
BREAST IMAGING
Iran J Radiol. 2021 July; 18(3):e106717.

Published online 2021 September 19.

doi: 10.5812/iranjradiol.106717.

Research Article

An Efficient Method for Automated Breast Mass Segmentation and

Classification in Digital Mammograms

Behrouz Niroomand Fam 1, Alireza Nikravanshalmani 1, * and Madjid Khalilian 1

1Department of Computer, Karaj Branch, Islamic Azad University, Karaj, Iran

*Corresponding author: Department of Computer, Karaj Branch, Islamic Azad University, Imam Ali Complex, Moazen Blvd, Karaj, Iran. Email: nikravan@kiau.ac.ir

Received 2020 June 22; Revised 2021 May 11; Accepted 2021 May 15.

Abstract

Background: Automatic detection and classification of breast masses in mammograms are still challenging tasks. Today, computer-
aided diagnosis (CAD) systems are being developed to assist radiologists in interpreting mammograms.
Objectives: This study aimed to provide a novel method for automatic segmentation and classification of masses in mammograms
to help radiologists make an accurate diagnosis.
Materials and Methods: For an efficient mass diagnosis in mammograms, we proposed an automatic scheme to perform both mass
detection and classification. First, a combination of several image enhancement algorithms, including contrast-limited adaptive
histogram equalization (CLAHE), guided imaging, and median filtering, was investigated to enhance the visual features of breast
area and increase the accuracy of segmentation outcomes. Second, the density of discrete wavelet coefficient density (DDWCs),
based on the quincunx lifting scheme (QLS), was proposed to find suspicious mass regions or regions of interest (ROIs). Finally,
mass lesions that appeared in the mammogram were classified into four categories of benign, probably benign, malignant, and
probably malignant, based on the morphological shape. The proposed method was evaluated among 1593 images from the Curated
Breast Imaging Subset-Digital Database for Screening Mammography (CBIS-DDSM) dataset.
Results: The experimental results revealed that the suspected region localization had 100% sensitivity, with a mean of 6.4±4.5 false
positive (FP) detections per image. Moreover, the results showed an overall accuracy of 85.9% and an area under the curve (AUC) of
0.901 for the mass classification algorithm.
Conclusion: The present results showed the comparable performance of our proposed method to that of the state-of-the-art meth-
ods.
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1. Background

Breast cancer has currently become one of the main
global health challenges and the first cause of cancer-
related mortality in women worldwide. According to the
World Health Organization (WHO), there were more than
two million newly diagnosed breast cancer cases in 2018
(11.6% of all cancers). This type of cancer is also the fourth
leading cause of death, accounting for 626,679 deaths in
2018 (1). A screening mammogram is the most effective
method to reduce the mortality of breast cancer and in-
crease the survival rate by early detection. However, the in-
terpretation of mammograms is often a challenging task,
and radiologists may misdiagnose a large proportion of
cases. Masses and calcifications are the most common
types of abnormalities in mammograms. Also, masses are
similar to some breast tissues and can be located in dense

areas of breast tissues, making it difficult to detect them.
These issues make breast mass detection a challenging
problem for both radiologists and computer-aided diagno-
sis (CAD) systems.

In recent years, many studies have been conducted on
the development of CAD systems for breast cancer detec-
tion (2-4). Most of these studies are completely dependent
on segmentation and hand-crafted features, which are not
optimal. In some studies, wavelet coefficients and features
extracted from wavelet coefficients have been used to de-
tect breast abnormalities in mammograms (5, 6). In these
methods, it is necessary to define hand-crafted features to
detect and classify mass regions in mammograms; there-
fore, the performance of these methods is limited. Besides
high computational cost (7), these methods have resulted
in a rather significant number of false-positive (FP) results
(8).
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More recently, deep learning-based approaches, espe-
cially convolutional neural networks (CNNs) (9-11), have
been introduced to overcome these limitations. However,
they require large annotated datasets for training, which
are expensive and time-consuming to acquire. Moreover,
training a CNN requires a massive amount of data, a high
computing power, and large memory resources. Some
studies have used morphological features to distinguish
benign tumors from malignant ones (12-14). Benign masses
are round or regular, smooth, and well-defined, while ma-
lignant masses have much more irregular, rough, spicu-
lated, or blurry boundaries. In this regard, Liu and Zeng
(15) extracted various types of hand-crafted features from
ROIs and fed them into a support vector machine (SVM) for
classification. Masses were detected with 82.4% sensitivity
and 5.3 false positives per image (FPPI), using the digital
database for screening mammography (DDSM) database.

In another study, Vadivel and Surendiran (12) used
shape and margin features to develop an approach for
mass classification in mammograms and examined this
approach in the DDSM database. The classification results
showed an accuracy of 87.76%. More recently, Shen et al.
(9) proposed a new deep learning framework for detect-
ing and classifying breast masses. They achieved the best
performance with a true positive rate (TPR) of 0.812 and
false positives per image (FPI) of 2.53 on the CBIS-DDSM
database. So far, although various methods have been de-
veloped for breast mass classification, accurate classifica-
tion of malignant and benign masses is still a major chal-
lenge.

2. Objectives

In this study, for an accurate and efficient mass detec-
tion in digital mammograms, we proposed a density of dis-
crete of wavelet coefficient (DDWC)-based method for lo-
calizing suspected lesions on mammograms. The masses
appearing on mammograms were further analyzed and
classified into four groups based on the morphological fea-
tures.

3. Materials and Methods

In this study, the proposed method was divided into
two main stages. The first stage was related to the detec-
tion of suspicious mass regions on mammograms, while
the second stage was related to the classification of these
regions as benign, probably benign, malignant, and prob-
ably malignant. The steps of the proposed method are pre-

sented in Figure 1. Each step will be described in the sec-
tions below.

3.1. Pre-Processing Stage

Figure 2 presents the pre-processing stage, which in-
cludes four phases. In the first phase, unwanted portions,
such as borders, labels, and additional artifacts, are re-
moved from the normalized grayscale mammogram, and
the breast area is segmented. In the second phase, the de-
noising process was used to highlight some information
about tissues contained in the mammogram. The third
phase was image enhancement, which allowed for a bet-
ter visualization of specific regions (e.g., abnormalities) in
the image. Moreover, contrast-limited adaptive histogram
equalization (CLAHE) and morphological operations were
used to further enhance the mammographic image and re-
duce the noise produced in homogeneous areas. In the fi-
nal phase, guided image filtering was performed to obtain
a refined mammogram. The pre-processed mammogram
Mp was used as input for the segmentation stage, as shown
in Figure 3.

3.2. Suspected Region Localization (SRL)

In this stage, the pre-processed mammogram, ob-
tained from Section 3.1, was used as the input. This study fo-
cused on finding suspicious regions (SRs). Generally, anal-
ysis of mammograms is a difficult task due to the irregular-
ity of mammogram texture. Since mammography is a non-
stationary signal, discrete wavelet transform (DWT) (16) is
an efficient tool for analyzing different signal components
at different resolution scales. A signal in wavelet decompo-
sition can be represented as follows:

(1)F (t) =
∑

i

∑
j
cijφij (t)

whereϕij (t) = 2
i
2ϕ(2it− j) andϕij(t) are the basic

functions, and cij is a coefficient (a numerical value). The
information and nature of a given signal are determined
by the coefficients since the basic functions are fixed. Also,
the Fourier transform x̂(ω) of x is defined as follows:

(2)
∑

n ε Z2
x [n] e−jω

Tn

where zn =Zn1
1 Zn2

2 . The quincunx downsampling ver-
sion of x [n] can be written as follows:

(3)y [n] = [x]↓D [n] = x [Dn]

where D is the generating matrix. Since the quincunx
wavelet transform (QWT) requires more computations, the
lifting scheme (LS) (17) is an efficient and rapid implemen-
tation method of wavelet transform with low memory and

2 Iran J Radiol. 2021; 18(3):e106717.

  x̂  (ω) =



Niroomand Fam B et al.

Figure 1. The schematic diagram of the proposed method for breast mass detection and classification based on the input digital mammogram

Figure 2. The block diagram of the pre-processing stage

computational complexity. The basic idea of LS is to split
a signal (image) into even and odd samples (Equation 4);
then, the odd samples are predicted based on the even
ones. The resulting prediction error is used to update the
even samples:

(4)(Io (m,n) , Ie (m,n)) = split (I (m, n))

where the split is defined as follows:


Ie (m,n) = I(m, 2n)

Io (m,n) = I(m, 2n+ 1)

Figure 4 presents the method of finding SRs in two
phases. In the first phase, the DWC based on QLS was de-
fined as follows:

Phase 1: Consider C = {c1, c2, …, cm|m = 1, 2, …, n} denote
containing all independent coefficients of the QLS trans-
form in the pre-processed mammogram image (Mp); the
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Figure 3. An example of applying the suspicious region localization (SLR) method in a mammogram. A, Original mammogram and red rectangle is the area containing the
mass; B-F, The pre-processing step: B, Removal of noise and radiographic artifacts and selection of the breast region, C, Morphological operation; D, Wavelet denoising; E,
Contrast-limited adaptive histogram equalization (CLAHE); and F, Guided Image filtering; G, Segmentation based on the quincunx lifting scheme (QLS) and post-processing;
and H, The final results and mask image (ROI).

ck is a non-zero coefficient in iteration k. Density+ and
Density- are defined as follows:

(5)Density+ (i, j) =
∏n,n

i,j
C+
k,G (i, j)

where c+k,G is defined as follows:

(6)c+k,G = Gaussian− filter
(
C+
k

)
Since the wavelet transform produces a large number

of artifacts, the Gaussian filter has been used to eliminate
noise; it also has better edges than c+k,G, where C+

k is de-
fined as:

(7)c+k = Max (1, ck)

Finally, max (1,α) is determined as follows:

(8)max (1, α) =


1 if α > 0

0 otherwise

Density - is also defined as:

(9)Density− (i, j) =
∏n,n

i,j
C−k,G (i, j)

(10)c−k,G = Gaussian− filter
(
c−k
)

(11)c−k = Min (1, ck)

(12)min (1, α) =


1 if α < 0

0 otherwise

Finally, DWC is defined as:

(13)

Densityn,n (i, j)

=


1If density+ (i, j) > Density− (i, j)

0 otherwise
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Figure 4. The proposed steps for finding suspicious regions (SRs) in mammograms

Phase 2: In this phase, the boundary of ROI was traced
automatically using a Canny edge detector, based on the
density defined in the previous phase (Equation 13):

Canny Edge Detection: The Canny edge detector was
used for SR extraction.

Hole-Filing: If S is a symmetric structuring element,
the hole-filling algorithm can be defined as follows:

(14)xi = (xi−1 ⊕ S)
⋂
BC , i

= 1, 2, . . . , n

where the set of xi and B contains all filled holes and
their boundaries. The algorithm terminates when xi = xi-1.

Morphological Operation: The morphological disks
were used for filtering so as to discard any noisy objects.
Figure 3 presents the steps of mass segmentation and iden-
tification from the mammogram.

3.3. Mass Classification

The classification stage is performed using a shape fea-
ture classifier. This step aims to distinguish between be-
nign and malignant masses. Although several morpholog-
ical features have been used for the classification of be-
nign and malignant masses in the literature (12-14, 18), it
is preferable to use an optimal number of features that al-
low the CAD system to achieve the desired performance.

The borders of benign tumors are relatively smooth, while
malignant tumors have much more irregular borders. Ac-
cording to this hypothesis, the tumor compactness can be
calculated based on the following equation (19):

(15)CI = 1− 4 × π ×A

P 2

where CI represents the compactness index, P denotes
the total number of pixels at the edge or on the margin of
tumor, and A is the number of pixels or tumor area. If CI is
equal to zero, the mass is circular; otherwise, it has other
shapes. The compactness index is generally used to mea-
sure the tumor shape characteristics. A high CI value indi-
cates a large perimeter enclosing a small area. As the tumor
shape becomes more complex and rougher, the value of
the CI index increases. Moreover, CI is independent of lin-
ear transformations, rotations, starting point, and size of a
given contour and measures the degree of roughness of a
region. Therefore, typical malignant masses are expected
to have higher CI values as compared to typical benign tu-
mors.

To distinguish between different mass shapes, we used
certain thresholds for mass classification. The thresholds
were determined by comprehensive comparisons between
different mass shapes, which were annotated by the radi-
ologists in the CBIS-DDSM dataset. First, we calculated the
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CI parameter for each mass in the CBIS-DDSM dataset. If CI
is < 60%, the mass is benign, whereas if it is ≥ 80%, it is
considered malignant. If CI ∈ [60%, 70%) means CI≥ 60%
and < 70%, therefore, “If CI∈ [60%, 70%) the mass is proba-
bly benign and otherwise, the mass is probably malignant
(Figure 5). The SRs detected in the previous stage were an-
alyzed based on the thresholds and classified into four cat-
egories.

3.4. Dataset

In this study, we employed a new updated and stan-
dardized version of the DDSM database (20), that is, the
curated breast imaging subset of DDSM (CBIS-DDSM) (21),
which contains images with a standard DICOM format.
The CBIS-DDSM database was reviewed and annotated by
trained mammographers. We used all mass cases in this
database, which included 1593 mammograms (829 benign
and 764 malignant cases) of 892 cases and a total of 1698
masses with ground truth (GT) masks (i.e., annotations).

Besides, the CBIS-DDSM database contains pixelwise
annotations for ROIs, such as mass shape, Breast Imaging-
Reporting and Data system (BI-RADS) rating (rating: 0, 2
- 6), and lesion pathology (two annotations of benign or
malignant). The ROI segmentation, bounding boxes, and
pathological GT for diagnosis were also included in this
dataset. Each view was used as a separate image, and all
images were resized to 1024 × 1024 pixels, using bicubic
interpolation. In our experiments, the ROIs were extracted
using binary segmentation masks, provided in the CBIS-
DDSM dataset.

3.5. Evaluation Protocol

Several indicators were used to evaluate the perfor-
mance of the proposed method in this study. The ROI de-
notes the SR found by the algorithm, and the region GT rep-
resents the GT mask. For simplicity, the same notation was
used for a region and its number of pixels. The sensitivity,
average FPPI, precision, and Jaccard index (IoU) were also
measured to evaluate the performance of the proposed
segmentation method. Moreover, sensitivity was exam-
ined to determine the proportion of true positives (TP) cor-
rectly identified. Sensitivity was also determined as the TPR
or probability of detection (Figure 6) and defined as fol-
lows:

(16)
Sensitivity

=
Number of TP regions

Number of TP regions + Number of FN regions

=
Number ((GT

⋂
ROI) 6= ∅)

Number (GT )

In a CAD system, high sensitivity is needed to find the
SRs, even at high FP costs. The FP rate can be reduced
through classification. The FPPI was defined as follows:

(17)FPPI =
Number of false positives

Number of images

The precision and Jaccard index (IoU) were also defined
as follows:

(18)Precision =
TP

TP + FP
or
ROI

⋂
GT

ROI

(19)
Jaccard index =

Area of overlap

Area of Union

=
ROI

⋂
GT

ROI
⋃
GT

Generally, the Jaccard index is used to measure the SR
boundary overlap with the GT boundary. To evaluate the
classification method performance, we used the receiver
operator characteristic (ROC) curve and measured the area
under the curve (AUC) and overall accuracy. The ROC curve
indicated the diagnostic ability of the classifier system and
was defined based on sensitivity and specificity as follows
(14):

(20)Sensitivity =
Number (TP )

Number (TP ) +Number (FN)

Index =
Area of overlap

Area of Union

=
ROI

⋂
GT

ROI
⋃
GT

(21)Specificity =
Number (TN)

Number (FN) +Number (FP )

The overall classification accuracy was calculated as fol-
lows:

(22)Overall accuracy =
TP + TN

TP + FN + TN + FP

The negative predictive value (NPV) and positive pre-
dictive value (PPV) were also defined as follows:

(23)NPV =
True negative

True negative + False negative

(24)PPV =
True positive

True positive + False positive
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Figure 5. Mass classification

Figure 6. Examples of sensitivity measurement for the detection of suspicious regions (SRs). A, Ground truth region (GT); B, No coverage of GT (i.e., GT
⋂

SR = ∅), sensitivity =
0; C, One of the SRs completely overlapping with the GT region (complete coverage of GT; GT

⋂
SR6=∅), sensitivity = 1; and D, One of the SRs covering a portion of the GT region

(partial coverage of GT; GT
⋂

SR 6= ∅), sensitivity = 1.

Iran J Radiol. 2021; 18(3):e106717. 7
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4. Results

4.1. Experiment 1

The SRL process is presented in Figures 3-7. The TP, FP,
and false negative (FN) rates are also shown in Figure 8. The
information and opinions of radiologists in the CBIS-DDSM
dataset, along with the similarity measure between the SR
and GT (Figure 8), was the foundation for validation in this
study. The results showed that the sensitivity, FPPI, preci-
sion, and IOU of the segmentation method were 100%, 6.4
± 4.5, 0.71 ± 7.6%, and 0.68 ± 0.06%, respectively. The re-
sults of comparison in the same dataset are presented in
Table 1. Compared to other methods, our method showed
superior performance based on the sensitivity results.

4.2. Experiment 2

For each suspicious mass region, we computed the CI
index, as described in Section 3.3. The confusion matrix was
used to show how our proposed method could distinguish
between benign and malignant tumors. The overall perfor-
mance of the diagnostic system was also evaluated using
the ROC curve analysis. In this study, the ROC curve analy-
sis was performed to classify benign and malignant masses
in the extracted SRs. Overall, the prediction of a benign or
probably benign mass is considered a negative prediction
(benign), while the prediction of a malignant or probably
malignant mass is considered a positive prediction (malig-
nant).

The results of mass detection were classified as follows:
TP, malignant masses correctly diagnosed as malignant; FP,
benign masses incorrectly diagnosed as malignant; true
negative (TN), benign masses correctly diagnosed as be-
nign; and FN, malignant masses incorrectly diagnosed as
benign. The confusion matrix of the proposed CAD system
is presented in Table 2. Also, Figure 9 indicates the ROC
analysis. The results showed that the overall accuracy of
the proposed method was 85.9%, with sensitivity of 81.3%,
specificity of 90.2%, PPV of 88.5%, and NPV of 83.9%; these in-
dices are presented in Table 3. According to Table 3 and Fig-
ure 9, breast tumor classification based on the mass shape
information is an efficient method.

5. Discussion

Although our experimental results confirmed the ef-
fectiveness of our proposed method and its possible appli-
cations, there are some technical needs that need to be con-
sidered. In this study, we proposed a new method for mass

detection using digital mammograms. This method con-
sisted of two major stages, that is, finding SRs and classify-
ing them based on the morphological features. In the first
stage, DWC was proposed for automatic mass detection
in mammograms, without the need for feature extraction.
Unlike traditional methods, our proposed method was de-
rived from different structures of mammograms. Besides
the simplicity of implementation, this method did not de-
pend on complex mathematical and Fourier transforms.

Commonly, one of the challenges of SRL is the high
number of FPs. As shown in Table 1, the proposed segmen-
tation method was more sensitive than other algorithms
in detecting suspicious mass regions. The high sensitivity
and relatively low FPPI of the proposed method suggest the
good performance of our method. Therefore, it can be used
for SRL in mass screening programs or breast CAD systems.
Generally, the segmentation stage aims to extract all SRs
from mammograms; therefore, if a mass was not present
in any of the SRs (GT

⋂
SR = ∅) (Figure 6B), it was consid-

ered lost and therefore an FN region. On the other hand,
only regions detected by the segmentation method (as TP
regions) were further analyzed in the next stage. As shown
in Figure 6, in both sections (Figure 6C and D), the mass was
covered by the SR, and therefore, there was a TP region (GT⋂

SR 6= ∅).

We used the precision and Jaccard indices as statistical
indices to evaluate the overlapping of GT and SR regions.
The precision index generally represents the percentage of
SR pixels overlapping with the GT pixels. The value of this
index ranges between zero and one. It is one if one of the SR
or GT regions is completely overlapping (Figure 6C), while
it is zero if the SR and GT regions are entirely different (Fig-
ure 6B). Besides, we used the Jaccard similarity index to
measure the similarity between the GT and SR regions.

A mass on a mammogram can be either malignant or
benign, depending on its shape. The compactness char-
acteristic has been identified as an important feature in
distinguishing benign from malignant masses. We used
the mass compactness index and the threshold values to
distinguish between benign and malignant masses. As
shown in Figure 5, the threshold measures were deter-
mined based on comprehensive comparisons between dif-
ferent mass shapes and the trade-off between sensitivity
and specificity from the CBIS-DDSM dataset. Accordingly,
three cut-off points were selected (60%, 70%, and 80%).
Masses were then stratified into four groups of benign, ma-
lignant, probably benign, and probably malignant (Figure
9).

In the present study, once the SRs were extracted from
the mammograms, the CI index was calculated for these re-
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Figure 7. An example of suspicious region localization (SRL): A, Pre-processed mammogram; B, Results for a segmented region produced by the proposed algorithm; C, SR
extracted; and D, SR mask.

Table 1. Comparison of Mass Detection Models (Suspicious Region Localization [SRL])

Authors Database Accuracy Sensitivity Specificity Precision IOU FPPI

Sampaio et al. (22) DDSM 0.85 0.80 0.86 0.84

Nunes et al. (23) DDSM 0.84 0.83 0.84 0.55

Liu et al. (24) DDSM 0.94 4.1

Wang et al. (25) DDSM 0.95 2.66

Shen et al. (9) CBIS-DDSM 0.81 2.53

Proposed method CBIS-DDSM 1.0 0.71 0.68 6.4

Abbreviations: FPPI, false positives per image; IOU, Jaccard index.

Figure 8. True positive (TP), false positive (FP), and false negative (FN) definitions.
The region of interest (ROI) denotes the suspicious region (SR) found by the algo-
rithm.

gions. Based on the obtained thresholds, the masses were
classified into four categories. The results showed that the
proposed method had an overall accuracy of 85.9% with an

Table 2. The Confusion Matrix of the Proposed Method

Benign Malignant Total

Benign 748 (90.2%) 81 (9.8%) 829

Malignant 143 (18.7%) 621 (81.3%) 764

Total 891 702 1593

AUC of 0.901. The identification results by the proposed
system are shown in Table 3. We believe that the results of
the present study and the proposed method can assist ra-
diologists in malignancy diagnosis of breast masses. More-
over, the proposed SRL method may provide a valuable
reference method for abnormality segmentation in future
studies.

Iran J Radiol. 2021; 18(3):e106717. 9
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Figure 9. The receiver operator characteristic (ROC) curves of the proposed computer-aided diagnosis (CAD) system

Table 3. The Classification Performance of the Proposed CAD System in the CBIS-
DDSM Dataset

Index Values, %

Sensitivity 81.3

Specificity 90.2

AUC 0.901

NPV 83.9

PPV 88.5

Overall accuracy 85.9

Abbreviations: AUC, area under the curve; CAD, computer-aided diagnosis;
CBIS-DDSM, Curated Breast Imaging Subset-Digital Database for Screening
Mammography; NPV, negative predictive value; PPV, positive predictive value.

Overall, a breast mass is the most common type of
abnormality in mammograms. Occasionally, masses con-
tain microcalcifications (26); detection of these abnormal-
ities can increase the diagnostic sensitivity for malignancy
masses. However, in this study, the SRL stage focused on
finding suspicious mass regions; therefore, small regions
(or holes) found in the SRL process were suppressed (Fig-

ure 4). Since the microcalcification diameter is mostly less
than 1 mm, these regions (suspicious microcalcification re-
gions) are usually suppressed in the SRL process.

There are several limitations in this study. First, this
study is a small study with a relatively small number of
mass lesions; therefore, the results must be interpreted
with caution. Also, a larger sample of mammograms with
annotated lesions is needed to adequately assess the pro-
posed method. Another limitation of the present study
is that the compactness characteristic was used to classify
masses. However, the use of compactness is limited due to
its sensitivity to noise. To minimize this effect, several com-
binations of image enhancement algorithms were used to
enhance the performance of mammograms.

In conclusion, in this study, we introduced a novel
approach for mammogram analysis to find suspicious
mass regions and classify them into four categories. The
SRs were successfully segmented, and the classifier could
successfully discriminate between masses. The proposed
method could be used in breast cancer screening and train-
ing of medical staff. Besides, the proposed mass segmen-
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tation method can be applied in various studies to poten-
tially improve the performance of CAD systems. Although
the proposed method could segment SRs and their bound-
aries more accurately, the FPs of the proposed method
were considerable. Therefore, it is necessary to optimize
the size of ROIs and the number of these regions; we will
investigate this subject in future studies.

Footnotes

Authors’ Contributions: Behrouz Niroomand Fam con-
tributed to writing and preparation of the original draft
of the manuscript, study conception, investigation, review,
and editing. Alireza Nikravanshalmani and Madjid Khalil-
ian contributed to study supervision, writing, review, and
editing of the manuscript. All authors approved the final
manuscript.

Conflict of Interests: The authors declare that they have
no conflict of interest.

Ethical Approval: This article does not contain any stud-
ies with human participants performed by any of the au-
thors.

Funding/Support: No funding was received for this study.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mor-
tality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.
2018;68(6):394–424. doi: 10.3322/caac.21492. [PubMed: 30207593].

2. Alqudah AM, Algharib HM, Algharib AM, Algharib HM. Computer
Aided Diagnosis System for Automatic Two Stages Classification of
Breast Mass in Digital Mammogram Images. Biomed Engin. 2019;31(1).
doi: 10.4015/s1016237219500078.

3. Nedra A, Shoaib M, Gattoufi S. Detection and classification of the
breast abnormalities in Digital Mammograms via Linear Support Vec-
tor Machine. 2018 IEEE 4th Middle East Conference on Biomedical Engi-
neering (MECBME). 2018. p. 141–6.

4. Yengec Tasdemir SB, Tasdemir K, Aydin Z. ROI Detection in Mammo-
gram Images Using Wavelet-Based Haralick and HOG Features. 2018
17th IEEE International Conference on Machine Learning and Applications
(ICMLA). 2018. p. 105–9.

5. Jasionowska M, Gacek A. Wavelet Convolution Neural Network
for Classification of Spiculated Findings in Mammograms. Informa-
tion Technology in Biomedicine. 2019. p. 199–208. doi: 10.1007/978-3-030-
23762-2_18.

6. Sehrawat D, Sehrawat A, Jaiswal D, Sen A. Detection and classification
of tumor in mammograms using discrete wavelet transform and sup-
port vector machine. Int Res J Engin Technol. 2017;4(5):1328–34.

7. Sweldens W. The Lifting Scheme: A Custom-Design Construction of
Biorthogonal Wavelets. Appl Comput Harmonic Analys. 1996;3(2):186–
200. doi: 10.1006/acha.1996.0015.

8. Al-Masni MA, Al-Antari MA, Park JM, Gi G, Kim TY, Rivera P, et al. Simul-
taneous detection and classification of breast masses in digital mam-
mograms via a deep learning YOLO-based CAD system. Comput Meth-

ods Programs Biomed. 2018;157:85–94. doi: 10.1016/j.cmpb.2018.01.017.
[PubMed: 29477437].

9. Shen R, Zhou K, Yan K, Tian K, Zhang J. Multicontext multitask
learning networks for mass detection in mammogram. Med Phys.
2020;47(4):1566–78. doi: 10.1002/mp.13945. [PubMed: 31799718].

10. Yu S, Liu L, Wang Z, Dai G, Xie Y. Transferring deep neural networks for
the differentiation of mammographic breast lesions. Sci Chin Technol
Sci. 2018;62(3):441–7. doi: 10.1007/s11431-017-9317-3.

11. Al-antari MA, Al-masni MA, Park S, Park J, Metwally MK, Kadah YM, et
al. An Automatic Computer-Aided Diagnosis System for Breast Can-
cer in Digital Mammograms via Deep Belief Network. J Med Biol Engin.
2017;38(3):443–56. doi: 10.1007/s40846-017-0321-6.

12. Vadivel A, Surendiran B. A fuzzy rule-based approach for characteriza-
tion of mammogram masses into BI-RADS shape categories. Comput
Biol Med. 2013;43(4):259–67. doi: 10.1016/j.compbiomed.2013.01.004.
[PubMed: 23414779].

13. Retico A, Delogu P, Fantacci ME, Kasae P. An automatic system to dis-
criminate malignant from benign massive lesions on mammograms.
Nucl Instrum Meth Phys Res Sec. 2006;569(2):596–600.

14. Dong M, Lu X, Ma Y, Guo Y, Ma Y, Wang K. An Efficient Approach
for Automated Mass Segmentation and Classification in Mammo-
grams. J Digit Imaging. 2015;28(5):613–25. doi: 10.1007/s10278-015-9778-
4. [PubMed: 25776767]. [PubMed Central: PMC4570896].

15. Liu X, Zeng Z. A new automatic mass detection method for breast can-
cer with false positive reduction. Neurocomputing. 2015;152:388–402.
doi: 10.1016/j.neucom.2014.10.040.

16. Daubechies I. Ten Lectures on Wavelets. SIAM; 1992. doi:
10.1137/1.9781611970104.

17. Daubechies I, Sweldens W. Factoring wavelet transforms into lifting
steps. The Journal of Fourier Analysis and Applications. 1998;4(3):247–69.
doi: 10.1007/bf02476026.

18. Rojas Dominguez A, Nandi AK. Detection of masses in mammo-
grams via statistically based enhancement, multilevel-thresholding
segmentation, and region selection. Comput Med Imaging Graph.
2008;32(4):304–15. doi: 10.1016/j.compmedimag.2008.01.006.
[PubMed: 18358699].

19. Wei CH, Chen SY, Liu X. Mammogram retrieval on similar mass
lesions. Comput Methods Programs Biomed. 2012;106(3):234–48. doi:
10.1016/j.cmpb.2010.09.002. [PubMed: 20933295].

20. Heath M. The Digital Database for Screening Mammography. Proceed-
ings of the Fifh International Workshop on Medical Physics Publishing.
2001. p. 212–8.

21. Lee RS, Gimenez F, Hoogi A, Miyake KK, Gorovoy M, Rubin DL. A curated
mammography data set for use in computer-aided detection and di-
agnosis research. Sci Data. 2017;4:170177. doi: 10.1038/sdata.2017.177.
[PubMed: 29257132]. [PubMed Central: PMC5735920].

22. Sampaio WB, Diniz EM, Silva AC, de Paiva AC, Gattass M. De-
tection of masses in mammogram images using CNN, geostatis-
tic functions and SVM. Comput Biol Med. 2011;41(8):653–64. doi:
10.1016/j.compbiomed.2011.05.017. [PubMed: 21703605].

23. Nunes AP, Silva AC, Paiva ACD. Detection of masses in mammographic
images using geometry, Simpson’s Diversity Index and SVM. Int J Sig-
nal Imag Syst Engin. 2010;3(1). doi: 10.1504/ijsise.2010.034631.

24. Liu L, Li J, Wang Y. Breast mass detection with kernelized supervised
hashing. 2015 8th International Conference on Biomedical Engineering
and Informatics (BMEI). 2015. p. 79–84.

25. Wang H, Feng J, Bu Q, Liu F, Zhang M, Ren Y, et al. Breast Mass Detection
in Digital Mammogram Based on Gestalt Psychology. J Healthc Eng.
2018;2018:4015613. doi: 10.1155/2018/4015613. [PubMed: 29854359].
[PubMed Central: PMC5954872].

26. Chung SY, Oh KK. Mammographic and sonographic findings of a
breast subcutaneous hemangioma. J Ultrasound Med. 2002;21(5):585–
8. doi: 10.7863/jum.2002.21.5.585. [PubMed: 12008825].

Iran J Radiol. 2021; 18(3):e106717. 11

http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.4015/s1016237219500078
http://dx.doi.org/10.1007/978-3-030-23762-2_18
http://dx.doi.org/10.1007/978-3-030-23762-2_18
http://dx.doi.org/10.1006/acha.1996.0015
http://dx.doi.org/10.1016/j.cmpb.2018.01.017
http://www.ncbi.nlm.nih.gov/pubmed/29477437
http://dx.doi.org/10.1002/mp.13945
http://www.ncbi.nlm.nih.gov/pubmed/31799718
http://dx.doi.org/10.1007/s11431-017-9317-3
http://dx.doi.org/10.1007/s40846-017-0321-6
http://dx.doi.org/10.1016/j.compbiomed.2013.01.004
http://www.ncbi.nlm.nih.gov/pubmed/23414779
http://dx.doi.org/10.1007/s10278-015-9778-4
http://dx.doi.org/10.1007/s10278-015-9778-4
http://www.ncbi.nlm.nih.gov/pubmed/25776767
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570896
http://dx.doi.org/10.1016/j.neucom.2014.10.040
http://dx.doi.org/10.1137/1.9781611970104
http://dx.doi.org/10.1007/bf02476026
http://dx.doi.org/10.1016/j.compmedimag.2008.01.006
http://www.ncbi.nlm.nih.gov/pubmed/18358699
http://dx.doi.org/10.1016/j.cmpb.2010.09.002
http://www.ncbi.nlm.nih.gov/pubmed/20933295
http://dx.doi.org/10.1038/sdata.2017.177
http://www.ncbi.nlm.nih.gov/pubmed/29257132
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735920
http://dx.doi.org/10.1016/j.compbiomed.2011.05.017
http://www.ncbi.nlm.nih.gov/pubmed/21703605
http://dx.doi.org/10.1504/ijsise.2010.034631
http://dx.doi.org/10.1155/2018/4015613
http://www.ncbi.nlm.nih.gov/pubmed/29854359
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954872
http://dx.doi.org/10.7863/jum.2002.21.5.585
http://www.ncbi.nlm.nih.gov/pubmed/12008825

	Abstract
	1. Background
	2. Objectives
	3. Materials and Methods
	Figure 1
	3.1. Pre-Processing Stage
	Figure 2
	Figure 3

	3.2. Suspected Region Localization (SRL)
	Figure 4

	3.3. Mass Classification
	Figure 5

	3.4. Dataset
	3.5. Evaluation Protocol
	Figure 6


	4. Results
	4.1. Experiment 1
	Figure 7
	Figure 8
	Table 1

	4.2. Experiment 2
	Figure 9
	Table 2
	Table 3


	5. Discussion
	Footnotes
	Authors' Contributions: 
	Conflict of Interests: 
	Ethical Approval: 
	Funding/Support: 

	References

