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Abstract

Background: Mammography is the most fundamental and widely used method for detecting breast abnormalities.

Distinguishing malignant from benign lesions requires extracting relevant information, which can be challenging and time-

consuming for radiologists. Computer-aided diagnosis (CAD) techniques can serve as complementary diagnostic tools, assisting

radiologists in the early detection and analysis of abnormalities in mammograms.

Objectives: This study aimed to propose a CAD system for extracting significant features of abnormalities in breast

mammograms using Curvelet transform and fractal analysis, and classifying breast tumors as malignant or benign based on the

calculated features.

Patients and Methods: In this study, an efficient feature extraction method was applied, utilizing Curvelet transform and

fractal analysis, on a dataset comprising 113 abnormal images from the Mammographic Image Analysis Society (MIAS) database,

which included 62 benign and 51 malignant cases. The method yielded 575 features, but due to potential irrelevance or

redundancy, a multi-objective optimization (MOO) approach based on a genetic algorithm (GA) for an artificial neural network

(ANN), named GA-MOO-ANN, was proposed to obtain and focus on an optimal and effective feature set. As a result of this

approach, a set of 17 efficient features was extracted. The proposed algorithm was implemented in MATLAB 2014a, and the

performance metrics were calculated using 6-fold cross-validation.

Results: The experimental results demonstrated exceptional performance, with an accuracy (Acc) of 98.2%, specificity (Sp) of

100%, sensitivity (Se) of 96.8%, positive predictive value (PPV) of 100%, negative predictive value (NPV) of 96.2%, and an impressive

area under the curve (AUC) of 0.98, providing comparable results to other recent methods.

Conclusion: The current findings suggest that the proposed method could be a valuable tool for breast cancer diagnosis,

potentially reducing the number of unnecessary breast biopsies. This method may lead to more efficient patient evaluation and

earlier detection of breast tumors.
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1. Background

Breast cancer ranks as the most prevalent form of

cancer affecting women globally. According to the
International Agency for Research on Cancer (IARC),

breast cancer is the fifth leading cause of death among

Iranian women. Timely detection of breast cancer plays

a vital role in reducing complications and mortality

rates (1). Various diagnostic methods are available for
breast cancer, with mammography being the standard

screening approach that effectively reduces breast

cancer-related deaths. However, mammography-based

diagnosis often leads to diagnostic errors due to its

reliance on visual interpretation by radiologists with

varying levels of experience (2, 3). To address this issue,

computer-aided diagnosis (CAD) systems have been

proposed, primarily focusing on mass detection and

classification (4, 5). Feature extraction holds significant

importance as it can enhance diagnostic accuracy (6).
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In recent years, multi-resolution methods such as

Wavelet and Curvelet transforms have garnered

considerable attention from researchers in the field of
image processing, offering potential improvements to

CAD systems (7, 8). Previous studies have explored
Wavelet-based fractal and multi-fractal features for

breast cancer detection in various imaging scenarios (9,

10).

Karthiga et al. conducted a study on different

machine learning techniques for classification,

incorporating texture features derived from Curvelet

coefficients of the gray level co-occurrence matrix

(GLCM). Among these techniques, the cubic support

vector machine (CSVM) achieved an impressive accuracy

(Acc) of 93.3% when applied to 60 frontal images from

the Visual Inspection Laboratory Database (11).

A comparative study by Ayatollahi et al. investigated

the performance of Wavelet and Curvelet transforms.

The study focused on analyzing 16 non-mass-enhancing

lesions (NMELs) in breast dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI). A 725-element
feature vector was obtained using a support vector

machine (SVM) classifier. The results showed an Acc of

75%, specificity (Sp) of 87.5%, and sensitivity (Se) of 62.5%

(12).

Ancy and Nair investigated a novel CAD system

utilizing an efficient GLCM-based SVM algorithm for
tumor and non-tumor detection. The system was tested

on a dataset consisting of 100 pairs of images from the

Mammographic Image Analysis Society (MIAS) and

United States Digital Mammography (USFDM) databases.

The combination of GLCM feature extraction and SVM
classification yielded promising results, with an Acc of

81%, Sp of 99%, and Se of 73% (13).

Saraswathi et al. introduced a novel feature

extraction method that combined Curvelet transform

with particle swarm optimization (PSO). The method

was tested on a dataset of 182 images from the MIAS

database. The extracted features were fed into an SVM

algorithm for classification, resulting in an Acc of 96%,

Sp of 91.7%, and Se of 92.1% (14).

Dheeba et al. proposed a novel texture-based

classification approach for breast abnormalities using a
particle swarm optimized wavelet neural network

(PSOWNN). The study utilized 261 images from a clinical

mammographic database. The Acc, Sp, and Se achieved

were 93.671%, 92.105%, and 94.167%, respectively (15).

2. Objectives

The objectives of this study include detecting and

distinguishing tumors from healthy tissue, as well as

extracting optimal features to assist radiologists in

diagnosing breast cancer image abnormalities. The

study proposed a classification method based on texture
extraction using Curvelet transform and fractal features,

employing a genetic algorithm-multi-objective
optimization-artificial neural network (GA-MOO-ANN)

approach. This novel method, which has not been

explored in previous studies, aims to achieve two
important objectives: The simultaneous search for

significant subsets of features and the optimization of
the network structure. Through this algorithm, it is

possible to select the most appropriate subset of

features and the best state of network optimization,

focusing solely on the effective features.

The experimental results demonstrated an accuracy

(Acc) of 98.2%, specificity (Sp) of 100%, sensitivity (Se) of

96.8%, positive predictive value (PPV) of 100%, negative

predictive value (NPV) of 96.2%, and an impressive area

under the curve (AUC) of 0.98, which are comparable to

results achieved by other recent methods in the field.

3. Patients and Methods

This section provides a detailed description of the

various components of the proposed CAD system, with

an overview of the overall block diagram illustrated in

Figure 1.

3.1. Mammographic Image Analysis Society Database

The MIAS database, established in 1994 by J. Suckling

et al., was developed by British research groups and

provides a comprehensive digital mammography

resource. The collection contains a total of 322 images,

all in portable gray map (PGM) format with a grayscale

resolution of 50 microns and a size of 1024 × 1024 pixels

(10). For this research, regions of interest (ROIs) were

extracted from 113 mammography images sourced from

the MIAS database. The background tissues of the

images are categorized into three types: Fatty, Fatty-

glandular, and Dense-glandular. Additionally, the

abnormalities present in the images include

Calcifications, Well-defined/circumscribed masses,

Spiculated masses, other ill-defined masses,

Architectural distortion, and Asymmetry, which are the

focus of this study. Images of normal, healthy tissue

were not considered.

3.2. Preprocessing

The preprocessing steps for mammograms are as

follows:

(1) Original image: The initial mammogram image is

shown in Figure 2A.

https://brieflands.com/articles/ijradiology-146102


Torabi Jafroudi F et al. Brieflands

I J Radiol. 2024; 21(2): e146102 3

Figure 1. Block diagram of proposed method

(2) Noise removal: A median filter is applied to
remove noise. The median filter is effective in

eliminating salt and pepper noise, as well as Gaussian

noise, while preserving image sharpness. For optimal

results in mammography, a 3 × 3 window size is used for

the filter (Figure 2B).

(3) Artifact Removal: To remove background artifacts,

threshold values ranging from 0.1 to 0.9 are tested. A

threshold value of 0.9 is found to entirely eliminate

background artifacts (Figure 2C). The connected

component method is then used to extract the breast

region from the binary image without the background

(Figure 2D).

(4) Pectoral muscle removal: The pectoral muscle

region, typically located in the corner of mammograms,

does not affect the detection of abnormalities. It is

necessary to separate the pectoral muscle from the

breast region. A modified Local Seed Region Growing

method, based on the position of the mammogram, is

employed to extract the pectoral muscle. Since the MIAS

database includes both left and right mammograms,

the seed point for the extraction process is
automatically determined by counting the number of

non-zero pixels in each half of the image. This method

identifies the breast's position in the mammogram

based on the distribution of non-zero pixels on each

side of the image (Figure 2E).

(5) Image Enhancement: The contrast-limited

adaptive histogram equalization (CLAHE) algorithm, a

widely used image enhancement technique, is applied

to enhance the contrast and improve the quality of the

mammograms (Figure 2F).

(6) Segmentation: Thresholding is employed to

eliminate the background by assigning intensity values

to pixels and classifying them as either object or

background. Otsu's method, a commonly used global

thresholding technique, is applied for image

segmentation, which separates high-intensity regions

from the original image and successfully segments the

pectoral muscle (Figure 2G).

3.3. Feature Extraction Using Curvelet Transform

https://brieflands.com/articles/ijradiology-146102
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Figure 2. Preprocessing results of proposed method: A, original image; B, result of median filter; C, binary image with threshold value 0.9; D, background artifacts removal
image using connected component method; E, the pectoral muscle extracted image using modified local seed region growing method; F, result of contrast limited adaptive
histogram equalization (CLAHE) filter; G, image segmentation result by Otsu threshold method.

In the field of image processing, the presence of

curved edges, as opposed to straight lines, presents

challenges for certain transforms, such as the Ridgelet

transform, in accurately detecting the structure of

curved tissue textures (13, 16). The Curvelet transform,

however, is a novel multi-resolution analysis tool that

excels at representing edges and providing geometric

information related to scale, location, and direction. It

follows a scaling law where the width is approximately

equal to the square of the length. The discrete Curvelet

transform, proposed by Candes and Donoho, offers an

optimal representation of objects with edges and is

particularly suitable for image reconstruction. Unlike

the 2D Wavelet transform, the Curvelet transform

effectively represents 2D objects with a "dotted curved

surface," overcoming the limitations of the Wavelet

transform. Additionally, the Curvelet transform covers

the entire frequency range, unlike other transforms,

such as the Gabor Transform, which may lead to

information loss (13, 14, 16).

In the proposed CAD system, the discrete Curvelet

transform and fractal dimension parameters are

utilized to extract features from mammograms.

Additionally, seven statistical features (energy, entropy,

mean, standard deviation, maximum probability,

inverse difference moment, and uniformity) are

computed for each sub-band. The Curvelet coefficients,

as shown in Table 1, are directly calculated for each

region of interest (ROI). Ultimately, a feature vector is

constructed to classify abnormalities.

Table 1. Statistical Features a

Variables Formula

Energy

Entropy

Mean

Max probability

Inverse difference moment

Homogeneity

Abbreviations: STD, standard deviation; Max, maximum.

a STD: 

3.4. Feature Selection and Classification
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Following the image decomposition, a total of 575

features were extracted from 512 × 512 regions of interest

(ROIs). This large number of extracted features poses

challenges, as some may be ineffective, and there may be

internal correlations within the feature set. Utilizing all

features would result in a complex and time-consuming

computational process. To address this, the algorithm

generates a Pareto front, representing a set of solutions

that simultaneously minimize two competing

objectives: The number of effective features and the

prediction error. Consequently, two fitness functions are

considered. Fitness function 1 is associated with the

number of effective features selected from the pool of

575 extracted features. Fitness function 2 is calculated

based on formula:

The Pareto front obtained in this study is shown in

Figure 3. The information derived from its analysis,

including the number of optimal points, the number of

selected features, and the prediction error, is presented

in Table 2.

Figure 3. The Pareto front obtained using genetic algorithm-multi-objective
optimization (GA-MOO) for feature selection

Table 2. Information About the Pareto Front Obtained in the Present Study

Point Number Number of Selected Features Error of Prediction

1 42 0.01743

2 28 0.01755

3 17 0.0177

4 12 0.06195

5 11 0.1416

Point Number Number of Selected Features Error of Prediction

6 7 0.177

7 6 0.2743

8 4 0.3097

9 3 0.4336

3.5. Statistical Analysis

To calculate the probability of abnormalities in each

image, a three-layer feed-forward artificial neural

network (ANN) was utilized. The hidden layer consisted

of 6 neurons, while the output layer had one neuron.

The number of neurons in the input layer was

automatically determined by the GA-MOO-ANN method.

The ANN was evaluated using the 6-fold cross-
validation method. The dataset was randomly divided

into 6 subgroups, each containing 16 samples. Training

and testing were repeated 6 times, with one subgroup
reserved for testing and the remaining subgroups used

for training in each iteration. Additionally, a subgroup
of 17 samples was held for the final testing. This process

was repeated 6 times to ensure that each subgroup was

used exactly once for model testing. The results from
these 6 repetitions were averaged to obtain the accuracy

(Acc) of the ANN classifier.

The performance evaluation indicators of the ANN

classifier included sensitivity (Se), specificity (Sp),

accuracy (Acc), positive predictive value (PPV), and

negative predictive value (NPV). These metrics were

derived from the concepts of true positive (TP), true

negative (TN), false positive (FP), and false negative (FN).

The relationships between these performance indicators

are presented in Table 3, and they were calculated based

on the values obtained from the confusion matrix

shown in Figure 4.

Table 3. Performance Indices

Indices Formula Concept

Se Give true positive rate

Sp Give true negative rate

Acc Closeness to the true value

PPV Give positive prediction rate

NPV Give negative prediction rate

Abbreviations: Se, sensitivity; TP, true positive; FN, false negative; Sp, specificity;

TN, true negative; FP, false positive; Acc, accuracy; PPV, positive predictive value; NPV,

negative predictive value.

1 − Error of Prediction = Acc (%)

TP

TP +  FN

TN

TN +  FP

TP  +  TN

TP  + TN 
+ FP  +  FN

TP

TP + FP

TN

TN +  FN
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Figure 4. The confusion matrix of proposed method

4. Results

In this study, 113 images were selected from the MIAS

database, comprising 62 benign and 51 malignant

images. The preprocessing steps involved noise removal

from mammograms and the application of masks to

eliminate unnecessary parts of the images. ROI

extraction was performed to remove unwanted regions

such as image labels, pectoral muscles, and background

using the connected component technique and a

modified region growing method with automatic seed

point selection. Subsequently, the CLAHE filter was

applied for image enhancement, and the Otsu

thresholding method was used for image segmentation

to obtain accurate ROIs. Feature extraction from the

ROIs involved applying the discrete Curvelet transform

and fractal dimension parameters. Additionally, the

seven statistical criteria listed in Table 1 were computed

for each feature vector. As a result, 575 statistical

parameters were extracted using the discrete Curvelet

transform and fractal dimension parameters.

Tumor shape plays a crucial role in breast cancer

diagnosis, and it has been medically established that

malignant tumors tend to have sharp edges, indicating

high-frequency content. The Curvelet transform, which

has been used in recent studies, offers better definition

of frequency content. By capturing texture information,

the Curvelet transform is particularly effective in

detecting the sharp edges or margins of tumors.

Additionally, the fractal parameter is a highly accurate

indicator of the level of disorder in the tumor region. To

focus on the most significant set of features, the GA-

MOO-ANN was employed, and its Pareto front is

displayed in Figure 3, with the selected optimal point

being point 3. From the results obtained from the Pareto

front in Figure 3 and the information in Table 2

regarding the number of selected features, the

percentage of prediction error at point 3 is 0.0177, with

17 features being chosen. According to Equation 1, this

indicates that GA-MOO-ANN selected 17 features as the

best among the 575 features, achieving an Acc of 98.23%.

Subsequently, performance indicators such as Se, Sp,

Acc, PPV, and NPV of the ANN classifier were determined

based on the values presented in the confusion matrix

shown in Figure 4. Additionally, the receiver operating

characteristic (ROC) curve was plotted in Figure 5. As

most studies commonly evaluate the area under the

curve (AUC), this criterion was employed for

comparison. In the present study, the AUC is calculated

to be 0.9814. Table 4 compares the performance

indicators of the proposed method with those of recent

published studies.

Figure 5. Receiver operating characteristic (ROC) curve of the proposed work

Table 4. Comparison of Performance Value of the Proposed Method with Recently
Published Studies

Reference
Number

Detection Method
Employed

Acc
(%)

Sp
(%)

Se
(%) AUC

( 11) CSVM 93.3 -------- ------- -------

( 12) SVM 75 87.5 62.5 0.75

( 13) SVM 81 99 73 0.75

( 14) SVM 96 91.7 92.1 -------

( 15) PSOWNN 93.67 92.10 94.16 0.96

This work GA-MOO-ANN 98.2 100 96.8 0.98

Abbreviations: Acc, accuracy; Sp, specificity; Se, sensitivity; AUC, area under the

curve; CSVM, cubic support vector machine; SVM, support vector machine; PSOWNN,

https://brieflands.com/articles/ijradiology-146102
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particle swarm optimized wavelet neural network; GA-MOO-ANN, genetic algorithm

based multi-objective optimization of an artificial neural network.

5. Discussion

The accurate detection and classification of breast

cancer abnormalities remain a critical challenge in

medical imaging. This study presents a novel approach

that leverages the strengths of both the Curvelet

transform and fractal analysis to enhance the analysis of

breast cancer images. The Curvelet transform excels at

representing edges and capturing geometric

information related to scale, location, and direction,

making it particularly suitable for analyzing complex

medical images. By integrating this with fractal analysis,

which provides insights into spatial heterogeneity and

complexity, we aim to address some of the limitations of

traditional transformation methods. This combined

approach promises improved detection of

abnormalities, potentially leading to more accurate

diagnosis and treatment.

Our proposed method utilizes the GA-MOO-ANN

algorithm to optimize feature selection while

minimizing prediction error. By focusing on two key

objectives—the selection of an effective feature set and

the reduction of prediction error—we derived a Pareto

front that balances these goals. The performance

metrics obtained through 6-fold cross-validation were

impressive, achieving an accuracy of 98.2%, specificity of

100%, sensitivity of 96.8%, positive predictive value (PPV)

of 100%, negative predictive value of 96.2%, and an area

under the curve of 0.98. These results are notably

superior when compared to recent literature, as shown

in Table 4, reinforcing the efficacy of our approach in

accurately identifying abnormalities.

Despite the promising results, there are several

limitations to consider. First, while the GA-MOO-ANN

algorithm effectively selects features, it may still lead to

redundancy or overlook critical features that could

enhance the model's performance. Secondly, the study's

evaluation was based on a 6-fold cross-validation

method, which, while robust, may not fully represent all

potential variations in the dataset. Future studies

should incorporate larger and more diverse datasets to

ensure the generalizability of the proposed model.

Lastly, the complexity of implementing the Curvelet

transform and fractal analysis may pose challenges in

clinical settings, underscoring the need for user-friendly

software solutions.

In conclusion, the combination of the Curvelet

transform with fractal analysis represents a significant

advancement in the classification of breast cancer

abnormalities. The integration of these techniques with

the GA-MOO-ANN algorithm not only enhances feature

selection but also minimizes prediction errors, leading

to high accuracy rates. Given the high AUC and other

performance metrics, our proposed model

demonstrates considerable promise as a reliable tool for

aiding medical professionals in breast cancer detection.

Further research is warranted to explore its application

in clinical settings and assess its performance across

varied datasets.
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