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Dear Editor,
Neurobiophysics is an interdisciplinary science and

branch of biophysics, in which physical principles and
techniques are used to manipulate the nervous system at
physiological, cellular, and molecular levels (1, 2). Efforts
have been made in this field to produce macroscopic out-
comes, which usually are our everyday cognitive processes
or, in some cases, pathologies, such as epilepsy, Alzheimer’s
disease, multiple sclerosis, etc. Non-invasive neuromod-
ulation using physical approaches induces neuronal ex-
citability that is important to decrease chronic pain and
sensory dysfunctions. Developing non-invasive methods
to allow the control of functions in the nervous system can
potentially revolutionize regenerative medicine (3). To ad-
dress this unmet need, we should research about artificial
biological “switch” for the activation of neuron change af-
fected by magnetic fields as a non-invasive modulator (Fig-
ure 1). There are two strategies that can be used to solve this
problem: using magnetic biomaterials and magneto sens-
ing proteins.

Strategies:
1- Using molecular dynamic simulation to identify the

function of proteins in the nervous system in two states:
healthy and injury or damages.

2- Designing magnetic nanoparticles or biological
magnetoreceptors to remote control of neurons and deep
brain stimulation by electromagnetic fields.

3- Classification of the nervous system injuries by com-
putational biology and meta-analysis.

Focused areas:
1- Biophysics
2- Biomagnetism
3- Magnetogenetics
4- Biomaterials
5- Synthetic biology
6- Biomolecular engineering

7- Computational biology (structural biology and neu-
roinformatics)

8- Neurobiology
9- Neuromodulation
10- Deep brain stimulation
Engineered magnetic nanoparticles can be used in var-

ious environmental, biomedical, and clinical applications
with unique properties (4). The effect of various magnetic
fields on magnetic nanoparticles can, directly and indi-
rectly, induce cellular stimulation. Heat, mechanical force,
and production of free radicals are some of the direct ef-
fects of magnetic fields. One of the important roles of the
indirect effect of magnetic fields on magnetic nanoparti-
cles is the drug release control for local therapy (5, 6).

Cell stimulation using magnetic fields is a non-invasive
approach to create a specific function that can penetrate to
tissue depth and cells (7). It is used to stimulate deep ar-
eas of the brain for therapeutic purposes in various neu-
rological disorders, including Alzheimer’s disease, Parkin-
son’s disease, vascular dementia, depressive disorder, etc.
(8). Magnetic fields are divided into the static magnetic
field, time-varying/dynamic magnetic field, or electromag-
netic fields. The effects of magnetic fields depend on
some parameters, such as source, intensity, frequency, as
well as pulse sequence patterns (9). Magnetic fields af-
fect cell function and physiological behaviors in two main
ways: direct and unmediated effects, such as changing the
rates of enzymatic and non-enzymatic reactions, the rest-
ing membrane potential, gene expression, and affecting
the kinetics of radical pair recombination, etc., and the
use of magnetoreceptors (10). Generally, magnetorecep-
tors are divided into two classes: artificial receptors and
biomolecules (11, 12).

Ion channels as “messenger converter” are the best
choice to control behaviors of cells and specifically, neu-
rons. Using channels, like all cells, neurons are able to
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Figure 1. Wireless deep brain stimulation by magnetic fields via magnetic multifunctional nanoparticles and/or magnetosensitive proteins represents a novel non-invasive
strategy for targeted control of the brain in neuromodulation therapies.

encode a variety of external stimuli into electrochemical
messages so that the cell can respond to any changes in
the environment (13). There are different types of channels
distributed in each cell of the whole body that generate
a concentration gradient of ions across biological mem-
branes. When the cell is in the non-excited state, the elec-
trical potential difference across the plasma membrane is
called the resting membrane potential, which is varied in
different cells. The resting membrane potential of a neu-
ron is about -70 mV that it is caused by differences in the
concentrations of ions inside and outside the cell. After
cell stimulation, if cell membranes allow ions to cross and
make membrane potential reach threshold, an action po-
tential will be initiated. Indeed, the excitability of neurons
is regulated by voltage-gated, ligand-gated, temperature-
sensitive, pH-sensitive, and mechano-sensitive ion chan-
nels, etc. (14). Studies have demonstrated that mechano-
sensitive and temperature-sensitive ion channels can be
excited by magnetic fields (15). The firing of an action
potential allows the cell to communicate with other cells

through the release of neurotransmitters depending on
calcium ion concentrations.

Calcium is an important second messenger that reg-
ulates some of the signaling pathways and events in the
cell, like gene expression, differentiation, proliferation,
cell death, sensing, and fertilization, etc. Changes in the in-
tracellular calcium through calcium-dependent channels
(calcium influx) are a very fast and localized process near
the cytosolic mouth of the channels. Indeed, some physio-
logical processes depend on the uniform and localized cal-
cium in cells (16, 17). Therefore, we can send different mes-
sages to the cell through the stimulation of different ion
channels such as calcium by magnetic fields.
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