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Abstract

Phantom limb pain (PLP) presents complex challenges in treatment, lacking standardized clinical approaches, and understanding
its mechanisms remains elusive. Noninvasive brain stimulation (NIBS), specifically transcranial magnetic stimulation (rTMS)
and transcranial direct current stimulation (tDCS), seems promising in treating chronic pain, including PLP. These modalities
can modulate neural activity, offering potential benefits by acting on interconnected neural networks beyond the stimulation
site. Studies from Jan 1, 2003, to 2021 were reviewed on PubMed, Google Scholar, and the Web of Science using the keywords
PLP, neuromodulation, transcranial direct current stimulation, transcranial magnetic stimulation, pain management, and their
combinations. The language was limited to English. A single-session treatment has the potential to change the intensity of PLP for
several hours. On the other hand, a multi-session treatment approach can decrease both the intensity and frequency of PLP for an
extended period of several months. Additional research with a greater sample size and extended follow-up periods is necessary
to determine the precedence of utilizing tDCS, rTMS and the potential for integration with other treatments for individuals with
amputation experiencing PLP.
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1. Context

Phantom limb pain (PLP) is a distressing phenomenon
that is commonly encountered by individuals who have
undergone amputation. The condition is distinguished
by the experience of electric-like pain and discomforting
sensations, such as painful cramps, shooting, and burning
sensations in the non-existent area of the body (1-3).
Furthermore, residual limb pain, also known as stump
pain, is a form of pain that is perceived to emanate from
the remaining portion of an amputated limb (1).

In Western societies, cancer or traumas are frequent
etiologies for amputation, and only a minority of patients
present with congenital anomalies or septic infections.
The major cases of limb amputations are executed due to
vascular ailments or diabetes mellitus (4). Amputations
are primarily linked to traumatic injury on a global
scale. Such injuries can be attributed to accidental events,
including workplace incidents and road accidents (5). The

prevalence of PLP among individualswhohave undergone
limb amputation is reported to range from 50% to 80%,
according to published rates. However, it has been noted
that a minority of these individuals, approximately 5
- 10%, suffer from severe pain for a long time (6, 7).
The management of PLP poses a significant challenge,
as existing pharmacological and non-pharmacological
interventions have demonstrated limited to moderate
efficacy (8).

Non-invasive brain stimulation (NIBS) techniques,
including transcranial direct current stimulation (tDCS)
and transcranial magnetic stimulation (TMS), have been
employed to alleviate pain in diverse chronic intractable
pain syndromes (9, 10). These techniques stimulate the
activation of the cerebral cortex by means of magnetic
fields or low-intensity direct currents. This process
induces a shift in the polarity of the neuronal membrane,
resulting in the emergence of spontaneous neuronal
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activity and the modulation of cortical excitability 
(11). Given notable advancements in neuroscientific 
instruments for comprehending disease pathophysiology, 
our review focused on the existing hypotheses regarding 
the operational mechanism of NIBS, the potential of such 
methods as a neuroscientific instrument for exploring PLP, 
and the substantiated effectiveness of these techniques in 
PLP management. We reviewed all studies applying tDCS 
and TMS in patients with PLP to offer a comprehensive 
perspective on past, current, and emerging research in 
this field.

2. Evidence Acquisition

PubMed, Google Scholar, and Web of Science were 
searched for studies from Jan 1, 2003 to 2021. Various 
keywords and their combinations were used regarding 
PLP, neuromodulation, transcranial direct current 
stimulation, transcranial magnetic stimulation, and pain 
management. Non-English research and studies focusing 
on peripheral nervous system stimulation were excluded 
based on the criteria. Review articles were also excluded. 
Hence, all English literature encompassing human clinical 
trials in adult populations, spanning phantom limb pain 
and central nervous system stimulation, was included 
from Jan 2003 to Dec 2021. One hundred ninety studies 
were initially gathered, and after removing duplicates, 
85 studies remained. A critical examination of the title 
and abstracts was then conducted for these retained 
studies. Following the initial screening, 10 studies were 
identified and subsequently read in full text (Figure 1). 
Table 1 summarizes the review of ten studies arranged 
chronologically. Among these, seven utilized tDCS, while 
the remaining three employed rTMS. The primarily coded 
variables included reference, number of patients and 
controls, intervention, treatment location, and duration, 
the pain relief assessment scale, and study results and 
conclusions.

2.1. Phantom limb pain and Central Nervous System
Neuromodulation Techniques

The onset of PLP typically is shortly after a surgical
procedure, although it may be delayed in certain patients.
Painful phantom sensations are typically sporadic and
endure for a brief period, ranging from seconds to
minutes, but may persist for several hours or even
indefinitely (3, 20, 21). A significant percentage of patients
experience persistent sensations for an extended period
(22). From a clinical perspective, PLP frequently manifests
in the distal regions of the absent limb, such as the hand,
fingers, foot, or toes. This may be attributed to the greater

representation of distal body parts in the somatosensory
cortex in comparison to the proximal limb (23, 24).
Although PLP is typically categorized as neuropathic,
patients frequently describe their pain as a nociceptive
pain sensation, such as shooting, crushing, or squeezing,
or the sensation like a car driving over their foot (25).

2.1.1. Classification

It is imperative to note that not all post-amputation
painful sensations are attributed to phantom pain. For
its proper management, it is crucial to differentiate and
evaluate these sensations through an interdisciplinary
approach. Phantom limb pain is undoubtedly one of
the three potential presentations that may occur after
amputation (26):

1. Phantom limb pain is a distressing sensation
that’s experienced in the absence of a limb that has been
amputated.

2. Stumppain refers to the experience of localizedpain
in the residual limb following amputation.

3. Phantom sensations refer to any sensory experience
other than pain that is perceived in the absence of a limb.

2.1.2. Underlying Mechanisms

Previously, PLP was generally considered a psychiatric
disorder. However, with the extensive research conducted
over the past few decades, the hypothesis has shifted
towards recognizing alterations at various levels of
the neural axis, particularly the cortex (27). In recent
years, numerous potential mechanisms have been
identified for the development and perpetuation of
PLP. However, the persistence of PLP is probably a
complex, multifaceted process influenced by bodily,
psychological, and social factors. However, there appear
to be widespread underlying factors in the form of
inevitable nerve damage, resulting in corresponding
peripheral and central alterations within the nervous
system (24, 28, 29). During the process of amputation, the
peripheral nerves are incised, leading to significant tissue
and neuronal damage and neuroma development at the
end of the injured nerve (30). This leads to significant
damage to both tissue and neurons, resulting in the
disturbance of the typical afferent nerve input pattern
to the spinal cord. Subsequently, a procedure known as
deafferentation occurs, whereby the proximal segment
of the severed nerve generates neuromas (27). These
neuromas exhibit an augmented buildup of molecules
that amplify the manifestation of sodium channels,
leading to hyperexcitability and spontaneous discharges
(31). It is believed that the atypical peripheral activity
may serve as a plausible origin of stump pain, which
encompassesPLP (27). Thishypothesis is further supported
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Figure 1. Flowchart showing the selection and inclusion process.

by research demonstrating the effectiveness of sodium
channel-blocking drugs in alleviating PLP (32, 33).

In this phenomenon, evidence has demonstrated
increased activity within the spinal pronociceptive
excitatory structures, accompanied by an increase in
the activity of glutamate and the N-methyl-D-aspartate
(NMDA) receptor system facilitated by neurotransmitters
such as tachykinins, neurokinins, and substance P
at the dorsal horn of the spinal cord (34-36). The
aforementioned process induces an alteration in the
patternof nociceptive-relatedneurons firing in the central
nervous system. A decrease in the local inter-segmental
inhibitorymechanisms at the spinal cord level may occur,
leading to spinal dis-inhibition and the transmission
of nociceptive inputs to the supra-spinal centers. The
absence of afferent input and alterations at the spinal cord
level is proposed as the underlying mechanism of PLP (35,
37, 38).

In recent years, cortical reorganizationhas emerged as
a frequently cited explanation for the etiology of PLP. The
cortical reorganization, including its process and extent,
hasbeen the subject of investigation in animal andhuman
models after deafferentation and amputation. The degree
of cortical reorganization has been observed to have a
direct correlation with the level of pain experienced and
the magnitude of the differentiated area. Several imaging

studies have established a correlation between a larger
extent of somatosensory cortex involvement and more
intense pain (39-41).

2.2. Treatment Options

The available treatments comprise pharmacotherapy,
adjuvant therapy, and surgical intervention. There
is a range of medication options available, such as
tricyclic antidepressants (TCAs), NSAIDs, and opioids.
Among these options, TCAs are frequently utilized as a
primary treatment. Several therapeutic approaches based
on varying principles are suggested for the effective
management of PLP. Although there are currently
no established treatment protocols, effective pain
management and rehabilitation interventions often
demand amulti-disciplinary approach (42).

2.2.1. Pharmacological Approaches

Pharmacological intervention has been established as
the primary approach for addressing PLP in amputees,
utilizing various agents, including opioids, amitriptyline,
gabapentin, and local anesthetics (43, 44).

Opioids canbind tobothperipheral and central opioid
receptors, thereby providing analgesic effects without
compromising consciousness, the sense of touch, and
proprioception. Theefficacyof opioids, suchasoxycodone,
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morphine, and methadone, in managing neuropathic
pain, including PLP, has been supported by randomized
controlled trials. Comparative studies have demonstrated
the advantages of opioids over tricyclic antidepressants
and gabapentin. However, opioid use is linked with a
higher incidence of adverse effects (45, 46).

TCAs are frequently prescribed medications for the
treatment of various neuropathic pains, including PLP.
The analgesic effects of tricyclic antidepressants are
primarily attributed to their ability to inhibit the uptake
of serotonin and norepinephrine, antagonizing NMDA
receptors, and blocking sodium channels (47). A recent
study demonstrated that the management of PLP was
exceptionally and consistently successful, with an average
dosage of 55 mg of amitriptyline. However, in some
studies, tricyclic antidepressants were ineffective in
managing pain (45, 48). A limited case series has exhibited
the efficacy of mirtazapine, an alpha 2 receptor antagonist
that presents fewer adverse effects compared to TCAs in
managing PLP (49).

The efficacy of gabapentin in controlling PLP has
yielded mixed results, with some studies demonstrating
positive outcomes and others indicating no efficacy
(50-52). Carbamazepine has been documented
to alleviate the acute stabbing and piercing pain
commonly associated with PLP. Despite the availability
of pharmacologic agents, many continue to experience
refractory pain and require invasive or noninvasive
treatment options (53).

2.2.2. Non-invasive Neuromodulation

There exist non-invasive treatment modalities
available for PLP, including sensory motor training,
mirror visual therapy, andnon-invasive neuromodulation.
Non-invasive neuromodulation comprises interventions
such as transcranial direct current stimulation (tDCS)
and transcranial magnetic stimulation (TMS). These
techniques involve the stimulation of the cerebral cortex
through the application of magnetic fields or weak
direct currents. This stimulation alters the polarity
of the neuronal membrane, resulting in spontaneous
neuronal activity and modulation of cortical excitability.
The excitability of the cortex can be modulated through
the application of tDCS, which can either increase or
decrease cortical activity depending on the polarity and
scalp-site localization of the stimulation. Similarly, the
frequency and intensity of pulse repetitions for TMS can
also influence cortical excitability (11).

2.2.2.1. Transcranial Direct Current Stimulation

Neurons are cells capable of electrical excitation, and
their proper functioning depends on the production

of action potentials. Action potentials are generated
upon the attainment of a specific potential threshold
during the depolarisation of the resting membrane.
The determination of the potential of the neuronal
membrane is contingent upon afferent activity through
both electrical and chemical synapses, as well as the
presence of extrasynaptic substances that activate specific
ion channels and receptors (54, 55). The function of tDCS
is to directly modify the resting potentials of neurons,
thereby changing their level of excitability. This alteration
affects the likelihood of afferent activity of a particular
magnitude, resulting in the generation of an action
potential. In the event of depolarisation of a neuronal
membrane by a direct current, the threshold for inducing
an action potential is lowered, thereby reducing the
need for afferent activity. Conversely, hyperpolarisation
of the membrane results in a reduction of neuronal
excitability and a subsequent decrease in spontaneous
activity (56-58). It is imperative to acknowledge that
this mode of operation is fundamentally distinct from
supra-threshold stimulation, which triggers an action
potential at a compromised neuronal membrane, as
develops in TMS (59).

The application of tDCS can alternate cortical
excitability and activity. Specifically, when the anode
is positioned over the primary motor cortex (M1), tDCS
amplifies both spontaneous activity and excitability,
thereby serving as a model region. On the other hand, if
the cathode is positioned above M1, there is a decrease in
both spontaneous activity and excitability (60, 61). It is
noteworthy that the modification in resting membrane
potentials caused by tDCS at conventional intensity (1 - 2
mA) is comparativelyminimal. Transcranial direct current
stimulation is suggested to modify neuronal membrane
potential by approximately 0.2 to 0.5 Mv (62, 63). At first
glance, the seemingly negligible alteration between the
resting membrane potential of approximately -70mV
and the threshold for action potential initiation of
approximately -50mV may be observed. It has been
postulated that tDCS may be effective despite the modest
impact it has on membrane potential at the specific
neuron level (64). This may be attributed to amplification
due to alterations in action potential generation within
larger neuronal networks, modulation of action potential
timing, or both. Both of these mechanisms are activated
during neuronal network stimulation, resulting in
comparable alterations in voltage (65, 66).

Bolognini et al. conducted one of the initial
investigations on the management of PLP utilizing tDCS.
In their study, the impact of a solitary session of anodal
versus sham stimulation over M1 was evaluated on eight
participants. The research findings indicate that anodal
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tDCS has a brief analgesic impact on PLP, lasting up to 90
minutes post-stimulation (17). The administration of this
therapeutic intervention elicits a subthreshold alteration
in the resting membrane potentials, which tends to shift
towards either depolarisation or hyperpolarisation. This
phenomenon is believed to regulate neuroplasticity.
Numerous theories have been put forth regarding the
neuroplasticmechanismsof tDCS thathavebeen reported.
These theories encompass both connectional and local
effects (67). Transcranial direct current stimulation has
recently emerged as a nonpharmacological treatment for
chronic pain, including PLP. This method of stimulation is
safe and noninvasive and has been proven effective with
minimal contraindications (10, 67).

2.2.2.2. Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a
non-invasive technique utilized for the electrical
stimulation of nerves, encompassing the spinal roots,
cerebral cortex, as well as peripheral and cranial
nerves (68-71). Transcranial magnetic stimulation can
be administered in the form of singular pulses of
stimulation, pairs of stimuli with varying intervals to
either the different or same regions of the brain, or
as repetitive trains of stimuli at different frequencies.
A solitary stimulus can depolarize neurons and elicit
quantifiable outcomes. The application of repetitive TMS
in the form of trains of stimuli has been shown to induce
alterations in the excitability of the cerebral cortex not
only at the site of stimulation but also in remote regions
connected through functional anatomical pathways.
Transcranial magnetic stimulation has the potential to
offer innovative perspectives into the pathophysiology
of the neural circuitry that underlies neurological
and psychiatric disorders. Furthermore, it can be a
clinically valuable diagnostic and prognostic test and
have therapeutic applications in a variety of diseases. The
TMS potentials mentioned above are demonstrated by
extensive research, but further investigation is required
to definitively ascertain the precise function of TMS in
clinical neurology (59, 72-74). The process involves the
application of a brief, high-intensity current (measuring
several thousand amps) through a copper wire coil. This,
in turn, generates amagnetic field of up to approximately
2T, which persists for approximately 100ms. Themagnetic
field pulses emanating from a stimulating coil applied
to the scalp can traverse the skull bone without any
attenuation, thereby generating an electric field into
the brain. The magnitude of the induced current is
adequate to elicit action potentials and stimulate cerebral
networks securely and painlessly (73, 74). Transcranial
magnetic stimulation is a valuable tool for investigating

cortical plasticity and reorganization patterns, as well as
the underlying mechanisms driving these neuroplastic
changes (75).

Several research groups have utilized rTMS as a
non-invasive means of predicting the clinical response
following epidural implants for chronic neuronal
stimulation. This approach is particularly relevant in cases
of chronic pain, tinnitus, and, potentially, movement
disorders. However, a prudent approach, according to the
rules of evidence-based medicine, would be welcome for
the described therapeutic applications, and rTMS is being
tested for diseases with a fairly heterogeneous physiologic
basis, and it seems unlikely that rTMS will be good for all
(76-78). When examining the analgesic effectiveness of
rTMS in the context of chronic pain, it is imperative to take
into account various factors. These factors include but are
not limited to the frequency of stimulation, the specific
site of stimulation, the duration of stimulation, and the
delay between the stimulation and the observed clinical
effects (76). The variation of excitability resulting from
rTMS is dependent on the frequency of stimulation. In
general, high-frequency stimulation with a frequency of 5
Hzor greater is known to induce an excitatory response. In
comparison, low-frequency stimulation with a frequency
of 1 Hz or less is observed to decrease cortical network
excitability in various conditions. It is important to
acknowledge that the outcomes of rTMS can be subject
to variability, contingent upon the particular targets
of stimulation and the pre-existing level of activation
within the circuits being targeted (79). Transcranial
magnetic stimulation techniques have the potential to
provide a dependable means of characterizing significant
neurophysiological and pathophysiological aspects of
brain involvement in individuals experiencing PLP and
phantom sensations (PS) (80). The various paradigms
of TMS have yielded valuable insights into distinct
neurotransmitter systems, thereby augmenting our
comprehension of the underlying pathophysiology of
these conditions. In general, the studies utilizing TMS
indicate a correlation between PLP and neuroplastic
alterations (81, 82). In a clinical trial conducted by
Lefaucheur et al., it was determined that the application
of rTMS over M1 at a frequency of 10 Hz was significantly
effective in alleviating neuropathic pain. However, no
such observation was made at a frequency of 0.5 Hz (83).
According to another group of researchers, the use of
rTMS was found to be more productive in mitigating pain
when administered at a frequency of 20 Hz, as opposed to
1 Hz (84).

Interv PainMed Neuromod. 2023; 3(1):e141334. 5



Akhlaghdoust M et al.

3. Discussion

This study aimed to review CNS neuromodulation
techniques inmanaging pain among individuals with PLP.
There is substantial evidence regarding theplastic changes
that occur in the human motor system after amputation.
Phantom limb pain has been linked to a maladaptive
restructuring of the sensorimotor cortex, which ismarked
by a disturbance in intra-cortical inhibitory mechanisms
and the existence of an imbalance between the levels
of inhibitory and excitatory amino acids, specifically
gamma-aminobutyric acid (GABA) and glutamate, which
increase the excitability of corticospinal neurons (85-87).
In 2003, Töpper et al. conducted a clinical trial on the
effects of rTMS on pain syndromes. The study focused on
two patients who suffered from chronic arm pain due to
unilateral lower cervical root avulsion. Additionally, four
healthy participants were subjected to induced pain via
cold water immersion of their right hand as controls. The
study aimed to investigate the immediate impact of rTMS
on pain intensity. The results showed that the activation
of the contralateral parietal cortex resulted in a reduction
of pain intensity for up to 10 minutes. However, there was
no discernible impact on pain in other cortical regions.
Furthermore, theutilizationof trains for three consecutive
weeks on the contralateral parietal cortex did not yield
enduring enhancements in pain thresholds (2).

Another clinical trial conducted by Ahmed et al.
involved 27 patients who suffered from PLP due to
unilateral amputation. Of the participants, 11 had
undergoneupper limbamputation, and 16hadundergone
below-knee amputation. Over five consecutive days, a
group of 17 patients received a 10-minute session of real
rTMS targeting the hand region of motor cortex M1 on a
daily basis. In contrast, a separate group of 10 patients
received sham stimulation. Patients who underwent real
rTMS exhibited a significant reduction in both Visual
Analog Scale (VAS) and Leeds Assessment of Neuropathic
Symptoms and Signs (LANSS) scores compared to those
who received shamrTMS. Furthermore, theHamilton Scale
demonstrated a significant reduction in depression and
anxiety levels among patients who underwent real rTMS.
After five sessions, beta-endorphin levelswere evaluated in
the 1 to 2 hours. The results indicated a significant increase
in beta-endorphin levels following authentic stimulation,
while no significant alteration was observed in patients
who received sham rTMS. Therefore, it was concluded that
the alleviation of pain could be attributed to an elevation
in the levels of beta-endorphins in the serum (18).

A clinical trial by Malavera et al. included 54 patients.
The study’s findings indicated that the administration
of active rTMS resulted in significantly higher pain

relief 15 days after the treatment, as compared to sham
stimulation. However, this effect was not found to
be significant 30 days after treatment. Furthermore,
70.3% of participants in the active group experienced
clinically significant pain relief (>30%), as compared
to 40.7% in the sham group. The study also analyzed
anxiety and depression symptomatology as a potential
confounding factor in pain relief, revealing no significant
differences between treatment effects groups over time
(19). Bolognini et al. were the pioneering researchers
to examine the impact of a single session of anodal or
cathodal tDCS on the primary motor cortex (M1) and the
posterior parietal cortex (PPC). The findings of their study
revealed that the application of anodal stimulation to
the M1 region resulted in an immediate and significant
reduction of approximately 50% in PLP. Conversely,
cathodal tDCS applied to the PPC produced similar
but short-lived reductions, limited only to nonpainful
phantom sensations. The initial study design failed to
evaluate the enduring impacts of the tDCS treatment (16,
17).

In 2019, Kikkert et al. investigatedwhether targetingof
missing hands would result in PLP relief. Excitatory tDCS
was administered over the S1 (primary somatosensorial
cortex)/M1 cortex of the missing hand, and the neural
mechanisms underlying PLP relief were assessed during
and after tDCS using neuroimaging techniques (14). The
research conducted by Gunduz et al. in 2021 revealed
that there were no significant enhancements in PLS.
However, there was a significant improvement observed
in PLP following the application of 10 sessions of 2 mA
anodal tDCS for 20 minutes in conjunction with mirror
therapy (13). Segal et al. revealed that there were no
noteworthy enhancements in PLS. However, there was a
significant improvement in PLP following the application
of 10 sessions of 1.5 mA anodal tDCS for 20 minutes in
conjunction with mirror therapy (12). A double-blinded,
sham-controlled trial study was performed by Kikkert
et al., which recorded brain activity with fMRI while
stimulating M1 during phantom movements (14). Their
study revealed that a decrease in sensorimotor cortex
activity following stimulation was linked to a decrease in
pain. Additionally, this research demonstrated that the
reduction in cortical activity was preceded by modified
activity in the mid-and posterior insula, as well as in the
secondary somatosensory cortex (14). Table 1 presents a
comprehensive examination of ten studies meticulously
arranged in a sequential order based on their respective
timelines.

Our study summarized the trials providing evidence
regarding the effectiveness of anodal tDCS of M1 for PLP
in comparison to sham stimulation in the immediate and
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short terms. It has been suggested that the modulation
direction depends on the condition of the underlying
network, and pain networks can be modified (88). Two
notable limitations constrain this review. The varied
frequencies and intervals of rTMS and tDCS employed in
the studies hindered identifying the optimal parameters
and session count for tDCS and rTMS in the management
of PLP.

4. Conclusions

The current review demonstrated that there exists
a moderate level of evidence to justify the utilization of
tDCS and TMS in the treatment of PLP. Furthermore, no
significant adverse effects were reported. Given that PLP
is linked to maladaptive brain plasticity, interventions
that regulate cortical reorganization and behavioral
techniques, such as TMS and tDCS, respectively, may prove
advantageous inmanaging pain associated with PLP.

Phantom limb pain has been demonstrated to
be associated with cortical excitability within the M1
network. Furthermore, hyperexcitation of the posterior
parietal cortex is demonstrated to be correlated with
nonpainful phantom experiences. The heightened anodal
excitability of tDCS in the primary motor cortex (M1) is
associated with a reduction in PLP. Conversely, cathodal
tDCS stimulation in the posterior parietal cortex is
associated with an increase in non-painful sensations.
rTMS has demonstrated potential as a viable treatment
option for reducingpainsensation inPLP. This is supported
by evidence demonstrating the correlation between pain
scale measurements and the observed increase in serum
beta-endorphin levels following treatment. To advance
our understanding and application of neuromodulatory
techniques for treating PLP, the next crucial step is
the development of pragmatic trials. Such trials can
assist in generalizing results to a wider population and
assess critical outcomes pertinent to both patients and
physicians, such as functional status and costs.
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