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Abstract

Neurodegenerative diseases can make life difficult and lead to death in many cases. They also can be difficult, time-consuming, and
costly to diagnose with enough accuracy/certainty. Artificial intelligence (AI) has shown promise in tackling some of the challenges
present in medical imaging and is anticipated to become a crucial tool in health care applications in the near future. In particular,
deep learning methods have displayed great performance in various subfields of image processing, including but not limited to
image segmentation, image synthesis, and image reconstruction. In this paper, many state-of-the-art applications of deep learning
models in image processing were reviewed.
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1. Background

Neurological disorders take a heavy toll on public
health. The Global Burden of Diseases (2010) classified the
following diseases as neurological disorders: Alzheimer’s
disease (AD, also known as dementia), Parkinson’s disease
(PD), multiple sclerosis (MS), epilepsy, migraine, and
tension-type headache (TTH) (1). Neurodegenerative
diseases, a class of neurological disorders, occur when the
neurons of the central nervous system get damaged
or die as a result of the disease, leading to severe
disabilities of the individual and, ultimately, their death.
Neurodegenerative diseases affect millions of people
worldwide but are mainly reported in the elderly. Health
care professionals, such as radiologists and clinicians,
must carry out a detailed interpretation of magnetic
resonance imaging (MRI) in clinical practice. However,
due to the large number of MRIs, interpretations are
time-consuming and easily affected by human experts’
biases and potential fatigue. As a result, beginning in
the early 1980s, doctors and researchers began to use
computer-assisted diagnosis (CAD) structures to analyze

medical images and boost their effectiveness (2).

Early detection and treatment of neurodegenerative
diseases can significantly slow their development.
Computational approaches aimed at diagnosing and
monitoring respective diseases and CAD systems can
significantly assist in increasing the chance of survival.
They are also capable of extracting important features
describing patterns from the data and subsequently
play a key role in medical image analysis (2-4). Recent
advances in artificial intelligence (AI) can be a major
help in achieving the aforementioned goals. Artificial
intelligence can automate image analysis and plays a
major role in diagnosing and examining these diseases,
allowing doctors to make fast and accurate treatment
recommendations (5).

The progressive loss of the structure/functionality
of neurons or neurodegeneration is the root cause of
neurodegenerative diseases. Cell death may result from
such neuronal injury. Neurodegeneration in the nervous
system can be observed in various scales, ranging from
molecular abnormalities to systemic failures. These
illnesses are incurable because there is no known way
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of stopping progressive degeneration; however, early
diagnosis and treatment of neurodegenerative diseases
can significantly slow their progression (6, 7).

Alzheimer’s disease is the most widely observed
neurodegenerative disease, accounting for 60% - 70% of
dementia cases. Its symptoms are linked to a steady decline
in brain function. It can impair memory, reasoning, and
other mental abilities and is currently impossible to cure.
The protein fragment β-amyloid (which builds up as
plaques outside of neurons in the brain) and twisted tau
protein strands (which form tangles inside neurons) are
some of its pathological characteristics (8). Several studies
have also found an accumulation of alpha-synuclein or
Lewy-related pathology in more than 50% of post-mortem
examinations of AD brains (9).

The second most common neurodegenerative disease
is PD. it is a chronic condition that affects both the
nervous system and the body parts that are under the
control of the nervous system. The symptoms appear
gradually, and the most common of them is tremors. The
disorder can also cause the slowing or general difficulty
of movement. The buildup of misfolded alpha-synuclein
and the degeneration of dopaminergic neurons in the
substantia nigra are 2 significant characteristics of PD.
This disrupts signal transduction pathways in the brain,
resulting in PD symptoms. As the condition worsens,
alpha-synuclein misfolding and accumulation, abnormal
dopamine metabolism, oxidative stress, and neuronal
death emphasize one another (10).

The central nervous system disease known as MS is
a long-term, inflammatory, demyelinating condition. It
is a common root of neurological disability in young
adults. Multiple sclerosis is a diverse, multifactorial,
immune-mediated illness brought on by intricate
gene-environment interactions. Demyelinating lesions
that develop over time in the white matter and grey matter
of the brain and spinal cord are the pathological hallmarks
of MS (11).

Today, diagnostic imaging is a helpful resource
in medicine. Magnetic resonance imaging, positron
emission tomography (PET), and other imaging modalities
are useful for noninvasively mapping a subject’s
anatomical brain structure. These technologies have
significantly increased medical and scientific knowledge
of normal and malignant anatomy and are essential in
diagnosis and treatment planning. Advancements in
medical imaging provided various imaging modalities to
detect and diagnose neurodegenerative diseases (12).

Magnetic resonance imaging is an imaging technique
that generates images by observing the behavior of atomic
nuclei with non-zero spins in a strong magnetic field
(10). Currently, T1- and T2-weighted images are the most

used MRI sequences available. T1-weighted scans are
obtained using the short echo time (TE) and repetition
time (TR) recorded. The main determining factors of the
image’s brightness and contrast are the T1 properties of the
imaged tissue. T2-weighted images, on the other hand, are
generated from longer TE and TR (13).

Positron emission tomography is another imaging
technique. It is a nuclear imaging technique that
relies on the decay characteristics of positron-emitting
radionuclides, such as fluorine-18 (18F, t1/2 = 109 min),
carbon-11 (11C, t1/2 = 20 min), or oxygen-15 (15O, t1/2 =
2 min). The PET imaging of beta-amyloid plaques will
significantly improve the diagnosis of AD (10, 14). Positron
emission tomography is a noninvasive in vivo imaging
technique that can measure target expression and drug
occupancies in the presence of a suitable tracer. As a result,
scientists from all over the world have been working to
create innovative α-syn PET tracers that will revolutionize
imaging techniques for neurodegenerative disorders (15).

The exponentially increasing flow of data opened the
door to a new era of AI algorithms in every technological
endeavor, including medicine and radiology. However,
the current success of AI in a few elevated applications
has obscured decades of advances in the development of
computational technology for medical image processing
(16).

2. Objectives

AI and, in particular, techniques like deep learning
have recently produced outstanding results with “big
data” in many diverse domains by reaping the benefits
of the ever-increasing quantity of labeled digital data
available in every area of technological activity (17).
Deep learning uncovers informative representations
automatically without the technical understanding of
domain experts, allowing non-experts to utilize the deep
learning-based techniques effectively. As a result, deep
learning has rapidly become a preferred methodology for
medical image analysis in recent decades (17, 18). Thus, in
this review, we went over the 3 important and frequently
used techniques: Classification, image segmentation, and
image generation.

3. Methods

3.1. Classification

The most common learning method in AI-based
applications is supervised learning, in which the
classification model is trained by presenting labeled
training data to the model. The learning system’s task is
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then to find a relationship that maps each input of the
training sample into an output (the label). In medical
science, input often includes medical images, while the
output can be anything from the diagnosis of a disease
to a patient’s condition (19). A feature extraction step
is often done before the training phase to speed up the
training and improve accuracy. Ahmed et al. suggested
using biomarkers derived from images to identify AD and
mild cognitive impairment (20). They extracted visual
features from structural MRI to differentiate and classify
Alzheimer’s and mild cognitive impairment patients (20).

Automated gait deficit diagnosis and severity were
made possible by AI across several symptomatic stages
of PD. Varrecchia et al. discovered a small number of
features that differentiates PD from healthy control and
distinguishes gait patterns between different Hoehn and
Yahr stages (21, 22).

3.2. Image Segmentation

Image segmentation is to partition an image into
mutually exclusive regions that are homogeneous in some
way, such as intensity or texture (23). Although atrophy is
the most common biomarker used to diagnose epilepsy, a
recent study has shown that cerebral gray matter atrophy
can also be seen on structural MRI in neurodegenerative
diseases (24). It has been discovered to correlate with
the neurodegenerative mechanisms that underlie the
cognitive impairment caused by PD (25).

A deep learning algorithm, called “DeepnCCA,” was
created by Platten et al. and is tailored to normalize
the segmentation of the corpus callosum in MS patients
(26). Its output was highly comparable to traditional
manual segmentations. Further shape analysis revealed a
correlation between a thinner and more angular corpus
callosum and a higher level of clinical disability (26).
Similar to previous research, Brusini et al. presented
a completely automated deep learning-based corpus
callosum segmentation tool designed and developed for
modern MS imaging with clinical correlations similar to
computationally intensive alternatives (27). They utilized
U-Net architectures to automatically segment the corpus
callosum from a single midsagittal slice input (28).

To diagnose and follow several clinical conditions,
including AD, the segmentation of the hippocampus
(HC) in MRI is a crucial step. Liu and Yan proposed
a semi-automatic model by combining a deep belief
network and the lattice Boltzmann method (29). Coronado
et al. trained and assessed a 3D convolutional neural
network to segment gadolinium-enhancing lesions
using a sizable cohort of MRI data from patients with
MS (30). An extensive dataset evaluation revealed

excellent performance, with a high segmentation accuracy
measured by the Dice similarity score of 0.77 (30).

3.3. Image Generation

Following the bloom of deep learning in the early
2010s, meaningful advances in generative models were
made. Such models are mainly developed to synthesize
parts of or the whole of images that had not existed
prior to the synthetization or were not available in high
resolution. One well-known generative model that has
been the focus of much attention since its introduction
in 2016 is a generative adversarial network. The medical
applications of such generative models can be classified
into 3 main categories: Modality transformation, image
reconstruction, and super-resolution (18).

Due to the advantages and challenges of each imaging
method available today, no particular method perfectly
fits all the experiment requirements. One example of
this trade-off of advantages and disadvantages is the
high spatial resolution attainable by functional MRI
(fMRI) while lacking temporal resolution (31). To address
this trade-off, there have been attempts at the modality
transformation of medical images: Transforming the
images obtained by one imaging modality to another. The
feasibility of reaching useful modality transformation
(or image translation, as in some resources) depends
upon the chosen initial and target modalities, as well as
the availability of sufficient data of adequate quality. One
example of a possibly useful transformation is using MRI to
generate synthesized computed tomography (CT) images
(32). A noteworthy recent work conducted in this line of
research is a study where the end goal was to synthesize PET
images from MR images to diagnose different AD stages
(33). This task was done using a novel 3D self-attention
conditional GAN (SCGAN) trained on the ADNI3 data.
The synthetic PET images were reported to be the most
similar to the corresponding real images compared
with many other alternative generative architectures,
both qualitatively and based on 3 chosen metrics (i.e.,
normalized root-mean-squared error, peak signal-to-noise
ratio, and structural similarity). Despite being similar
to real images, the synthesized PET images reportedly
generally lacked the necessary information to accurately
determine the AD stage (34).

As a result of the various sources of noise present in
most brain imaging methods, parts (or all) of recorded
medical images are prone to be of inadequate quality
and, therefore, not useful in diagnosis tasks. In the
cases of images with noisy or missing sections, image
reconstruction can be used to obtain usable images
containing all essential sections. A recent example of
published work in the field of image reconstruction is
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done by Korkmaz et al., which used generative vision
transformers to reconstruct MR images (35).

To make low-resolution images useful, attempts at
improving the resolution have been made under the term
“Super Resolution,” where the model typically receives a
low-resolution input image and outputs the same image
in a higher resolution. The previously introduced SCGAN
model was also used for super-resolution tasks, which
was reported successful (33). A useful application of such
models is speeding up and lowering imaging costs, as the
quality can be improved later using these models (36).

4. Conclusions

In this review, we explored and investigated some of
the novel AI algorithms and state-of-the-art deep neural
networks for the monitoring and disorder diagnosis
of medical images of patients, with a strong emphasis
on the 3 most common neurodegenerative disorders:
AD, PD, and MS. Numerous brain microstructural
changes in neurodegenerative patients have already
been detected during the past decade. We demonstrated
the advantages of deep learning methods and their
feasibility in improving clinical practice in the literature.
Deep learning is the case for some of the papers cited
in this manuscript, including evidence for applying
the U-Net model for corpus callosum segmentation or
Generative adversarial networks for image synthesis and
reconstruction.
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