpal bone maturity varies widely, and the analysis
of this variable does not provide accurate or significant
information in patients > 7 years of age (24). In girls
aged >6 years or boys > 8 years, a phalangeal feature
analysis yields more reliable information than a carpal
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Figure 3. Age distribution of the external validation set with respect to four major developmental stages of the skeletal system: Pre-puberty (males ≤ 9 years; females ≤
7 years), early and mid-puberty (9 years < males ≤ 14 years; 7 years < females ≤ 13 years), late puberty (14 years < males ≤ 16 years; 13 years < females ≤ 15 years), and
post-puberty (males > 16 years; females > 15 years)

Table 1. The Results of Bone Age Assessment

Bone age, years Total (n = 453) Males (n = 148) Females (n = 305)

Reference standard bone age by the three reviewers 11.19 ± 2.63 11.10 ± 3.83 11.23 ± 1.78

Median 11.5 12.0 11.5

Range, min-max 2.0 - 17.0 2.0 - 17.0 3.0 - 16.0

Automatic BAA using the model with a carpal bone
analysis (M1 model)

11.12 ± 3.05 11.10 ± 3.79 11.13 ± 1.76

Median 11.41 12.11 11.34

Range, min-max 2.14 - 16.8 2.14 - 16.88 2.97 - 15.22

Automatic BAA using the model without a carpal bone
analysis (M2 model)

11.14 ± 2.59 11.13 ± 3.76 11.15 ± 1.77

Median 11.46 12.11 11.31

Range, min-max 2.09 - 16.86 2.09 - 16.86 2.85 - 15.39

Abbreviations: BAA, bone age assessment; SD, standard deviation.
a Values are expressed as mean ± SD unless otherwise indicated.

bone analysis; accordingly, most recent deep learning
methods do not utilize the carpal bones for analysis (9-14).
However, carpal bones are a vital and distinctive feature of
skeletal maturity, which provide accurate and significant

information for determining the bone age of young
children (3). Combined with the existing phalangeal and
wrist joint analyses, a carpal bone analysis significantly
improves the accuracy of BAAs in young children.
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Figure 4. The Bland-Altman plots indicate agreement between each model estimate and the ground truth. A, M1 model with a carpal bone analysis; and B, M2 model without
a carpal bone analysis. Black lines represent 1.96 standard deviation of the difference.
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Table 2. Comparison of Absolute Differences of Automatic Bone Age Assessment with a Carpal Bone Analysis (M1) and Without a Carpal Bone Analysis (M2)

M1 M2
P-value

MAD 95% CI RMSE MAD 95% CI RMSE

Males 0.355 0.305 - 0.406 0.471 0.389 0.334 - 0.444 0.515 0.002

Pre-puberty 0.364 0.362 - 0.465 0.485 0.441 0.326 - 0.557 0.573 0.008

Early and mid-puberty 0.319 0.246 - 0.392 0.446 0.338 0.216 - 0.415 0.473 0.064

Late puberty 0.432 0.325 - 0.540 0.505 0.431 0.316 - 0.546 0.513 0.938

Post-puberty 0.415 0.072 - 0.759 0.512 0.459 0.069 - 0.848 0.570 0.333

Females 0.371 0.335 - 0.407 0.488 0.388 0.352 - 0.423 0.500 0.003

Pre-puberty 0.540 0.101 - 0.979 0.824 0.618 0.211 - 1.024 0.845 0.022

Early and mid-puberty 0.370 0.335 - 0.406 0.473 0.386 0.350 - 0.421 0.484 0.008

Late puberty 0.270 0.174 - 0.366 0.364 0.275 0.177 - 0.373 0.370 0.839

Total 0.366 0.337 - 0.395 0.483 0.388 0.358 - 0.418 0.505 < 0.001

Abbreviations: MAD, mean absolute difference; CI, confidence interval; RMSE, root mean square error.

Several studies have used carpal bone extraction to
calculate the bone age (25-27). Most of these studies
focused on classical image segmentation rather than bone
assessments, without applying a deep learning algorithm.
Meanwhile, the accuracy of BAAs was unacceptable. In
this regard, Hao et al. (28) exploited carpal bones using a
regression CNN to evaluate the bone age. Although they
achieved an accuracy of 90.15% within six months from the
ground truth for males, their study was only performed on
individuals with a chronological age of 0 - 6 years, and a
limited BAA was performed for children of all ages.

Additionally, Iglovikov et al. (29) trained several deep
network architectures using different parts of images
(whole hand, carpal bones, and metal carpals/proximal
phalanges) to evaluate the contribution of various
bones to the model performance. Moreover, the linear
ensemble of these regional models outperformed all the
aforementioned models, which is consistent with our
results. However, our study reported a higher accuracy
and a lower MAD compared to the study conducted by
Iglovikov et al. (29) with the lowest MAD at 6.1 months.

Recently, the survival rates of infants in all preterm
and birth weight categories have improved owing to
advances in obstetric and perinatal care (15). As the survival
rates of preterm and low-birth-weight infants increase,
concerns regarding the developmental outcomes and
growth of survivors also increase. Most infants exhibit
an accelerated compensatory growth pattern (known
as “catch-up growth”), which is usually completed by
two years of age (30). Nevertheless, in the absence of
compensatory growth, infants are unlikely to grow to
the extent of their peers and reach their target height
in adulthood. Consequently, the need for recombinant

human growth hormone therapy has increased in these
young children (31), and the need for BAA for these young
children has also increased. Our model incorporating a
carpal bone analysis yielded better predictions compared
to the model without a similar analysis in prepubertal
men, suggesting its improved accuracy in young children.

Our hybrid model overcame the limitations of GP
and TW3 methods by focusing on regions that are highly
related to changes in bone maturity and by applying
finer-grained maturity stages compared to TW3, yielding a
reliable and accurate bone age estimate (18). Similar to our
approach, the BoneXpert (Visiana Aps, Holte, Denmark;
http://www.boneexpert.com), an automated commercially
available BAA system (recently released, version 3.0),
is used to evaluate the bone age using both GP and
alternative TW2 methods (32). However, unlike our
model, the BoneXpert is based on a feature extraction
technique, which reconstructs the boundaries of 15 bones
(i.e., metacarpals, phalanges, distal radius, and ulna) (33).
Overall, the present results showed that the accuracy
of bone age predictions improved remarkably for males
versus females, which is consistent with the results of a
previous carpal bone analysis (25, 29), probably due to the
fact that girls mature sooner than boys. This finding is
evident in the dataset applied in the experiment, where
the carpal bones of girls ossified at a much earlier age than
those of boys.

The present study had several limitations. First,
although previous studies reported ethnic differences in
the growth patterns of certain age groups (34), our study
was limited to patients of a single ethnicity. Therefore,
a prospective multicenter study with a large sample size
is required. Second, our model required radiographs of
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diagnostic quality. The model itself did not evaluate the
radiographic quality, such as the rotation or incomplete
filming of the left hand. Third, our model could not
detect traumatic or congenital deformities. Finally, the
reference standard for the external validation set was
based on the GP Atlas, which is inherently limited to young
children. There are also differences in the nutritional and
ethnic characteristics of children today compared to those
during the 1930’s and 1940’s, which were used to generate
standards.

In conclusion, the present results showed the
improved accuracy of the hybrid GP and modified TW
model for BAA by integrating a carpal bone analysis.
Particularly, the model utilizing a carpal bone analysis
showed a significantly improved predictive ability in
pre-pubertal patients; therefore, it can be sufficiently used
in young children.
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