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Abstract

Background: Magnetic resonance imaging (MRI) with gadolinium (GAD)-based contrast agents has been the imaging modality of
choice for early detection and monitoring of multiple sclerosis (MS) patients.
Objectives: This study aimed to assess the effect of multiple injections of linear GAD-based contrast agents on the signal intensity
of the dentate nucleus (DN) in MS patients.
Patients and Methods: A cohort of 122 MS patients with GAD-enhanced MRI scans and 61 healthy controls were enrolled in this study.
The final standard GAD-enhanced MRI scans were acquired using 1.5T MRI systems. Non-enhanced T1-weighted MRI was performed
to assess the DN hyperintensity. The signal intensity ratio (SIR) was also calculated by setting the regions of interest (ROIs) on the
DN and pons and dividing the signal intensity of DN to that of pons. The patients were also divided into two subgroups, based
on the total number of MRI exposures (> 4 times vs. others), and the subgroups were compared in terms of the mean SIR and
hyperintensity.
Results: Overall, 68% (n = 83) of the patients were exposed to a contrast agent more than four times. Of these patients, 31.3% (n = 26)
showed DN hyperintensity, while no hyperintensity was found in other patients or healthy controls (P < 0.02 for both). The mean
SIRs were 1.10 ± 0.07 and 1.04 ± 0.02 in the patients and healthy controls, respectively (P < 0.001). Besides, the mean SIR was 1.14 ±
0.04 in patients with DN hyperintensity and 1.09 ± 0.07 in other patients (P < 0.001). Based on the results, the mean SIR was 1.12 ±
0.7 in patients with > 4 contrast injections, while it was 1.06 ± 0.04 in patients with ≤ 4 contrast injections (P < 0.001).
Conclusion: The SIR and visible DN hyperintensity increased by increasing the number of GAD injections, which could be due to
the tissue deposition of GAD.
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1. Background

Multiple sclerosis (MS) is a chronic disease, in which
the immune system attacks and demyelinates axons in the
central nervous system (CNS). The course of MS follows
a relapsing-remitting pattern, which is more frequent in
women and in the age group of 15 - 45 years. A combina-
tion of genetic and non-genetic predispositions is involved
in the etiology of MS; however, its exact cause remains un-
known (1, 2). Although the current incidence rate of MS is
nearly 100 per 100,000 patients in Iran (3), higher rates of
up to 200 per 100,000 people have been reported in other
countries (4-6).

Prompt diagnosis and treatment can produce better
outcomes and lower morbidity rates in MS patients (7, 8).
Magnetic resonance imaging (MRI) has been the imaging
modality of choice, with high sensitivity for early detec-
tion and monitoring of demyelinating lesions in MS (9-
12). Gadolinium (GAD)-based contrast agents (GBCAs) have
been used for decades in diagnostic workups and surveil-
lance of various central and peripheral nervous system dis-
orders (13). Contrast-enhanced MRI is one of the most use-
ful modalities to improve the detection of lesions in MS pa-
tients (14). Evidence suggests that higher cumulative doses
of GBCAs can improve the detection accuracy of lesions,
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especially in patients with active lesions (as reported af-
ter contrast enhancement) (15). However, safety concerns
have been raised regarding the administration of GBCAs af-
ter repeated measurements (16), mainly due to GAD depo-
sition in various tissues.

Concerns about the effects of GBCAs are not limited
to neural tissues, and their long-term effects on other hu-
man tissues have been also controversial (17). Recent stud-
ies have shown that GAD tends to deposit cumulatively in
the neural tissue of patients with an intact blood-brain
barrier, normal hepatobiliary, and normal renal function
[glomerular filtration rate (GFR): 60 - 90] (18). It has been
also reported that different chemical properties of GBCAs
may lead to different levels of tissue deposition. For exam-
ple, T1 hyperintensities have been observed in the dentate
nucleus (DN) and globus pallidus following the adminis-
tration of linear GBCAs rather than macrocyclic agents (19,
20).

Recently, some clinical studies have investigated the
application of enhanced MRI with GBCAs for MS patients;
however, the use of these agents remains a matter of de-
bate. Some review studies have reported safety concerns
about GBCAs in MS patients. Besides, hyperintensities
have been reported in the DN and globus pallidus in non-
enhanced T1-weighted (T1W) MRI in correlation with previ-
ous GBCA administrations (21, 22).

2. Objectives

This study aimed to evaluate changes in the DN signal
intensity of MS patients with multiple linear GBCA injec-
tions for brain MRI.

3. Patients and Methods

3.1. Patient Selection and Data Collection

A total of 122 MS patients with a history of multiple
GAD exposures, as well as 61 patients without a history of
MS (control group), were enrolled retrospectively during
2008 - 2018. The controls had indications for brain MRI
due to headache, while they had no history of neurologi-
cal disorders, metabolic diseases, head traumas, or GAD in-
jections; also, their MRI scans were normal. The patients’
demographics are presented in Table 1.

The inclusion criteria in this study were as follows: di-
agnosed cases of relapse-remitting MS (excluding other
MS subtypes); history of multiple contrast-enhanced MRI
scans with only linear GBCAs (gadodiamide, Omniscan,
GE Healthcare AS, Oslo, Norway); recent available non-
enhanced T1W brain MRI scans; and the time of disease on-
set and the first MRI with contrast injection. On the other
hand, patients with a known history of renal failure, hep-
atic failure, radiotherapy, or chemotherapy were excluded
from the study. Also, MS patients with plaques or artifacts

in the posterior fossa, including the dentate nucleus (DN),
cerebellum, and pons, were excluded from the MS group.

In each MRI scan series, a standard dose of GAD (sin-
gle dose of 0.1 mmol/kg) was administered for the patients.
The Ethics Committee of Tehran University of Medical Sci-
ences approved this study. All patients signed written in-
formed consent forms before the study.

3.2. Renal and Liver Functions

The renal and liver functions were evaluated, given
their essential rule in the accumulation of GAD. The renal
and liver functions were found to be normal in all patients
before each GAD injection.

3.3. Imaging Analysis

Non-enhanced T1W MRI was performed to evaluate the
prevalence of GAD accumulation in the DN. A transverse 2-
dimensional T1W spin-echo sequence [repetition time (TR),
450 ms; echo time (TE), 10 ms; section thickness, 3 mm; ma-
trix size, 256 × 256; and field of view (FOV), 240 mm] was
used as the MRI protocol. The final brain MRI scans were
performed using 1.5T MRI systems (Magnetom Symphony,
Siemens Medical Solutions, Erlangen, Germany). All scans
were assessed by a neuroradiologist with experience in MS.
It is worth mentioning that the information regarding the
patient’s identity was removed, and all assessments were
performed in a blind manner.

For the assessment of DN, we performed both qualita-
tive (observation of hyperintense DN) and quantitative as-
sessments [signal intensity ratio (SIR) measurement]. For
the qualitative analysis, the presence or absence of hyper-
intensity in the DN was determined in a subjective visual
assessment. A T1 hyperintensity was defined as an irregu-
larly ribbon-like DN with an increased signal intensity in
non-enhanced images. In most cases, the DN is not visi-
ble in non-enhanced T1W MRI; therefore, a visible hyperin-
tensity in this region suggests a hyperintense DN in non-
enhanced T1W MRI.

Moreover, for the quantitative analysis, the DN-to-pons
SIR was calculated. The pons was selected for the SIR mea-
surements, because the probability of GAD deposition in
pons has been reported to be low (23). T2W images were
acquired for increased precision in the region of interest
(ROI) placement. An ellipsoid ROI (compatible with the DN
shape) was drawn, with a larger diameter of 10 mm and a
smaller diameter of 5 mm, positioned within the DN (bilat-
erally) and the pons for each patient (Figure 1). The SIR was
calculated by dividing the mean signal intensity of bilater-
ally DN to that of pons.

Comparisons between the patient and control groups,
as well as different MS subgroups based on the total num-
ber of MRI scans (> 4 times vs. others), were performed re-
garding the mean SIR and visible hyperintensity. To assess
the intra-rater reliability, 15 patients were assessed twice by
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Table 1. The Demographic and Clinical Characteristics of MS Patients and the Control Group a

Variables MS group (n = 122) Control group (n = 61)

Female/male 102/20 31/30

Age, y (range) 36.7 ± 9.1 (19 - 48) 27 ± 1.2 (20 - 45)

Disease duration (y) 11.2 ± 7.2 -

Median EDSS score (range) 3.5 ± 0.9 (1 - 6.5) -

Mean number of previous contrast-enhanced MRI scans per patient (range) 12.7 ± 8.4 (2 - 30) -

Mean cumulative gadodiamide dose (mL) 123.7 ± 76.7 (30 - 450) -

Abbreviation: EDSS, expanded disability status scale; MS, multiple sclerosis; MRI, magnetic resonance imaging.
a Values are expressed as mean ± SD.

Figure 1. A, Axial T1W MRI shows gadolinium (GAD) deposition in the dentate nucleus (DN) in a woman with 24 GAD injections in her lifetime; B, Axial T1W MRI shows the
regions of interest (ROIs) in the DN and pons for signal intensity ratio (SIR) measurements; C, Axial T2W MRI for a more accurate ROI placement in the DN and pons.

a radiologist in a time interval of one month. The intraclass
correlation coefficient (ICC) of SIR between the two assess-
ment sessions was 0.85.

3.4. Statistical Analysis

IBM SPSS version 22 was used for statistical analysis of
data. Chi-square, Fisher’s exact test, independent-samples
t-test, and Pearson’s correlation coefficient test were per-
formed for data analysis. For continuous variables, the
normality of data distribution was examined before anal-
ysis, and if the data were not normally distributed, non-
parametric tests were used as appropriate. P-values less
than 0.05 were defined as statistically significant.

4. Results

A total of 122 MS patients were assessed in this study. All
MS patients had undergone multiple GAD-enhanced MRI
examinations over the past years. Sixty-one healthy con-
trols were also enrolled in this study. Among MS patients,
83 received contrast agents > 4 times (68%). Overall, 26 pa-
tients showed DN hyperintensity, all of whom had a history

of contrast injection more than four times. None of the pa-
tients (n = 39) with ≤ 4 contrast injections showed DN hy-
perintensity, while 26 out of 83 patients with a history of >
4 contrast injections showed DN hyperintensity (31.3%) [P <
0.001; odds ratio (OR): 1.7; 95% confidence interval (CI): 1.4 -
2]. Also, none of the controls showed DN hyperintensity in
MRI scans.

The mean DN-to-pons SIRs in the patient and control
groups were 1.1 ± 0.07 and 1.04 ± 0.02, respectively (P <
0.001). Among MS patients, the mean SIR was 1.14 ± 0.04
in patients with DN hyperintensity, while it was 1.09±0.07
in other patients (P < 0.001); both P-values were < 0.001 for
the comparison of controls with the two subgroups of MS
(Figure 2 and Table 2).

In patients with > 4 comparison of controls with con-
trast injections, the mean SIR was 1.12±0.07, while in other
patients, the mean SIR was 1.06 ± 0.04 (P < 0.001). The P-
value for the comparison of controls with MS patients with
fewer contrast injections was 0.14, while it was < 0.001 for
the comparison of controls with MS patients with > 4 con-
trast injections (Figure 3 and Table 2).

After removing patients with visible DN hyperintensity
from the group with > 4 GAD injections, the mean SIRs
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Table 2. Comparison of the Signal Intensity Ratio of the Dentate Nucleus to Pons in MS Patients and Controls

Variables No.
SIR

Mean ± SD P-value

MS vs. controls < 0.001

MS 122 1.1 ± 0.07

Control 61 1.04 ± 0.02

MS patients with DN hyperintensity vs. other MS patients < 0.001

DN hyperintensity 26 1.14 ± 0.04

No DN hyperintensity 96 1.09 ± 0.07

History of GAD injection < 0.001

> 4 Times 83 1.12 ± 0.07

≤ 4 Times 39 1.06 ± 0.04

History of GAD injection < 0.001

> 4 Times (excluding patients with hyperintense DN) 57 1.11 ± 0.08

≤ 4 Times 39 1.06 ± 0.04

Abbreviations: SIR, signal intensity ratio; DN, dentate nucleus; MS, multiple sclerosis; GAD, gadolinium.
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Figure 2. The mean dentate nucleus (DN)-to-pons signal intensity ratio (SIR) in the control and multiple sclerosis (MS) groups with and without DN hyperintensity.

were 1.11 ± 0.08 and 1.06 ± 0.04 in patients with > 4 GAD
injections and those with ≤ 4 injections, respectively (P
< 0.001) (Table 2). The correlation coefficient of SIR with
the number of contrast injections was 0.91 (P = 0.001) (Fig-
ure 4). The mean cumulative GAD dose was 123.7 ± 76.7 mL

(range: 30 - 450 mL) in the MS group. Also, the mean cumu-
lative GAD dose was 155.8 ± 71.5 in patients with > 4 con-
trast injections and 55.4 ± 26 in patients with ≤ 4 injec-
tions (P < 0.001).
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Figure 3. The mean dentate nucleus (DN)-to-pons signal intensity ratio (SIR) in the control and multiple sclerosis (MS) groups with ≤ 4 (lower) and > 4 (higher) contrast
injections.

5. Discussion

According to the present results, based on both visual
and quantitative analyses of SIR using non-enhanced T1WI
scans, patients who received > 4 GAD injections were more
likely to have GAD deposition in the DN. However, it is
unknown whether GAD accumulates in the brain tissue.
Accordingly, in this retrospective study, the prevalence of
GAD accumulation was analyzed in a comparative analysis
of MS patients. The results revealed GAD accumulation in
the DN in a large group of MS patients after more than four
GAD-enhanced MRI scans (Figure 5).

In the present study, GAD accumulation in the DN was
lower in MS patients with ≤ 4 GAD injections. This finding
is highly consistent with the results of a study by Errante
et al. (23), which suggested a progressive increase in T1 sig-
nal intensity of DN subsequent to multiple GAD injections.
Moreover, according to a study by Roberts and Holden (24),
in younger age groups, such as the pediatric population,
GAD deposition is even a greater concern. Besides, Kanda
et al. (25) reported significant correlations between the
SIRs of DN to pons and globus pallidus to thalamus and the
number of previous GBCA exposures. As mentioned ear-
lier, the chemical properties of the contrast agent is a key
factor in the degree of deposition. Moser et al. (26) found

that the DN-to-pons SIR increased in patients who were ex-
posed to linear GBCA administrations. On the other hand,
there was no significant increase in patients who received
gadobutrol (a cyclic agent).

According to studies by Roberts and Kanda (24, 25),
non-linear agents, such as gadobutrol, are useful in de-
creasing deposition in MS patients. Moreover, Ramalho et
al. (27) demonstrated a significant increase in the DN inten-
sity with multiple GAD-based agents, but not with gadobe-
nate dimeglumine-enhanced agents, emphasizing the im-
portance of pharmacodynamics and pharmacokinetics of
different contrast agents. They reported GAD deposition in
the DN with gadobenate dimeglumine administration in
contrast to gadodiamide, which exhibited a lower deposi-
tion rate.

The chemical bonds in GBCAs are composed of a GAD
ion and a carrier molecule. A carrier molecule is called a
chelating agent, which modifies the distribution of GAD
in the body to overcome its toxicity while maintaining its
contrast properties. Structurally, GBCAs can be divided
into two groups based on the ligand. Linear agents have an
elongated organic molecular ligand that wraps around the
ion (e.g., Omniscan gadodiamide and Magnevist gadopen-
tetate), while cyclic agents form a cage-like ligand struc-
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Figure 4. The scatter plot of the correlation between the dentate nucleus (DN)-to-pons signal intensity ratio (SIR) and the number of enhanced MRI scans in the multiple
sclerosis (MS) group.

ture with the ion enclosed in the cavity of the complex
(e.g., Gadavist gadobutrol and Dotarem gadoterate). The
cyclic agents tend to have lower dissociation constants and
are therefore deemed to be more stable than linear agents.
Both linear and cyclic agents can be either ionic or non-
ionic and non-tissue specific extracellular or tissue-specific
(28).

In 2017, the Pharmacovigilance Risk Assessment Com-
mittee (PRAC) of the European Medicines Agency (EMA) for-
mally submitted its guideline to suspend the use of some
linear GBCAs due to the potential risk of GAD accumulation
in humans (29). The American College of Radiology (ACR)
has also reported some evident changes in T1W MRI sig-
nal intensities, as macrocyclic (cyclic) agents deposit GAD
within brain tissues. Besides, quantitative mass spectrom-
etry data from multiple sources confirm GAD deposition,
although at lower levels. The ACR continues to address
the need for further research toward a greater understand-
ing of the mechanisms, cellular effects, and clinical conse-
quences of GAD tissue deposition (30).

In another study on nine cadavers with at least one
GAD injection during their lifetime, the sampling results
showed that five of them received gadoteridol (a macro-
cyclic agent; ProHance); two received gadobutrol (a macro-
cyclic agent; Gadovist); and all of them received gadobe-
nate (a linear agent, MultiHance) and gadoxetate (a linear

agent, Eovist). In samples with the highest GAD levels in the
globus pallidus and DN, GAD was found in all brain areas.
It was 23 times higher in the bones than in the brain, while
no measurable amount of GAD deposition in the brain or
bone tissue was found in the control group (31).

Evidence suggests that deposition of GAD in human tis-
sues occurs with both macrocyclic and linear agents in pa-
tients with a normal renal function. There is also evidence
of GAD deposition within the proximal femur, as seen in
proximal femoral specimens from patients undergoing to-
tal hip arthroplasty. Both linear and macrocyclic GBCAs
may be implicated in the tissue GAD deposition, although
the deposited amount of linear GBCAs is much more than
macrocyclic GBCAs (20).

Moreover, Robert et al. (32) evaluated GAD accu-
mulation in the deep cerebellar nuclei of healthy rats
by comparing linear GAD-based contrasts with GBCAs
and a macrocyclic contrast agent. Three linear GBCAs
(gadobenate dimeglumine, gadopentetate dimeglumine,
and gadodiamide) and a macrocyclic GBCA (gadoterate
meglumine) were used in their study. The results showed
that all linear contrast agents induced a significant in-
crease in the signal intensity of deep cerebellar nuclei on
T1W images, whereas the macrocyclic GBCA did not in-
crease the signal intensity. Also, increased T1 signal hyper-
intensity was reported in healthy rats with repeated ad-
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Figure 5. The MRI scans demonstrate the dentate nucleus (DN). A, Non-enhanced axial T1W MRI of the posterior fossa at the level of DN in the control group (normal cases).
B & C, There is no detectable gadolinium (GAD) deposition or MRI signal in the DN of patients with fewer GAD injections. By increasing the frequency of GAD injections,
the deposition (visually) and signal intensity (quantitatively) of the DN increased (D-I) (A: no injection, SIR = 1.01; B: two injections, SIR = 1.01; C: six injections, SIR = 1.01; D: 12
injections, SIR = 1.05; E: 17 injections, SIR = 1.10; F: 20 injections, SIR = 1.13; G: 24 injections, SIR = 1.15; H: 27 injections, SIR = 1.17; and I: 30 injections, SIR = 1.21).

ministrations of the linear contrast, which could be re-
lated to GAD deposition in the cerebellum.

In another study by Tedeschi et al. (33), patients with
similar MS characteristics to our participants were en-
rolled. They evaluated changes in T1 and T2 relaxometry of
DN with respect to previous administrations of GBCAs. The
results showed that the DN relaxation rate (1/T1) was sig-
nificantly correlated with the number of GBCA administra-
tions. Also, the amount of GAD accumulation had a corre-
lation with T1-shortening in these patients. Moreover, Bar-
bieri et al. (34) showed that deposition and accumulation
of linear GAD-based contrast agents increased in patients
with background diseases, such as renal failure. However,
the reason for the higher incidence of GAD accumulation
in patients with a history of multiple exposures to GAD dur-
ing their lifetime has not been explained due to its com-
plexity.

In the present study, the DN-to-pons SIR was signif-
icantly higher in MS patients compared to the control
group; this suggests that SIR is a more relevant index for
linear GBCA deposition in MS patients. Based on the re-

sults, the SIR in patients with > 4 contrast injections was
higher than other patients. These findings suggest that the
DN signal intensity of patients with a history of multiple
GAD injections ( > 4 times) without hyperintensity in the
DN is still higher than that of patients with fewer GAD injec-
tions (≤ 4 times) and normal individuals; therefore, GAD
deposition in the DN is gradual and invisible at first.

We faced some limitations in the present study. The in-
sufficient data to compare macrocyclic GBCAs with linear
agents is one of the shortcomings of this study. Besides, we
could not perform tissue analyses for the concurrent eval-
uation of GAD deposition and its association with the DN
SIR changes. Also, the clinical importance of our findings
was not determined, which is also another limitation of
this study. It seems that experiments on the correlation of
histopathological findings with T1 and T2 relaxation time
can be helpful in defining the indicators of tissue patho-
logical status.

In conclusion, according to the present results, signal
intensity and visible hyperintensity of the DN increased
as the number of linear contrast injections increased; this
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finding might be related to the tissue deposition of GB-
CAs. Overall, GAD deposition can be an important factor
in MS treatment, as it can cause DN damage and neurolog-
ical deficits. The clinical significance and relevance of this
phenomenon should be assessed in future studies.
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