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Abstract

Background: Differentiating between pulmonary sarcomatoid carcinoma (PSC) and pulmonary inflammatory pseudotumor (PIP)
is challenging using current conventional diagnostic methods. This lack of distinction significantly impacts subsequent clinical
treatment decisions.
Objectives: This study was conducted to construct an effective method to distinguish between PSC and PIP based on commonly
used computed tomography (CT) images.
Patients and Methods: A total of 14 patients with PSC and 76 patients with PIP were retrospectively included in the study for CT
imaging. Radiomics features were extracted from non-enhanced CT images, and canonical correlation analysis was performed to
reduce redundancy. The final radiomics signature was then identified using the least absolute shrinkage and selection operator
(LASSO). Logistic regression (LR), classification and regression trees (CART), support vector machine (SVM), k-nearest neighbors
(KNN), and gradient boosting machine (GBM) were used to construct the radiomics models. The performance of these different
radiomicsmodels was evaluated using the receiver operating characteristic curve.
Results: A total of 1186 radiomics features were extracted from non-enhanced CT images. After dimensionality reduction and
selection, 7 valuable featureswere identified. Theperformanceof 5machine learningmodelswas evaluated todifferentiatebetween
PSC and PIP, and the GBM-based radiomics model demonstrated the best performance. The GBM-based radiomics model achieved
an accuracy of 0.922, area under the curve (AUC) of 0.98, F1 score of 0.967, and log loss of 0.161. Compared to conventional
clinical-radiological diagnosis, the GBM-based radiomicsmodel showed a significant association (odds ratio [OR] = 8.119; P = 0.006).
Conclusion: The implementation of the GBM-based radiomics model has the potential to improve the ability to differentiate
between PSC and PIP, thereby influencing the timeliness of subsequent surgical interventions and even the prognosis of patients.
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1. Background

Pulmonary sarcomatoid carcinoma (PSC) is a rare and
aggressive subtype of non-small cell lung cancer (NSCLC)
characterized by the presence of both carcinomatous
and sarcomatous components. It represents a small
proportion of lung malignancies, accounting for
approximately 0.5% (1). Pulmonary sarcomatoid
carcinomas are highly heterogeneous and malignant
tumors that exhibit resistance to radiotherapy and
chemotherapy, posing challenges in identifying effective
treatment regimens (2, 3). Clinical guidelines and expert
consensus statements specifically addressing PSC may

have limitations (4, 5). Typically, management strategies
for PSC align with those established for NSCLC. Surgical
resection is the primary treatment modality whenever
feasible, and it has shown significant improvement in
overall survival for early-stage, operable PSC cases, with
5-year survival rates ranging from 11% to 19.5% (6-8).

Conventional imaging modalities such as computed
tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography (PET) provide insights
into tumor extent, lymph node involvement, and distant
metastases. However, the radiological features of PSC
are not entirely specific and can resemble other subtypes
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of NSCLC or even benign entities (9). Therefore, a
comprehensive pathological assessment is necessary for a
definitive diagnosis. Early detection and diagnosis of PSC
are crucial for improving patient outcomes.

Pulmonary inflammatory pseudotumor (PIP) is a
non-neoplastic lesion characterized by excessive cell
proliferation (10). However, on CT scans, PIPs often
present as solid pulmonary masses, which can be
potentially misinterpreted as malignancies such as
PSCs. This poses a diagnostic challenge and can influence
subsequent clinical treatments, including the decision
for surgery. Currently, certain CT features have been used
to differentiate PIPs from peripheral lung cancers (11, 12),
aiming to distinguish between benign and malignant
masses based on CT images. However, there is a lack of
literature investigating the differentiation of PIPs and
PSCs based on clinical and radiological characteristics.
This knowledge gap hinders our understanding of these
rare diseases and their differentiation ability and impacts
the timeliness of surgical interventions and prognosis.

Radiomics has emerged as a promising technique for
the in-depth analysis of quantitative features extracted
from medical images that are not easily identified by
the naked eye. It enhances diagnostic efficiency and
reduces misdiagnosis rates (13), particularly for lung
nodules and solid masses’ diagnosis and prognosis.
Machine learning, an advanced technique in computer
science, uses algorithms to identify patterns within large
datasets and make data-driven predictions or decisions
(14). Although limited reports exist on the application
of machine learning to differentiate between PSCs and
PIPs (15-17), there is a clinical imperative to proactively
distinguish between them through noninvasive CT scans,
especially during the initial diagnosis phase.

2. Objectives

This study aimed to assess the feasibility of
using radiomics-based machine learning methods to
differentiate between PIPs and PSCs based on CT images.
The reliability and generalizability of radiomics models
rely on their accuracy, which necessitates comparing
different machine learning approaches. This evaluation
will support the effectiveness and timeliness of clinical
treatment decisions in the next steps. By focusing on
specific radiomics features within these lesions, we
aimed to improve diagnostic accuracy compared to
methods based solely on clinical and radiological features.
Additionally, our study aimed to provide a preliminary
reference for future research on this rare disease.

3. Patients andMethods

3.1. Patient Population

This retrospective, single-center study was conducted
with institutional review board approval (2023HR23),
and written consent was waived due to its retrospective
nature. The study included 113 patients who were enrolled
between March 2013 and August 2022 at our hospital.
Among them, 21 patients had PSCs, and 92 patients had
PIPs. We specifically recruited patients who had their first
chest CT images taken at our hospital before treatment.
Inclusion criteriawere (1) non-contrast chest CT scanswith
thin-slice sections measuring 0.625 - 1.25 mm; (2) lesions
with a maximum diameter equal to or greater than 1 cm;
and (3) confirmed pathological diagnosis. Patients were
excluded if they had received preoperative chemotherapy,
radiotherapy, or chemoradiation treatment, had been
diagnosed with chronic systemic diseases or other
malignancies, or if the quality of their thoracic CT images
was unsatisfactory. Ultimately, a total of 90 patients (27
males; median age, 58.1 years) were included in the study,
comprising 14 patientswith PSCs and 76patientswith PIPs.
A flowchart illustrating the patient recruitment process is
provided in Appendix 1 of the Supplementary File.

3.2. Computed Tomography Technique

Dual-source CT scanning (Somatom Definition,
Siemens Medical Solutions, Germany) was performed
on all subjects without the use of contrast. Thin-slice CT
scans were acquired in a craniocaudal direction, covering
the entire lung from the apex to the base. The following
parameters were used for the chest CT examination:
Detector collimation ranging from 1 - 5 mm, beam pitch
ranging from 0.75 - 1.75 mm, tube voltage of 100 - 120 kV,
automatic tube current modulation, detector collimation
of 128 × 0.6 mm, and image matrix of 512 × 512. The
reconstructed images had a slice thickness of 0.625 - 1.250
mm and were presented with window levels of 1600, 600,
350, and 35 HU for visualizing the lung and mediastinal
anatomy.

3.3. Radiological and Clinical Data Acquisition

TheCT images and relevant clinical datawere obtained
from picture archiving and communication systems, as
well as the electronic medical records of the patients.
The collected clinical parameters included age, sex,
smoking status, prolonged fever, cough history, sputum,
bloody sputum, hemoptysis, pleural pain, asymptomatic
status, and white blood cell count. Two experienced
radiologists, one with 15 years and the other with 20 years
of experience in CT diagnosis, independently reviewed
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and evaluated the chest CT images of all subjects without
access to their clinical data. The following radiological
characteristics were recorded: Location, maximum
diameter of the lesion, boundary of the lesion, shape of
the lesion, lobulation sign, burr signs, vacuole sign, air
bronchial sign, necrotic zone, calcifications, halo sign,
satellite lesions, interlobular septal thickening, pleural
indentation, pleural effusion, and mediastinal or hilar
lymphadenopathy. To ensure the reproducibility of the
results, a subset of 50 subjects was randomly selected and
re-evaluated by the same observer after a 1-month interval.

3.4. Radiomics Feature Acquisition

The segmentation of the pulmonary lesions was
performed by a radiologist specialized in chest CT
diagnosis with a decade of experience. For this task,
the radiologist used ITK-SNAP software version 3.8.0. The
contouring process involved delineating the complete
tumor margin along the lesion edge. Prior to the analysis,
image stacksweremanuallymasked to remove extraneous
structures outside of the alveolar cavity, including blood
vessels and large airways.

The radiomics features were extracted from the
medical images using PyRadiomics version 3.0, an
open-source Python package for radiomics feature
extraction. A flowchart illustrating the process of building
the radiomicsmodel is shown in Figure 1.

A range of features was included for further analysis,
including first-order statistics, intensity histogram
statistics, shape descriptors (both 2-D and 3-D), and texture
features such as gray level dependence matrix and gray
level size zonematrix.

Initially, the radiomics features underwent standard
score (z score) transformation to address dimensional
heterogeneity caused by variations in value scales among
features. Subsequently, correlation analysis and the
least absolute shrinkage and selection operator (LASSO)
method were used to reduce the dimensionality of the
extracted features. Pearson correlation analysis was
applied to normally distributed data, while Spearman
correlationanalysiswasused fornon-normallydistributed
data. Features with a correlation coefficient exceeding
0.9 were removed from further analyses. The study
ultimately implemented a LASSO regression model with
5-fold cross-validation to select radiomics features with
nonzero coefficients. A comprehensive diagram of the
methodology is provided in Figure 1.

3.5. Development of Machine Learning Models

After successfully reducing the dimensionality of
radiomics features using the LASSO method, our focus

shifted to constructing robust radiomics models with
the primary goal of identifying a classifier capable of
exceptional recognition within the given database.
The careful selection of these features is of immense
significance, as they are believed to play a pivotal role
in distinguishing and precisely classifying between PIPs
and PSCs. To ensure the effectiveness and reliability of
our approach, we incorporated a comprehensive array
of machine learning algorithms renowned for their
popularity and success in classification tasks (18, 19).
Specifically, we used 5 well-established models: Logistic
regression (LR), classification and regression trees (CART),
support vectormachine (SVM), k-nearest neighbors (KNN),
and gradient boosting machine (GBM). By integrating
multiple algorithms, our intention was to encompass
diverse perspectives and exploit the strengths of each
model in accurately discerning tumor patterns. Through
meticulous comparison of the performance of these
algorithmic approaches, we aimed to identify an optimal
classifier model that demonstrates exceptional accuracy
and predictive power in recognizing PIPs and PSCs. This
rigorous evaluation process facilitated making informed
decisions regarding themost suitablemodel for our study,
ultimately enhancing the reliability and robustness of our
findings. The “caret” R packagewas used to explain these 5
machine learning approaches. Thirdly, during the model
trainingprocess, a control objectwasdefinedusing 10-fold
cross-validation, and the summary function was set to
“twoClassSummary,” enabling the retrieval of predicted
probabilities for different models. Subsequently, LR, SVM,
CART,KNN,andGBMwere trainedusing thecorresponding
functions “glm,” “svmLinear,” “rpart,” “knn,” and “gbm,”
respectively. The diagnostic performance of each model
was evaluated based on metrics such as area under
the curve (AUC), accuracy (ACC), F1 score, and log loss
using receiver operating characteristic curves (ROC) and
confusion matrices. The optimal radiomics model was
selected based on its superior performance.

3.6. Statistical Analysis

For the statistical analysis, we used R software version
3.6.3 and Python software version 3.5.6. To evaluate
interobserver variability and reliability, we used the
intragroup correlation coefficient (ICC). An ICC value
greater than 0.8 indicated high repeatability (20).
Student’s t test was used for continuous variables, and
the results were reported as mean ± SD. Categorical
variables were analyzed using either the chi-square test or
Fisher’s exact test, and the results were presented as ratios.
Subsequently, a multivariable LR analysis was performed
on the selected statistically significant features to identify
the ultimate predictor variables formodel development. A
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Figure 1. The flowchart for building the radiomicsmodel

2-tailed P value less than 0.05 was considered statistically
significant.

4. Results

4.1. Patients’ Population and Radiological Characteristics

In our study, a total of 90 patients were enrolled,
including 14with PSC and 76with PIP. Detailed clinical and
radiological features are presented in Tables 1 and 2.

Our results showed significant differences between
PSC and PIP patients in terms of pleural indentation,
mediastinal or hilar lymphadenopathy, age, smoking
status, and prolonged fever.

4.2. Machine Learning Models and Performances

In terms of image interpretation, the consistency
among the observers was assessed using the ICC, which
ranged from 0.977 to 1.000. These significant ICC values
indicate a strong consensus among the observers in
accurately interpreting the images. Initially, a total of
1186 radiomics features were extracted from plain CT
scans. To prioritize the most informative and relevant
features, some techniques for feature reduction and
selection were employed. Through this process, 7 features
with nonzero coefficients that demonstrated statistical
significance were identified (Figure 2).

These 7 featureswere selected based on their statistical
significance. Subsequently, the performance of 5 different
radiomics models (LR, SVM, GBM, KNN, and CART) was
assessed. The diagnostic potential of eachmodel and their
ability to differentiate between PIP and PSCwere evaluated
using ROC curve analysis. Figure 3 displays the ROC curves
of all 5models, highlighting their respective performance.

To further evaluate the diagnostic efficacy of the
models, multiple evaluation metrics (including AUC,
F1 score, and log loss) were considered. Among the
investigated models, GBM exhibited the highest level of
diagnostic accuracy, with an AUC value of 0.980, F1 score
of 0.967, and log loss of 0.161, as presented in Table 3 and
Figure 4.

4.3. Multivariable Logistic Regression Analysis for the
Combined Model

Our study aimed to develop a combined model
that integrates both the radiomics model and
clinical-radiological features, including age, pleural
indentation, mediastinal or hilar lymphadenopathy,
smoking status, and prolonged fever. Logistic regression
analysis demonstrated that only the GBM-based radiomics
model served as a significant factor (odds ratio [OR] = 8.119;
95% CI, 3.761-9.079; P = 0.006; Table 4).
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Table 1. Comparison of Demographic and Clinical Data Between Pulmonary Sarcomatoid Carcinoma and Pulmonary Inflammatory Pseudotumor Patients a

Variables Total (n = 90) PIP (n = 76) PSC (n = 14) P-Value

Age (y) 58.1 ± 9.2 57.3 ± 9.3 62.4 ± 7.2 0.030

Sex 0.056

Female 63 (70) 50 (65.8) 13 (92.9)

Male 27 (30) 26 (34.2) 1 (7.1)

Smoking status 0.009

Never 38 (42.2) 37 (48.7) 1 (7.1)

Smoker 52 (57.8) 39 (51.3) 13 (92.9)

Prolonged fever 0.027

No 77 (85.6) 68 (89.5) 9 (64.3)

Yes 13 (14.4) 8 (10.5) 5 (35.7)

Cough history 1.000

No 21 (23.3) 18 (23.7) 3 (21.4)

Yes 69 (76.7) 58 (76.3) 11 (78.6)

Sputum 0.573

No 35 (38.9) 31 (40.8) 4 (28.6)

Yes 55 (61.1) 45 (59.2) 10 (71.4)

Bloody sputum 0.058

No 61 (67.8) 55 (72.4) 6 (42.9)

Yes 29 (32.2) 21 (27.6) 8 (57.1)

Hemoptysis 0.286

No 72 (80) 59 (77.6) 13 (92.9)

Yes 18 (20) 17 (22.4) 1 (7.1)

Pleural pain 1.000

No 70 (77.8) 59 (77.6) 11 (78.6)

Yes 20 (22.2) 17 (22.4) 3 (21.4)

Asymptomatic 0.651

No 10 (11.1) 8 (10.5) 2 (14.3)

Yes 80 (88.9) 68 (89.5) 12 (85.7)

Total white blood cell count 6.6 (5.2, 9.3) 6.6 (5.3, 9.2) 6.6 (5, 10) 0.881

Abbreviations: PSC, pulmonary sarcomatoid carcinoma; PIP, pulmonary inflammatory pseudotumor.
a Values are expressed asmean ± SD or No. (%) unless otherwise indicated.

5. Discussion

We conducted an investigation to assess the efficacy
of CT-based radiomics models in differentiating
between PSCs and PIPs. Our findings highlighted that
the GBM-based radiomics model exhibited superior
diagnostic accuracy compared to other machine learning
approaches. Furthermore, we developed an integrated
CT-based model that synergistically incorporated clinical
predictors and GBM radiomics model to differentiate
betweenPSCsandPIPs, leading topromisingdifferentiated

outcomes.

In our investigation, various clinical features were
observed in the patients. Notably, patients with PSC
exhibited pleural indentation, advanced age, mediastinal
or hilar lymphadenopathy, and a history of smoking.
Conversely, patients with PIP commonly presented with
persistent fever. Accumulating evidence suggests an
association between mediastinal lymphadenopathy and
smokinghistory in thedevelopment of PSC. Recent studies
have reported mediastinal lymph node involvement in
nearly half of the patients at the time of diagnosis,
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Table 2. Comparison of Radiological Findings Between Pulmonary Sarcomatoid Carcinoma and Pulmonary Inflammatory Pseudotumor Patients

Variables Total (n = 90) PIP (n = 76) PSC (n = 14) P-Value

Location 0.943

Upper lobe 49 (54.4) 42 (55.3) 7 (50)

Middle lobe and lower lobe 41 (45.6) 34 (44.7) 7 (50)

Boundary of the lesion 1.000

Well-defined 35 (38.9) 30 (39.5) 5 (35.7)

Ill-defined 55 (61.1) 46 (60.5) 9 (64.3)

Lobulation sign 0.084

No 48 (53.3) 44 (57.9) 4 (28.6)

Yes 42 (46.7) 32 (42.1) 10 (71.4)

Burr signs 1.000

No 64 (71.1) 54 (71.1) 10 (71.4)

Yes 26 (28.9) 22 (28.9) 4 (28.6)

Vacuole sign 0.841

No 44 (48.9) 38 (50) 6 (42.9)

Yes 46 (51.1) 38 (50) 8 (57.1)

Air bronchial sign 0.156

No 52 (57.8) 41 (53.9) 11 (78.6)

Yes 38 (42.2) 35 (46.1) 3 (21.4)

Necrotic zone 0.406

No 38 (42.2) 34 (44.7) 4 (28.6)

Yes 52 (57.8) 42 (55.3) 10 (71.4)

Calcifications 1.000

No 82 (91.1) 69 (90.8) 13 (92.9)

Yes 8 (8.9) 7 (9.2) 1 (7.1)

Halo sign 0.637

No 47 (52.2) 41 (53.9) 6 (42.9)

Yes 43 (47.8) 35 (46.1) 8 (57.1)

Satellite lesions 0.211

No 61 (67.8) 49 (64.5) 12 (85.7)

Yes 29 (32.2) 27 (35.5) 2 (14.3)

Interlobular septal thickening 0.133

No 61 (67.8) 54 (71.1) 7 (50)

Yes 29 (32.2) 22 (28.9) 7 (50)

Pleural indentation 0.005

No 68 (75.6) 62 (81.6) 6 (42.9)

Yes 22 (24.4) 14 (18.4) 8 (57.1)

Pleural effusion 0.483

No 71 (78.9) 61 (80.3) 10 (71.4)

Yes 19 (21.1) 15 (19.7) 4 (28.6)

Mediastinal or hilar lymphadenopathy < 0.001

No 63 (70) 60 (78.9) 3 (21.4)

Yes 27 (30) 16 (21.1) 11 (78.6)

Maximumdiameter of the lesion (mm) 44.7 (38.2, 60.9) 44.5 (38.2, 56.8) 62 (40.2, 80.5) 0.146

Abbreviations: PSC, pulmonary sarcomatoid carcinoma; PIP, pulmonary inflammatory pseudotumor.
a Values are expressed as No. (%) unless otherwise indicated.

indicating a high likelihood of lymphatic spread in this
condition. Additionally, the presence of mediastinal
lymph node metastasis has been correlated with an
increased risk of distant metastasis and reduced overall

survival. These findings underscore the importance
of early detection and accurate staging of lymph node
involvement in the management of PSC (21, 22). Zhao et
al. (23) demonstrated a higher prevalence of smoking
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Figure 2. Radiomics features with nonzero coefficients remained via the least absolute shrinkage and selection operator.

history in patients with PSC and its close association with
poor prognosis. These findings emphasize the critical
role of smoking cessation in reducing the incidence and
mortality of PSC. On the other hand, a study by Kim et al.
also showed that feverwas a commonsymptomassociated
with PIP and can be a useful feature in guiding diagnosis
(24). This finding is consistentwith the results of our study.

Currently, there are relatively few studies on the
imaging characteristics of pulmonary pleomorphic
carcinoma. In contrast to PIPs, PSCs often exhibit
radiological characteristics accompanied by pleural
indentation, which is a common feature.

In this study, we conducted a radiomics-based analysis
to differentiate between PSCs and PIPs. We used logistic
multivariable analysis to integrate a GBM-based radiomics
model with clinical predictors. This combination was
based on the potential synergy between the quantitative
information captured by radiomics and the valuable
insights provided by clinically relevant predictors.
By combining these factors, our model offers a more
comprehensive understanding of the underlying
mechanisms and characteristics associated with each
tumor type, resulting in improved overall performance.
However, the LR analysis revealed that only the GBM-based

radiomics model served as an associate factor. Radiomics,
as an intelligent calculation-based and non-invasive
approach, uses original images to construct models,
enabling the extraction of additional information that
can reflect potentially relevant phenotypic features based
on tumor heterogeneity. This approach provides valuable
insights for both diagnosis and prognosis (15, 16).

In this study, the GBM-based radiomics model
exhibited the highest diagnostic performance, as
indicated by its exceptional values in terms of ACC,
AUC, and F1 score, while achieving the lowest log loss
value. Gradient boosting machine has established itself
as a powerful machine learning algorithm, offering
several advantages that make it well-suited for radiomics
analysis. First, GBM operates as an ensemble model,
iteratively combining multiple weak learners (decision
trees). This iterative process allows GBM to learn
from misclassified cases and focus on more intricate
samples, thereby enhancing its overall performance.
Moreover, GBM possesses a remarkable capacity to
handle complex interactions between predictors through
gradient optimization. Radiomics features often capture
intricate patterns and textures within medical images,
which can prove challenging to interpret using simple
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Figure 3. The receiver operating characteristic curves of all machinemodels

Figure 4. Diagnostic efficacy analysis of all machinemodels

linear models like LR. Gradient boosting machine’s
inherent ability to capture nonlinear relationships and
interactions between features enables it to adapt to
the complex and heterogeneous nature of radiomics

data. Additionally, GBM incorporates regularization
techniques such as shrinkage and feature subsampling,
effectively mitigating overfitting and bolstering the
model’s generalizability. Regularization helps avert the
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Table 3. Comparison of Diagnostic Performance Among Different Models

Model ACC F1 Score AUC Log Loss

SVM 0.878 0.938 0.914 0.273

CART 0.900 0.939 0.876 0.255

GBM 0.922 0.967 0.980 0.161

KNN 0.833 0.919 0.875 0.285

LR 0.878 0.942 0.915 0.242

Abbreviations: ACC, accuracy; AUC, area under the curve; SVM, support vectormachine; CART, classification and regression trees; GBM, gradient boostingmachine; KNN,
k-nearest neighbors; LR, logistic regression.

Table 4.Multivariate Logistic Regression Analysis to Discriminate Between Pulmonary Inflammatory Pseudotumor and Pulmonary Sarcomatoid Carcinoma

Variables B Wald OR (95% CI) P-Value

Age 0.12 0.184 1.127 (0.676∼ 3.108) 0.668

Smoking status -0.149 0.001 0.862 (0∼ 131) 0.981

Fever 2.225 0.001 9.252 (0.044∼ 1588.911) 0.979

Mediastinal or hilar lymphadenopathy 8.034 1.287 3084.472 (4.468∼ 10807) 0.257

Pleural indentation 7.048 1.077 1150.752 (0.915∼ 1541) 0.299

GBMmodel 34.33 3.388 8.119 (3.761∼ 9.079) 0.006

Abbreviations: GBM, gradient boostingmachine; OR, odds ratio.

risk of erroneously identifying spurious or irrelevant
features, thereby yielding a more robust and accurate
predictionmodel in radiomics analysis.

The findings of the present study are consistent with
those of previous studies. For instance, a study reported
that the GBM algorithm outperformed LR in predicting
early gastric cancer (25). Another study demonstrated
that GBM, when combined with dimensionality reduction
techniques, achieved higher accuracy and AUC values
compared to other machine learning models for
predicting peritoneal metastasis of gastric cancer (26).
Overall, GBM remains widely employed in the field of
machine learning due to its prowess in handling complex
data and generating precise predictions.

This study had several limitations that should be
acknowledged. First, it was conducted retrospectively
in a single center, which may have resulted in potential
selection bias and limited the generalizability of the
findings to other settings or populations. Second, the
study was constrained by a small sample size due to the
low incidence of PSC, making it challenging to collect
an adequate number of medical images. To further
validate the results, it is crucial to prospectively recruit
a larger number of patients in future studies. It is
worth noting that the differentiation between PSC and PIP
has received limited attention in the existing literature,
particularly regarding CT-based radiomics analysis, which
could extract more image information for differentiation.

Therefore, this preliminary study serves as a foundation
for future research in this area. Third, the lack of directly
related pathological tissue samples hindered the ability
to verify the findings and limited the capacity to test
hypotheses surrounding this matter, relying exclusively
on prior reports instead.

In conclusion, our study suggests that the radiomics
model basedonGBMdemonstrates exceptional diagnostic
performance compared to conventional diagnostic
methods. This highlights its potential utility as a
differentiation approach for distinguishing between PSCs
and PIPs. These findings have significant implications for
informing future clinical and surgical strategies.

SupplementaryMaterial

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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