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Abstract

Background: Osteoporosis is a systemic skeletal disorder marked by reduced bone density and microarchitectural

deterioration, leading to increased fracture risk. While the DEXA scan is the WHO-recommended diagnostic standard, its

limitations necessitate alternative methods. Emerging magnetic resonance imaging (MRI) techniques, radiomics, and machine

learning promise to enhance osteoporosis diagnosis through detailed analysis of lumbar MRI apparent diffusion coefficient

(ADC) maps, potentially revolutionizing early detection and treatment strategies.

Objectives: In this study, we are going to evaluate the performance of machine learning (ML) models using radiomics features

of lumbar MRI ADC map for osteoporosis detection, and to identify significant features and their diagnostic thresholds. Specific

performance metrics such as accuracy, sensitivity, specificity, and Area Under the receiver operating characteristic (ROC) Curve

(AUC) were assessed.

Patients and Methods: Patients and Methods: This retrospective study employed a cross-sectional design, with a total of 140

cases, including 21 with osteoporosis. The study's inclusion criteria consisted of concurrent lumbar MRI and DEXA within a year,

while exclusion criteria included infectious or neoplastic lumbar lesions, fractures, instrumentation, significant

osteodegenerative changes, cases where the first four lumbar vertebrae were not included in the imaging field, and absence of

diffusion-weighted imaging. Manual segmentation of lumbar vertebrae from ADC maps was performed to create a

comprehensive dataset, comprising 5,580 radiomics features per case. Subsequently, the top five features selected by fast

correlation-based filter (FCBF) were used to test the performance of seven Machine Learning algorithms (k-Nearest neighbors,

decision tree, random forest, logistic regression, support vector machine, naive bayes, and neural network). Statistical tests and

ROC curve analysis were conducted to determine the significance and thresholds of these features.

Results: The study included 140 cases, with 132 females (94.3%) and 8 males (5.7%), and a mean age of 65.32 ± 8.50 years. The

mean BMI was 31.43 ± 5.53 kg/m² for females and 26 ± 3.59 kg/m² for males. In terms of demographic differences, no significant

age difference was found between the osteoporotic and non-osteoporotic groups (P = 0.889). However, the osteoporotic group

had significantly lower mean body weight (64.90 ± 10.13 kg vs. 74.68 ± 13.94 kg, P = 0.003) and BMI (27.40 ± 4.38 kg/m² vs. 31.77 ±

5.52 kg/m², P = 0.001) compared to the non-osteoporotic group. The median interval between DEXA and lumbar MRI was 1 month

(range 0.1 - 11.87 months). The Neural Network model demonstrated the highest performance with an AUC of 0.616 and a

classification accuracy of 0.764 using all features. The Naive Bayes model, using the top five features selected by FCBF, showed

the highest performance with an AUC of 0.913, accuracy of 0.907, sensitivity of 0.667, and specificity of 0.95. All ML models’

performance were elevated by feature selection. Independent t-tests and Mann-Whitney U tests identified 521 and 670 significant

features, respectively (P < 0.05). ROC analysis revealed 58 features with AUC values above 0.70.

Conclusion: This study's findings suggest that ML models, particularly the Naive Bayes algorithm, can effectively use lumbar

ADC map radiomics to diagnose osteoporosis. These findings could enhance early detection and treatment strategies,

potentially improving patient outcomes and reducing the burden of osteoporotic fractures. This study also established

threshold values for significant features.
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1. Background

Osteoporosis is a systemic skeletal disease

characterized by decreased bone density and

impairment in bone tissue microarchitecture, causing

more fragile bones and a greater likelihood of fractures

(1). Osteoporosis is a common public health problem

worldwide, and it depends on many factors, such as

ethnicity, gender, age, nutritional status, drug use, and

diseases affecting bone density (1, 2). Osteoporosis and

osteoporotic fractures have undesirable consequences

on the individual and society in terms of financial,

psychosocial, physical, and quality of life aspects (1, 2).

This is why early diagnosis of osteoporosis, especially

before the development of fractures, is essential.

World Health Organization (WHO) adopted the bone

mineral density (BMD) test with dual-energy X-ray

absorptiometry (DEXA) as a reference standard in 1994

(3). The T-score, which reflects how much standard

deviation (SD) above or below the mean BMD of a young,

healthy white woman, is used by WHO to identify

osteoporosis. When the T-score is -2.5 SD or less,

osteoporosis is diagnosed (2). While DEXA is economical

and non-invasive, it has low sensitivity to predict

fractures and involves low-dose ionizing radiation (4, 5).

Furthermore, it has some limitations, such as the

possibility that reference data for BMD provided by

manufacturers may not be appropriate for local

populations, being affected by body size,

osteodegenerative changes, vascular calcifications, prior

injected contrast media, fractures and deformities, two-

dimensional measurement of BMD, and operator

dependency (4, 6). Other imaging modalities such as

quantitative computed tomography (QCT), quantitative

ultrasound (QUS), and high-resolution peripheral

quantitative computed tomography (HR-pQCT)

emerged as a probable alternative to DEXA. Quantitative

computed tomography provides 3D imaging and

accurate bone density measurements but is limited by

higher radiation doses and costs. Quantitative

computed tomography is portable and radiation-free,

suitable for screening but less accurate than DEXA and

QCT. High-Resolution peripheral quantitative computed

tomography offers detailed bone microarchitecture

assessment, improving fracture prediction and

monitoring therapy, but its use is restricted by high

costs and limited availability (7-9).

Many studies in the literature have evaluated and

demonstrated the use of various magnetic resonance

imaging (MRI) techniques in the diagnosis of

osteoporosis. In osteoporotic bone, the proportion of

adipose tissue increases as bone production declines,

which is thought to be caused by the differentiation of

stromal cells into adipocytes rather than osteoblasts (10,

11). The amount of fat, protein, water, and bone cells

determines how the bone marrow appears on the MRI

sequence (5, 12-20). Among these studies, the apparent

diffusion coefficient (ADC) values decreased in

osteoporotic patients, which was hypothesized to be

related to a decrease in diffusion due to the narrowing

of the extracellular space as a result of increasing

adipose tissue (5, 12, 15, 16, 19, 20). Apparent diffusion

coefficient denotes a biological tissue's particular

diffusion capacity, microscopic structure, and

organization (21).

Radiomics and machine learning (ML) offer novel

approaches for osteoporosis diagnosis by extracting

high-dimensional data from medical images, which

traditional methods might overlook. Radiomics can

quantify tissue heterogeneity and capture subtle

changes in bone microarchitecture, while ML

algorithms can analyze these complex data sets to

identify patterns indicative of osteoporosis (14, 17, 22,

23). These techniques could complement existing

diagnostic methods, such as DEXA, by providing more

detailed and accurate assessments of bone health (22).

Early and accurate detection of osteoporosis using these

advanced techniques could potentially lead to better

clinical outcomes by enabling timely intervention and

personalized treatment plans, thus reducing the risk of

fractures and associated complications.

2. Objectives

The primary objective of this study is to evaluate the

diagnostic performance of various ML models,

specifically naive bayes and neural networks, in

identifying osteoporosis using radiomics features

extracted from lumbar MRI ADC maps. This will be

measured using performance metrics such as AUC,

accuracy, sensitivity, specificity, F1 score, and recall.

Additionally, the secondary objective is to identify the

most significant radiomics features that contribute to

accurate osteoporosis diagnosis. The hypotheses
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guiding this study are: (1) machine learning models can

significantly improve the diagnostic accuracy of

osteoporosis compared to traditional methods; and (2)

specific radiomics features from lumbar MRI ADC maps

are significantly associated with osteoporosis and can

reliably differentiate between osteoporotic and non-

osteoporotic cases. These objectives and hypotheses are

designed to provide a comprehensive evaluation of the

potential of ML in enhancing osteoporosis diagnosis,

with a focus on both model performance and feature

significance.

3. Patients and Methods

3.1. Study Design and Patient Selection

This cross-sectional study retrospectively scanned

cases referred to the Radiology Department between

01/01/2015 and 31/12/2020. Lumbar MRIs were obtained

from a Philips Ingenia 1.5T MRI system (Philips, Best,

Netherlands), and BMD measurements were acquired

using a DEXA device (Lunar Prodigy, model 8743; GE

Lunar, Madison, WI, USA). Lumbar MRIs and DEXA

examinations from the same patients, performed within

one year of each other, were included unless they met

the exclusion criteria.

Exclusion criteria were as follows:

(1) Interval exceeding one year between lumbar MRI

and DEXA examinations,

(2) Presence of an infectious or neoplastic lesion in

any lumbar vertebral body,

(3) Fracture of a lumbar vertebral body,

instrumentation, or osteodegenerative changes that

could impair the measurements,

(4) Cases in which the first four lumbar vertebrae

were not included in the imaging field,

(5) Absence of diffusion-weighted imaging.

The study continued with 140 participants, 21 of

whom had osteoporosis, after exclusion (Figure 1). The

cases’ height and weight were recorded. Anterior-

posterior lumbar vertebrae BMD was routinely

measured. The DEXA scan used L1-4 as the basis for T-

scores. The cases were classified as “osteoporosis” if the

T-score was ≤ -2.5, and “non-osteoporosis” if the T-score

was > -2.5.

3.2. Image Acquisition

The lumbar MRI diffusion-weighted imaging

sequence was acquired axially on a Philips Ingenia 1.5T

MRI device (Philips, Best, Netherlands). The sequence

utilized a spin-echo technique with fat suppression

(SPIR) and a parallel imaging method (SENSE). The pulse

repetition time was 7505 milliseconds, the echo time

was 60 milliseconds, and the echo train length was 43.

The slice thickness was 3 mm, with a 3 mm gap between

slices. the field of view (FOV) was 225 × 225 mm², and the

b-values were 0 and 650 s/mm².

The PACS software available in our hospital was used

as the archiving system. Lumbar MRI diffusion-weighted

images (b-values of 0 and 650 s/mm²) of the cases that

met the criteria were transferred to the 3DSlicer 4.8.1

program in DICOM (Digital Imaging and

Communications in Medicine) format. First,

monoexponential ADC maps were created with the

module named DWModeling.

3.3. Segmentation

Segmentation was performed manually by an

experienced board-certified radiologist. To ensure

consistency, the intraobserver reliability was evaluated

using the intraclass correlation coefficient (ICC), which

measured the absolute agreement between the features

obtained from two separate segmentation sets

performed at a one-month interval. Features that

achieved good (0.75 ≤ ICC < 0.9) to excellent (ICC ≥ 0.9)

intraobserver reliability were considered stable.

The contours were meticulously drawn to closely

follow the cortical bone while remaining within the

boundaries of the vertebral body. Each vertebral level

was segmented separately and named as L1, L2, L3, and

L4. Additionally, inspired by the DEXA assessment,

which provides average bone mineral density values for

L1, L2, L3, and L4 levels, the segmentations were

combined into two separate sets: L1-4 and L2-4.

Consequently, a total of six segmentations—L1, L2, L3, L4,

L1-4, and L2-4—were obtained for each case (Figure 2).

3.4. Preprocessing and Radiomics Feature Extraction

Following the segmentation process, features were

extracted from segmented volumes using the

PyRadiomics-based Radiomics module. Prior to feature

extraction, a consistent configuration was applied

across all cases. Specifically, under the module’s

“resampling and filtering” section, the bin width was

https://brieflands.com/articles/ijradiology-147913
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Figure 1. Patients’ enrollment diagram

Figure 2. Segmentation process on 3D Slicer software of lumbar vertebrae

fixed at 25. Additionally, the Laplacian of gaussian filter

kernel size was set to 3 mm, and wavelet-based features

were enabled to generate transformed filtered images.

This standardization aimed to achieve uniformity

among cases, increase the volume of data, and capture

high dimensionality in the radiomics dataset.

Subsequently, for each of the L1, L2, L3, L4, L1-4, and L2-
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4 segmentations, the following features were extracted:

- First-order features (18 features) from the original

images

- Second-order features based on gray level co-

occurrence matrix (GLCM) (24 features)

- Second-order features based on gray level

dependence matrix (GLDM) (14 features)

- High-order features based on gray level run length

matrix (GLRLM) (16 features)

- High-order features based on gray level size zone

matrix (GLSZM) (16 features)

- High-order features based on neighborhood gray-

tone difference matrix (NGTDM) (10 features)

Additionally, features were extracted from Laplacian

of Gaussian-filtered images with a kernel size of 3 mm:

- First-order features (18 features)

- Second-order features based on GLCM (24 features)

- Second-order features based on GLDM (9 features)

- High-order features based on GLRLM (16 features)

- High-order features based on GLSZM (16 features)

- High-order features based on NGTDM (5 features)

Furthermore, a total of 744 features were obtained

from wavelet-transformed images for each case,

resulting in a grand total of 5,580 features across all

cases.

3.5. Feature Selection, Model Validation, Classification, and
Performance Evaluation

For classification using ML algorithms, the Orange

data mining program version 3.30 was employed. The

dataset consisted of 5,580 features and 140 cases, which

were subjected to classification using seven distinct ML

algorithms: k-nearest neighbors (kNN), decision tree,

random forest, logistic regression, support vector

machine (SVM), naive bayes, and neural network. The

classification was performed both before and after the

feature selection process using these seven ML

algorithms to evaluate the positive effect of feature

selection on the performance metrics.

In this study, we used the fast correlation-based filter

(FCBF) method to select five features from the extracted

radiomics data. The choice of five features was based on

preliminary experiments, aiming to balance the trade-

off between reducing dimensionality and retaining

significant predictive power. This approach helps

mitigate the risk of overfitting by focusing on the most

relevant features while avoiding the inclusion of

redundant or less informative ones. We recognize that

the optimal number of features may vary with different

datasets and encourage further research to explore this

aspect.

The ML models were validated using 10-fold cross-

validation to ensure robust evaluation. This method

involves dividing the dataset into ten equal parts, with

each part used as a validation set while the remaining

nine parts are used for training. This process is repeated

ten times, with each part serving as the validation set

once. The performance metrics were calculated by

averaging the results from each fold, providing a more

reliable estimate of the model's performance compared

to a single train-test split.

The performance metrics, including AUC (Area Under

the Curve), classification accuracy (CA), F1 score,

precision (positive predictive value), recall (sensitivity),

and specificity, were calculated for each fold. These

metrics provide a comprehensive evaluation of the

model’s diagnostic capabilities, measuring its ability to

correctly identify positive and negative cases of

osteoporosis. The use of cross-validation ensures that

the models are not overfitted to a particular subset of

the data and can generalize well to unseen data.

3.6. Conventional Statistical Analysis

IBM SPSS Statistics for Windows, version 22 (IBM

Corp., Armonk, NY, USA), was used for conventional

statistical analysis. After evaluating the ML model

performance, independent samples t-test and Mann-

Whitney U test were performed to determine whether

each feature showed a statistically significant difference

in osteoporosis status. The normal distribution of data

was assessed using the Kolmogorov-Smirnov test and

histogram graphs. Means and SDs for normally

distributed data and medians and interquartile ranges

for non-normally distributed data were expressed as

mean ± SD and median (interquartile range),

respectively. Categorical data were expressed as counts

and percentages.

Receiver Operating Characteristic curve analysis was

performed for features found to be significant in these

tests, and threshold values were determined. Threshold

values for significant radiomics features were

established using the Youden index. The Youden index

was employed to identify the optimal cut-off points that

https://brieflands.com/articles/ijradiology-147913
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maximize the sum of sensitivity and specificity, thereby

ensuring balanced and effective discrimination between

osteoporotic and non-osteoporotic cases. A P-value of <

0.05 was considered significant in all statistical results.

3.7. Ethical Considerations

This study was approved by the Clinical Research

Ethics Committee of Balikesir University Faculty of

Medicine on 26/05/2021, with the decision number

2021/129. Informed consent was not required due to the

retrospective nature of the study.

4. Results

A total of 140 cases (132 females, 8 males; mean age

65.32 ± 8.50 years) were included. For women, the mean

age was 65.20 ± 8.19 years, and for men, it was 67.22 ±

13.28 years. Female subjects had a median height of 1.53 ±

0.08 m, mean body weight of 73.21 ± 13.81 kg, and mean

BMI of 31.43 ± 5.53 kg/m². Male subjects had a mean

height of 1.67 ± 0.08 m, mean body weight of 73.25 ±

15.64 kg, and mean BMI of 26 ± 3.59 kg/m².

Age, body weight, and BMI fit a normal distribution

for all cases and by gender, except height, which was

normally distributed only for males. An independent

samples t-test showed no significant age difference

between osteoporotic and non-osteoporotic groups (P =

0.889), but body weight and BMI were significantly

different (P = 0.003 and P = 0.001, respectively). The

osteoporotic group had lower mean body weight (64.90

± 10.13 kg) and BMI (27.40 ± 4.38 kg/m²) compared to the

non-osteoporotic group (74.68 ± 13.94 kg and 31.77 ± 5.52

kg/m²) (Table 1). No significant difference in height was

found (P = 0.412).

The median interval between DEXA and lumbar MRI

was 1 month (max 11.87 months) (Figure 3).

The neural network was the top-performing ML

model using 5,580 radiomics features for osteoporosis

detection (AUC 0.616, CA 0.764, F1 score 0.108, precision

0.125, recall 0.095, specificity 0.882) (Figure 4). Feature

selection with FCBF improved performance across seven

ML models (Table 2), with Naive Bayes achieving the

highest performance (AUC 0.913, CA 0.907, F1 score 0.683,

precision 0.7, recall 0.667, specificity 0.95) (Tables 3 , 4

and Figure 5A and B).

All features had ICC values > 0.75, indicating

reliability. Independent samples t-test and Mann-

Whitney U tests identified 521 and 670 significant

features (P < 0.05) for osteoporosis status, respectively.

Receiver operating characteristic (ROC) analysis showed

58 features with AUC > 0.70, predominantly from

wavelet-transformed images (42 features), mainly from

the LHL subvolume (30 features) and the L1 vertebra

level (38 features). The Youden index determined

threshold values for these features, with corresponding

sensitivity and specificity provided (Table 5).

Among these 58 features, 30 belonged to the L1

vertebra level and were obtained from images created

by wavelet transformation. Of these 30 features, 9 were

first-order, 8 were GLCM-based, 3 were GLDM-based, 5

were GLRLM-based, 4 were GLSZM-based, and 1 was

NGTDM-based.

5. Discussion

Our study is the only study to predict osteoporosis

using radiomics features obtained from lumbar MRI

ADC maps and ML algorithms. Additionally, it is the only

study that examines whether each of these radiomics

features shows a statistically significant difference in

osteoporosis, aiming to find a threshold value for those

that show significant differences.

The neural network model demonstrated low

performance metrics, including an AUC of 0.616, an F1

score of 0.108, and a recall of 0.095, despite being

identified as the best model when utilizing all features.

Several factors may explain this outcome. Firstly, the

significant class imbalance in the dataset likely biased

the model toward the majority class, impairing its

ability to accurately predict the minority class. Secondly,

the small dataset size limited the model's capacity to

generalize and effectively learn from the data. Neural

networks typically require large volumes of data to

achieve optimal performance, and the lack of sufficient

data may have hindered the model's efficacy.

Additionally, the complexity of neural networks means

they are highly sensitive to hyperparameter settings,

and inadequate tuning could result in suboptimal

model configurations.

Moreover, the model might have been prone to

overfitting due to the high dimensionality of the feature

set and the relatively small sample size. Overfitting

occurs when the model learns noise and details from

the training data to an extent that negatively impacts its

performance on new, unseen data. This can be

particularly problematic in complex models like neural

https://brieflands.com/articles/ijradiology-147913
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Table 1. Comparison of Age, Body Weight and Body Mass Index Between Osteoporotic and Non-osteoporotic Subjects

Variables
Independent samples t-test (t-test for equality of means)

Sig. (2-tailed) Mean difference Std. error difference

Age 0.889 -0.28 2.02

Body weight (kg) 0.003 -9.78 3.18

BMI (kg/m 2) 0.001 -4.37 1.27

Figure 3. Histogram plot showing frequencies of time interval between dual-energy X-ray absorptiometry (DEXA) and lumbar MRI

Figure 4. Receiver operating characteristic (ROC) curve of the neural network model formed with all radiomics features (5580 radiomics features)

networks, which have a high capacity to fit the training

data too closely. These findings highlight the

importance of addressing class imbalance, ensuring

sufficient data volume, performing rigorous

hyperparameter optimization, and implementing

techniques to prevent overfitting in future studies to

https://brieflands.com/articles/ijradiology-147913
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Table 2. The Selected Five Features and their Definitions

Radiomics feature a Definition

L1-4 log-sigma-3-0-mm-3D
GLCM sum squares

The sum of squares or Variance is a measure of the mean intensity level in the GLCM in the distribution of neighboring intensity level pairs. The
L1-4 label represents the related segmented vertebral level. It was obtained from the images created by choosing the Laplacian of Gaussian filter
3 mm.

L3 log-sigma-3-0-mm-3D
first order minimum

First order minimum is the minimum grey level value in the image. The L3 label represents the related segmented vertebral level. It was
obtained from the images created by choosing the Laplacian of Gaussian filter 3 mm.

L3 wavelet-LLH first order
Mean

First order mean is the average grey level value in the image. The L3 label represents the related segmented vertebral level. It was obtained from
the images created by wavelet transform. LLH is one of the 8 sub volumes in the 3D wavelet transform.

L1 wavelet-LHH GLSZM
large area high gray level
emphasis

LAHGLE measures the ratio in the image of the co-distribution of larger sized regions with higher grey level values. The L1 label represents the
related segmented vertebral level. It was obtained from images created by wavelet transform. LHH is one of the 8 sub volumes in the 3D wavelet
transform.

L2 log-sigma-3-0-mm-3D
GLCM IDN

One of the measures of an image's local homogeneity is IDN (inverse difference normalized). Unlike homogeneity1, IDN normalizes the
difference in intensity values between neighbors by dividing it by the total number of discrete intensity values. The L2 label represents the
related segmented vertebral level. It was obtained from the images created by choosing the Laplacian of Gaussian filter 3 mm.

Abbreviations: GLSZM, gray level size zone matrix; GLCM, gray level co-occurrence matrix.

a The 5 features selected by fast correlation-based filter (FCBF).

Table 3. The Performance Values of Machine Learning Models Formed with the Five Selected Features by Fast Correlation-Based Filter a

Variables AUC CA F1 Precision Recall Specificity

ML Algorithm

Naive Bayes 0.913 0.907 0.683 0.7 0.667 0.95

Neural Network 0.752 0.864 0.296 0.667 0.19 0.983

Random Forest 0.743 0.864 0.345 0.625 0.238 0.975

SVM 0.738 0.857 0.091 1 0.048 1

Logistic Regression 0.722 0.864 0.296 0.67 0.19 0.983

kNN 0.709 0.85 0.16 0.5 0.095 0.983

Decision Tree 0.654 0.8 0.333 0.333 0.333 0.882

Abbreviation: ML, machine learning; AUC, area under the curve; SVM, support vector machine; KNN, k-nearest neighbors.

a The performance of ML algorithms.

Table 4. Confusion Matrix for the Naive Bayes Model (5 Features) a

Variable
Predicted

Osteoporotic Non-osteoporotic Total

Actual

Osteoporotic 14 (10) 7 (5) 21

Non-osteoporotic 6 (4) 113 (81) 119

Total 20 120 140

a Confusion matrix for the Naive Bayes model (showing number of instances and percentages).

enhance the predictive performance of neural networks

in similar applications.

The Naive Bayes model showed significant

improvement after feature selection, achieving an AUC

of 0.913. This improvement can be attributed to several

factors. Feature selection likely removed irrelevant or

redundant features, reducing the dimensionality of the

data and allowing the model to focus on the most

informative variables. This process enhances the

model's ability to generalize from the training data to

new, unseen data by minimizing the risk of overfitting.

In the clinical context, this improvement is

particularly relevant. A higher AUC indicates a better

ability of the model to distinguish between osteoporotic

https://brieflands.com/articles/ijradiology-147913
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Figure 5. Receiver operating characteristic (ROC) curves of the all seven ML model, (A); and the Naive Bayes model only, (B). (Abbreviations: kNN, k-nearest neighbors; SVM,
support vector machine).

and non-osteoporotic cases, which is crucial for early

diagnosis and intervention. By identifying the most

significant features, clinicians can better understand

the underlying factors contributing to osteoporosis,

leading to more targeted and effective treatment

strategies. Additionally, the use of a more accurate

model in clinical practice can improve patient

outcomes by enabling more precise and reliable

diagnostic processes. Thus, the feature selection process

not only enhances the performance of the Naive Bayes

model but also has meaningful implications for

improving the clinical management of osteoporosis.

Future studies should continue to explore and validate

these selected features to ensure their robustness and

relevance in diverse patient populations.

To our knowledge, there are few studies on

osteoporosis prediction using ML and radiomics data

obtained from DEXA, MRI, and CT. In the study by

Rastegar et al., which included 147 cases and aimed to

differentiate osteoporotic, osteopenic, and normal BMD

using ML models based on radiomics data from DEXA,

the most successful combinations showed AUC values of

0.78 and 0.76 for the trochanteric and femoral neck

regions, respectively, in differentiating osteoporosis

from normal cases (22). In the study by Lim et al., a

success rate exceeding 93% (CA, specificity, and negative

predictive values) was achieved in predicting femoral

osteoporosis using radiomics data from

abdominopelvic CTs and ML algorithms (24).

In the study by He et al., which included 109 cases,

radiomics data from lumbar MRI T1 and T2-weighted

images and ML algorithms were utilized. AUC values for

models created with data from T1-weighted images, T2-

weighted images, and both were 0.772, 0.772, and 0.810,

respectively, for differentiating normal from osteopenia;

0.724, 0.682, and 0.797 for differentiating normal from

osteoporosis; and 0.730, 0.734, and 0.769 for

differentiating osteopenia from osteoporosis (14). While

BMD values were categorized as osteoporosis,

osteopenia, and normal in some of these studies, the
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diagnostic performance of the Naive Bayes model in our

study was higher for differentiating osteoporosis (Table

3).

Recent studies have also explored automated

techniques. An automated method was described for

detecting early-stage osteoporosis using cortical

radiogram metric measures and trabecular texture

analysis from hand and wrist radiographs (25). Zhao et

al. developed a fully automated radiomics pipeline with

deep learning-based segmentation using the DIXON

sequence at six echo times with a short TE time in the

lumbar region to demonstrate osteoporosis and

abnormal bone density. They reported a model with

success comparable to manual segmentation for BMD

classification (26).

In the literature, some studies have used data

obtained from CT, dental panoramic radiography, and

radiographs to predict osteoporosis using deep learning

algorithms, beyond classical ML approaches (27-31). Dai

et al. demonstrated that BMD values from DEXA could be

estimated by a model created with radiomics data from

abdominal CT (32).

In the study by Burian et al., texture analysis was

performed using classical statistical methods on

chemical shift images to examine differences in bone

marrow between pre- and postmenopausal women,

with a focus on the proton density fat fraction (17).

Additionally, various studies using deep learning and

ML have investigated bone properties (29, 33).

There are also studies focused on detecting or

predicting vertebral fractures. In a study by Ramos et al.

involving 47 patients, the new ML model BEAUT (BonE

Analysis Using Texture), developed using radiomics

features from lumbar MRI T2-weighted images, was

more effective at predicting fragility fractures than

other ML models (CA 0.92, AUC 0.97) (34). In another

study by Valentinitsch et al., a model combining three-

dimensional texture features with regional volumetric

BMD of the entire thoracolumbar spine showed high

discrimination performance in detecting vertebral

fractures, outperforming the diagnostic success of

volumetric BMD alone (35).

Similar to our findings, numerous publications have

described the relationship between low BMD, BMI, and

body weight (36-40). In our study, the height and age

variables did not show a significant difference in the

osteoporotic group (P > 0.05). In the study by

Ozeraitiene and Butenaite, it was noted that

anthropometric measurements such as body weight,

BMI, and skinfold thickness were lower in cases of

osteoporosis (41). In the study by Mikula et al.,

prospective stature shortening was found to be an

effective method for identifying patients with vertebral

fractures, vitamin D deficiency, and low BMD. While the

absence of stature shortening does not exclude these

diagnoses, its presence supports a high positive

likelihood ratio (42).

In the review by Yedavally-Yellayi et al., it is stated that

significant stature shortening in men and women aged

50 and over is a risk factor warranting vertebral imaging

(43). Advanced age is a well-known risk factor for low

BMD (1, 2, 43). The high mean age of the patients in our

study may explain the lack of a statistically significant

age difference between the osteoporotic and non-

osteoporotic groups (mean 65.32, standard deviation

8.50).

The statistically significant differences in body

weight and BMI between the osteoporotic and non-

osteoporotic groups are noteworthy. These factors could

potentially influence the radiomics features extracted

from MRI images, as body composition might affect

tissue properties and, consequently, the radiomics

signatures. Differences in body weight and BMI might

also impact the performance of machine learning

models by introducing bias related to these physical

attributes. To mitigate these potential influences, future

studies could consider using Z-scores for body weight

and BMI, standardizing these variables relative to the

population mean and standard deviation. This approach

could help minimize the impact of body composition

differences on radiomics feature extraction and model

performance. Additionally, including body weight and

BMI as covariates in the analysis could provide more

robust results, ensuring that the observed differences

are not solely attributable to these factors.

Selecting five features using the FCBF method

effectively reduced the dimensionality of the dataset

while retaining the most relevant predictive

information. This decision was based on preliminary

analyses, which suggested that this number provided a

good balance between model complexity and

performance. While this approach reduces the risk of

overfitting, it is essential to validate these findings with

larger datasets. Future studies should explore the

impact of selecting different numbers of features on
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model performance and generalizability to ensure

optimal outcomes.

Apart from the retrospective nature of our study,

there were some limitations. One significant limitation

is the low number of male cases, with only 8 male

participants out of a total of 140 cases. This gender

imbalance reflects the higher prevalence of

osteoporosis in women but poses a challenge for the

generalizability of our findings. The predominance of

female cases may limit the applicability of our results to

the male population, which could exhibit different

patterns and responses to osteoporosis. Future studies

should aim to include a larger and more balanced

sample size with more male participants to ensure that

the findings are generalizable to both genders. This

approach would enhance the robustness and

applicability of the results across different

demographics.

Instead of the hold-out cross-validation, the stratified

10-fold cross-validation technique was preferred, as the

number of cases was limited, and the use of hold-out

cross-validation would further reduce the dataset size.

The lack of external validation with an independent

dataset is another important limitation. Although the

maximum one-year interval between the two

examinations was set as an inclusion criterion and

might seem relatively long, statistical analysis of the

interval showed that DEXA and MRI examinations were

frequently taken at close intervals (median difference of

1 month, with an interquartile range of 3.44 months).

In conclusion, we defined an ML model with good

performance in the diagnosis of osteoporosis by using

radiomics features obtained from lumbar MRI ADC

maps. We also determined the threshold values at which

each radiomics feature performed optimally. In the

future, larger-scale prospective studies with a balanced

male-to-female ratio and the use of ML and radiomics

data from multiparametric MRI sequences could be

transformative in diagnosing osteoporosis.
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Table 5. Threshold, Sensitivity, Specificity Values of the Radiomics Features Which had AUC Values Greater Than 0,70

Radiomics feature AUC (%95 CI) P Threshold a Sensitivity Specificity

L1-4 log-sigma-3-0-mm-3D first order median  b 0.742 (0.631 - 0.854) 0.0004 161.8236694 0.714 0.714

L1 wavelet-LHH first order range  b 0.742 (0.627 - 0.856) 0.0004 772.300293 0.857 0.580

L2-4 log-sigma-3-0-mm-3D first order median  b 0.74 (0.631 - 0.85) 0.0005 130.8338051 0.905 0.513

L1 wavelet-LHH GLDM high gray Level emphasis  b 0.733 (0.633 - 0.833) 0.0007 12426.98297 0.762 0.655

L1 wavelet-LHL GLDM large dependence high gray level emphasis  b 0.728 (0.623 - 0.834) 0.0009 316.7002581 0.905 0.538

L1 wavelet-LHL gray level size zone matrix (GLSZM) small area emphasis  b 0.726 (0.627 - 0.825) 0.0010 669.0405296 0.857 0.597

L1 wavelet-LHL first order minimum  b 0.726 (0.603 - 0.849) 0.0010 138.3913483 0.667 0.798

L4 log-sigma-3-0-mm-3D first order median  b 0.723 (0.617 - 0.829) 0.0011 123.4394493 0.905 0.555

L1 wavelet-LHL neighborhood gray-tone difference Matrix (NGTDM) coarseness  b 0.722 (0.623 - 0.821) 0.0012 820.7429058 0.952 0.487

L1 wavelet-LHL first order root mean squared  b 0.721 (0.613 - 0.829) 0.0013 144355620.8 0.810 0.580

L1 wavelet-HHL GLSZM zone percentage  b 0.72 (0.602 - 0.838) 0.0013 0.424339815 0.714 0.723

L1 wavelet-LHL first order entropy b 0.72 (0.612 - 0.829) 0.0013 594726568.4 0.810 0.580

L1-4 log-sigma-3-0-mm-3D first order root mean squared  b 0.719 (0.607 - 0.831) 0.0014 238.6731562 0.714 0.739

L1 wavelet-LHL first order variance  b 0.719 (0.606 - 0.832) 0.0014 183.7174645 0.952 0.403

L1 wavelet-LHL gray level run length matrix (GLRLM) long run emphasis  b 0.719 (0.607 - 0.831) 0.0014 56.88197474 0.952 0.403

L1 wavelet-HHL NGTDM complexity  b 0.718 (0.6 - 0.836) 0.0015 0.676536483 0.714 0.723

L1 wavelet-LHL first order uniformity  b 0.718 (0.593 - 0.843) 0.0015 5.645465978 0.571 0.857

L1 wavelet-LHL GLRLM gray level variance  b 0.718 (0.605 - 0.831) 0.0015 33487.69379 0.952 0.403

L1 wavelet-LHL GLDM small dependence emphasis  b 0.718 (0.605 - 0.831) 0.0015 53.66430712 0.952 0.403

L1-4 log-sigma-3-0-mm-3D first order mean  b 0.718 (0.593 - 0.843) 0.0015 155.6497469 0.762 0.639

L1 wavelet-LHL GLRLM short run low gray level emphasis  b 0.717 (0.608 - 0.826) 0.0015 2414.827911 0.905 0.471

L1 wavelet-LHL GLSZM size zone non-uniformity normalized  b 0.717 (0.615 - 0.819) 0.0015 893.0282637 0.762 0.664

L1 wavelet-LHL GLRLM long run low gray level emphasis  b 0.717 (0.615 - 0.819) 0.0015 849.1502259 0.762 0.664

L1 wavelet-LHL GLDM small dependence high gray level emphasis  b 0.715 (0.614 - 0.817) 0.0017 883.5853389 0.762 0.664

L2 log-sigma-3-0-mm-3D first order median  b 0.715 (0.59 - 0.841) 0.0017 182.5972176 0.619 0.824

L3 log-sigma-3-0-mm-3D first order root mean squared  b 0.715 (0.609 - 0.821) 0.0017 221.0883332 0.810 0.622

L1 wavelet-HHL first order range  b 0.715 (0.603 - 0.827) 0.0017 277.4433441 0.810 0.580

L1 wavelet-LHL gray level co-occurrence matrix (GLCM) Id  b 0.714 (0.598 - 0.831) 0.0018 74.51247581 0.619 0.723

L1 wavelet-LHL GLSZM gray level non-uniformity normalized  b 0.713 (0.597 - 0.83) 0.0018 5.074148459 0.619 0.782

L3 log-sigma-3-0-mm-3D first order median  b 0.712 (0.601 - 0.823) 0.0020 154.2673759 0.714 0.672

L1-4 log-sigma-3-0-mm-3D first order 90percentile  b 0.711 (0.596 - 0.826) 0.0021 374.7948471 0.714 0.748

L1 wavelet-LHL first order energy  b 0.711 (0.592 - 0.83) 0.0021 239.8392797 0.524 0.815

L1 wavelet-LHL GLCM Imc2  b 0.711 (0.607 - 0.815) 0.0021 802.288168 0.762 0.639

L1 wavelet-LHL GLCM IDM  b 0.71 (0.594 - 0.826) 0.0022 90.46296759 0.619 0.731

L2-4 log-sigma-3-0-mm-3D first order root mean squared  b 0.709 (0.601 - 0.818) 0.0023 226.992795 0.714 0.681

L3 log-sigma-3-0-mm-3D NGTDM busyness  a 0.709 (0.604 - 0.814) 0.0023 0.368800857 0.905 0.471

L2-4 log-sigma-3-0-mm-3D first order mean  b 0.708 (0.586 - 0.83) 0.0024 145.8226851 0.762 0.588

L1 wavelet-LHL first order kurtosis  a 0.707 (0.601 - 0.814) 0.0025 -640.053894 0.762 0.622

L1 wavelet-HHL GLCM Cluster prominence  a 0.707 (0.604 - 0.81) 0.0025 0.093677529 0.857 0.529

L1 wavelet-LHL GLSZM Small Area high gray level emphasis  a 0.707 (0.592 - 0.821) 0.0026 0.04102843 0.905 0.471

L1 wavelet-LHL first order mean  b 0.706 (0.584 - 0.829) 0.0026 4.713948691 0.571 0.807

L1 wavelet-LHL GLCM IDMN  b 0.706 (0.601 - 0.811) 0.0026 27.3785354 0.762 0.622

L1 wavelet-LHL GLCM joint energy  b 0.706 (0.601 - 0.811) 0.0026 54.75707079 0.762 0.622

L1 wavelet-LHL GLRLM run length non-uniformity normalized  b 0.706 (0.603 - 0.809) 0.0026 831.1979223 0.952 0.454

L1 wavelet-LHL GLCM sum entropy  b 0.705 (0.59 - 0.821) 0.0028 47.99747138 0.714 0.605

L1 wavelet-HHL GLCM joint average  a 0.705 (0.585 - 0.824) 0.0028 0.140912352 0.762 0.639

L3 wavelet-LLH first order median  b 0.704 (0.565 - 0.843) 0.0029 70.33731461 0.571 0.815

L1 wavelet-LHL GLCM cluster tendency  b 0.704 (0.591 - 0.817) 0.0029 575635.1876 0.810 0.571

L1 wavelet-LHL first order range  b 0.703 (0.587 - 0.82) 0.0030 2222.682983 0.571 0.773

L2 wavelet-LLL GLCM difference average  b 0.703 (0.613 - 0.793) 0.0031 18.4495188 1.000 0.479

L2 log-sigma-3-0-mm-3D GLSZM zone variance  a 0.703 (0.597 - 0.809) 0.0031 45.36158539 0.714 0.647

L1 wavelet-LHL GLCM correlation  b 0.702 (0.579 - 0.825) 0.0032 3.771944675 0.667 0.723

L2 log-sigma-3-0-mm-3D GLSZM large area emphasis  a 0.702 (0.596 - 0.807) 0.0032 101.9358356 1.000 0.370

L1-4 wavelet-LLL GLCM difference variance  b 0.702 (0.599 - 0.805) 0.0032 259.307057 0.857 0.529

L3 log-sigma-3-0-mm-3D first order 90percentile  b 0.702 (0.594 - 0.809) 0.0032 362.6814285 0.714 0.731

L2 wavelet-LLL GLCM contrast  b 0.701 (0.611 - 0.792) 0.0033 619.6491217 0.952 0.521

L1 wavelet-LLL GLDM high gray level emphasis  b 0.701 (0.591 - 0.81) 0.0034 269.6090191 0.857 0.504

L2-4 log-sigma-3-0-mm-3D first order 90 percentile  b 0.7 (0.589 - 0.811) 0.0035 357.1382874 0.762 0.681

a Threshold values are defined by Youden Index.

b Larger test result indicates more positive test.

https://brieflands.com/articles/ijradiology-147913


Erdem F et al. Brieflands

I J Radiol. 2024; 21(3): e147913 15

c Smaller test result indicates more positive test.
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