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Abstract

Background: Chest computed tomography (CT) scan is one of the most common tools used for the diagnosis of patients with
coronavirus disease 2019 (COVID-19). While segmentation of COVID-19 lung lesions by radiologists can be time-consuming, the ap-
plication of advanced deep learning techniques for automated segmentation can be a promising step toward the management of
this infection and similar diseases in the future.

Objectives: This study aimed to evaluate the performance and generalizability of deep learning-based models for the automated
segmentation of COVID-19 lung lesions.

Patients and Methods: Four datasets (2 private and 2 public) were used in this study. The first and second private datasets included
297 (147 healthy and 150 COVID-19 cases) and 82 COVID-19 subjects. The public datasets included the COVID19-P20 (20 COVID-19 cases
from 2 centers) and the MosMedData datasets (50 COVID-19 patients from a single center). Model comparisons were made based on
the Dice similarity coefficient (DSC), receiver operating characteristic (ROC) curve, and area under the curve (AUC). The predicted
CT severity scores by the model were compared with those of radiologists by measuring the Pearson’s correlation coefficients (PCC).
Also, DSC was used to compare the inter-rater agreement of the model and expert against that of 2 experts on an unseen dataset.
Finally, the generalizability of the model was evaluated, and a simple calibration strategy was proposed.

Results: The VGG16-UNet model showed the best performance across both private datasets, with a DSC of 84.23% + 1.73% on the
first private dataset and 56.61% * 1.48% on the second private dataset. Similar results were obtained on public datasets, with a DSC
of 60.10% + 2.34% on the COVID19-P20 dataset and 66.28% + 2.80% on a combined dataset of COVID19-P20 and MosMedData. The
predicted CT severity scores of the model were compared against those of radiologists and were found to be 0.89 and 0.85 on the first
private datasetand 0.77and 0.74 on the second private dataset for the right and left lungs, respectively. Moreover, the model trained
on the first private dataset was examined on the second private dataset and compared against the radiologist, which revealed a
performance gap of 5.74% based on DSCs. A calibration strategy was employed to reduce this gap to 0.53%.

Conclusion: The results demonstrated the potential of the proposed model in localizing COVID-19 lesions on CT scans across multi-
ple datasets; its accuracy competed with the radiologists and could assist them in diagnostic and treatment procedures. The effect
of model calibration on the performance of an unseen dataset was also reported, increasing the DSC by more than 5%.

Keywords: COVID-19, Computed Tomography, Deep Learning, Image Segmentation

o

. Background Besides direct COVID-19 infection, other aspects of life were
also significantly affected during the pandemic. For ex-
ample, travelling was restricted, businesses declined, and
other illnesses, such as depression, obsessive-compulsive
disorder, and obesity, became more common due to home

Coronavirus disease 2019 (COVID-19) has infected hun-
dreds of thousands of people around the world and re-
sulted in high mortality rates. According to the World

tine.
Health Organization (WHO), by November 5, 2022, the quarantine
number of positive COVID-19 patients was more than 637 With the onset of COVID-19, there were no effective vac-
million, and the number of deaths exceeded 6.6 million (1). cines available, causing major challenges in the manage-
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ment of this disease in many countries. Besides, the coron-
avirus was constantly evolving, making it more difficult to
detect new variants. Therefore, wearing masks and social
distancing, besides early diagnosis and isolation of the in-
fected, were among the best strategies to manage and pre-
vent the spread of this virus. Since the onset of the COVID-
19 epidemic, reverse transcription-polymerase chain reac-
tion (RT-PCR) assay has been used as a standard method for
COVID-19 screening. However, a sensitivity of 60 - 70%, lack
of diagnosis in early stages, time-consuming process, and
need for special kits and equipped laboratories to perform
the tests were among the significant limitations of RT-PCR
atthe time (1-3). These limitations required other technolo-
gies, such as computed tomography (CT), to be used for the
diagnosis and severity assessment of COVID-19 patients.

There have been significant advances in medical imag-
ing technologies in recent years, and today, they have be-
come standard methods for diagnosing and quantifying
various diseases (4-6). Ground-glass opacity (GGO), inter-
lobular septal thickening, and consolidation are among
the leading radiological patterns of COVID-19, which differ-
entiate these patients from healthy individuals and other
types of pneumonia (7). A study on 1014 patients in Wuhan,
China, reported a sensitivity of over 97% for chest CT imag-
ing to diagnose COVID-19 (3). Therefore, with the limita-
tions of RT-PCR at the time of this study, chest CT scan
could be considered a more effective, practical, and rapid
method for diagnosing and assessing COVID-19, particu-
larly in areas most affected by the epidemic (3). Moreover,
the use of chest CT scan for COVID-19 screening has been ad-
vocated in previous studies, especially when the results of
RT-PCR were negative (2).

The manual evaluation of three dimensional (3D) CT
volume data is a tedious and time-consuming process,
which is highly dependent on the expert’s clinical experi-
ence (8). However, development of artificial intelligence
(AI)-based medical image analysis methods can help over-
come the abovementioned challenges. As one of the sub-
sets of Al, deep learning algorithms have been found to be
effective in different medical fields, such as radiology, der-
matology, ophthalmology, and pathology (9, 10).

Since the beginning of the COVID-19 epidemic, many
efforts have been made to automatically analyze chest CT
images to expedite and facilitate the proper diagnosis and
management of COVID-19. The majority of the proposed
methods fall into 2 general categories: Classification and
segmentation (11). In classification, the goal is to assign a
label to examples from the input domain. For the classifi-
cation of COVID-19 cases, algorithms are trained on labeled
CT images of healthy individuals and COVID-19 patients (in
many cases, patients with other diseases) to learn predic-
tive modeling (5,12-14). Previously, we investigated the per-

formance of various backbone architectures for classify-
ing COVID-19 cases and found that the VGG19 architecture
demonstrated the best performance (15).

On the other hand, in medical image segmentation,
the goal is to label each pixel to determine the region of in-
terest (ROI). VB-Net, U-Net, and other variants of U-Net are
among the most common algorithms for medical image
segmentation (5, 16-18). CT-based COVID-19 classification
has shown to be more accurate when trained based on seg-
mentation masks rather than binary (0 and 1) labels repre-
senting presence or absence of the lesion. The improved
accuracy can be related to the complementary knowledge
provided to the model using segmentation masks. Due
to this, many studies have used deep learning segmenta-
tion techniques for the automated diagnosis of COVID-19
lesions and the subsequentinterpretation of CT images (19,
20). Although most of these studies achieved high accu-
racy in detecting and segmenting COVID-19 lesions, their
robustness was not comprehensively evaluated on multi-
centric datasets (from different scanner makes and models
and population geographies) due to the limited availabil-
ity of COVID-19 datasets at the time. Hence, with the avail-
ability of more annotated datasets, it is essential to evalu-
ate the generalizability of deep learning-based models.

Khan et al. (21) proposed a threshold-based segmenta-
tion method to quantify COVID-19-related pulmonary ab-
normalities. Their approach indicated a Dice similarity co-
efficient (DSC) of 46.28% fora combination of 2 COVID-19 CT
datasets. However, the generalizability of their method on
the datasets was not separately assessed. Fan et al. (22) in-
troduced a lung infection segmentation network (Inf-Net)
to automatically identify infected areas on CT images. They
used a semi-supervised approach to compensate for the
lack of data. However, they only had access to one labeled
dataset, making it difficult to investigate the performance
of the proposed model on unseen data acquired by differ-
ent CT devices.

Wang et al. (23) proposed a noise-robust learning
framework based on a 2D convolutional neural network
(CNN), combined with an adaptive self-ensembling frame-
work for slice-by-slice image segmentation. Although they
used a dataset, consisting of CT images acquired from 10
different hospitals, they randomly split the images into
training, validation, and test sets and did not study the
generalizability of their proposed method on unseen CT
datasets. Shan et al. (24) developed a deep learning-based
model, called VB-Net, to segment COVID-19-infected re-
gionson CT scans. The developed VB-Net model was trained
using a human-involved-model-iterations (HIMI) strategy
onadatasetof 249 COVID-19 cases and validated on another
dataset of 300 COVID-19 cases. The model yielded a DSC of
91.6%, and the average DSC between the two radiologists
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was 96.1%. The relatively similar values of DSC indicate the
high accuracy of the deep learning-based model in quan-
tifying COVID-19 lesions based on CT data. Nevertheless,
the model was validated on a monocentric dataset, which
might not represent the generalizability of deep learning
systems on different patient populations.

Lastly, Miller et al. (1) implemented a standard 3D U-
Net architecture through five-fold cross-validation on 20
CT scan volumes of COVID-19 patients. An average DSC of
76.1% was reported for this method. This study used a lim-
ited dataset of 20 cases and was tested on the same dataset
it had been trained on; therefore, the generalizability of
the model was not evaluated on an unseen dataset.

2. Objectives

The present study aimed to develop and evaluate a
deep learning-based model for the automated segmenta-
tion of COVID-19 lung lesions using chest CT scans based on
multi-centric data. Moreover, this study aimed to evaluate
the effectiveness of lung segmentation as a preprocessing
technique and to compare the performance of an Al-based
model against radiologists. Finally, this study aimed to
demonstrate the limited generalizability of deep learning-
based models through domain shift and to propose a cali-
bration strategy to improve their performance.

3. Patients and Methods

This section describes the image datasets and the pro-
posed method used in the present study.

3.1.Image Datasets

Four separate datasets (2 private and 2 public datasets)
were used in this study. Appendix 1 summarizes the COVID-
19 CT datasets of this study. Figure 1 presents some exam-
ples of CT images for each dataset.

3.2. Proposed Method

Figure 2 demonstrates a schematic representation of
the workflow. The approach used for implementing the
proposed algorithm can be divided into 3 main steps: (1)
preprocessing step; (2) automated segmentation of COVID-
19 lesions using a VGG16-UNet architecture (26); and (3) ex-
perimental setup.
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3.2.1. Preprocessing

Data preprocessing is an integral part of medical im-
age segmentation. In this study, image intensities were
normalized to a scale of 0 to 1. All images were also resized
to a size of 256 X 256 to reduce the computational burden.
Besides, the effect of lung segmentation as a preprocessing
stage was investigated. For this purpose, each lung was seg-
mented (27), and the model was trained on CT images of
lung segments. To evaluate the effectiveness of lung seg-
mentation as a preprocessing stage, the VGG16-UNet model
was evaluated with and withoutinitial lung segmentation.

3.2.2. Segmentation

To segment COVID-19 lung lesions on CT slices, a deep
learning approach based on the U-Net framework (17) was
developed. A contracting path (on the left side) and an ex-
pansive path (on the right side) comprise the VGG16-UNet,
similar to the regular U-Net. The contracting path is the
VGG-16 structure with 5 convolutional blocks, consisting
of 2 or 3 convolutional layers with a small 3 X 3 receptive
field. The resolution was down-sampled at the end of each
block using max-pooling layers, and the feature map was
up-sampled by a factor of 2. The convolutional layers ex-
tracted higher-level features from the input image by mov-
ing from the first block to the last one. On the other hand,
the expansive path attempted to restore images to their
original dimensions. The resolution was up-sampled by
a factor of 2 in each block, while the number of feature
maps wasreduced bya factor of 2. Two convolutional layers
(3 x 3) followed each block after the concatenation stage,
each withabatch normalization (BN)operation and a ReLU
layer. Also, concatenation was performed with the corre-
sponding feature maps from the contracting direction via
skip connections.

To indicate the superiority of our proposed frame-
work to other similar deep learning-based architectures, a
comparison was made between U-Nets (17) and Link-Nets
(28) with different encoder structures (26). Appendix 2
presents a comparison of U-Net and LinkNet architectures
for semantic segmentation. The number of blocks was sub-
ject to change when using different architectures (e.g., VG-
GNets, EfficientNets, ResNets, and DenseNets). The U-Net
and Link-Net architectures were completely similar in the
encoder part. Nonetheless, 2 key components differentiate
them from one another. First,in the U-Net architecture, the
feature maps are concatenated in the contracting and ex-
pansive paths, while they are added together in the Link-
Net architecture. Second, the decoder block in the U-Nets
is composed of a 2 X 2 up-sampling layer and two 3 X 3
padded convolutional layers, followed by BN and ReLU lay-
ers. On the other hand, the decoder block in the Link-Nets
consists of a1 X 1 convolutional layer (reducing the num-
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Figure 1. The computed tomography scans (CT) of patients infected with coronavirus disease 2019 (COVID-19) for the first (A) and second (B) private datasets, COVID19-P20
dataset (8) (C), and MosMedData dataset (25) (D). The image quality differences (e.g., spatial resolution, noise, and contrast) in chest CT scans suggest the importance of
evaluating the generalizability of deep learning-based models.

4 Iran ] Radiol. 2022;19(4):e117992.



Sotoudeh-Paima S et al.

by Experts

Preprocessing:

| Measuring DSC Among |
Infection Segmentation

Calculating Chest CT

1. Normalization
2. Resizing

Model

Lung Segmentation by ]_

Correlation

o

Calculating Chest CT

3. Lung Segmentation

by Model

Infection Segmentation '
Measuring DSC Among

Figure 2. A schematic representation of the workflow. It presents the pipeline for statistical analysis (Dice similarity coefficient [DSC] comparison and correlation coefficient

calculation) and model comparison on both datasets.

ber of channels by a factor of 4),a 2 x 2 up-sampling layer,
a 3 x 3 padded convolutional layer, and a 1 X 1 convolu-
tional layer (increasing the number of channels to the fea-
ture map size of the corresponding encoder block). A BN
operation and a ReLU layer follow all the convolutional lay-
ers in the decoder part.

3.2.3. Experimental Setup

For a quantitative comparison of the tested architec-
tures, a five-fold cross-validation was conducted on the first
private dataset at the patient level. For this purpose, all the
patients were randomly divided into 5 folds; each time, 4
folds were used for training, and 1 fold was used for test-
ing. Next, 25% of patients from the training dataset were
selected as the validation set to help with the optimization
procedure and prevent overfitting.

To minimize the expert’s segmentation error in local-
izing COVID-19 lesions, the CT slices of patients, in which
no area was specified as the infected region, were excluded
from training. The main reason for this exclusion was the
possibility of missing small lesions on CT slices by the radi-
ologist during the annotation process. The trained model
was tested on the second private dataset to analyze the gen-
eralizability of Al-based models. The mean and standard
deviation (SD) of the 5 scores were calculated for analyses.

To further investigate the performance of the trained
model, it was trained on 2 public datasets. First, the model
was trained on the COVID19-P20 dataset, consisting of 20
COVID-19 cases (10 cases from the Coronacases Initiative re-
source and 10 cases from the Radiopaedia resource), using
two-fold cross-validation. In each fold, half of cases from
each group (Coronavirus or Radiopedia) were selected as
the training set, and the rest were selected as the validation
and test set. Second, the model was trained on a mixture
of COVID19-P20 and MosMedData datasets, consisting of 70
cases, using five-fold cross-validation.
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3.2.4. Statistical Analysis

In this study, the DSC, receiver operating characteristic
(ROC) curve, area under the curve (AUC), and Pearson’s cor-
relation coefficient (PCC) were measured to compare and
investigate the results. Generally, the DSC computes the
region-based similarity of the model segmentation result
with the ground truth and is calculated as follows:

2|P NG|

DSC = ———+
[P+ 1G]

M

where P is the model output, and G is the mask of in-
fectious areas specified by the expert. The DSC ranges from
0 to 1, with 1 representing the greatest similarity between
the model output and the ground truth.

Additionally, for a binary classification problem, the
ROC curve indicates the true positive rate (TPR) versus the
false positive rate (FPR), which are measured as follows:

TP

TPR= 75 FN @)
FP

FPR= tp TN @)

where TP, FP, TN, and FN denote the number of true pos-
itive, false positive, true negative, and false negative predic-
tions, respectively. The optimal model would have a TPR of
1and an FPR of 0. The model with the highest AUC was con-
sidered as the optimal model], as it would have a higher TPR
for the same FPR.

Moreover, PCC was calculated to examine the perfor-
mance of the Al model in quantifying chest CT severity
scores. The PCC between the Al model and the radiologist
was calculated in this study:

cov (Z,7)
0z0z

pPCC = (4)

where cov (Z, Z7) is the covariance between the Al
model and the radiologist, o is the SD of the Al model, and
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o7 is the SD of the radiologist. Statistical analysis was per-
formed using Python (the np.corrcoef function for PCC cal-
culation).

4. Results

This section presents the results of analyses conducted
in this study. First, the proposed architecture was com-
pared against several similar models in terms of DSC, ROC
curve, and AUC. Table 1 demonstrates the DSCs and AUCs,
and Figure 3 represents the corresponding ROC curves for
testing the model on the first dataset. The results showed
the superior performance of the VGG16-UNet architecture
to other architectures, with a DSC of 84.23% + 1.73% and
an AUC of 0.9648. The results were validated via five-fold
cross-validation on the first dataset, including 297 cases
(150 COVID-19 cases and 147 healthy individuals). Each of
the five models, which was trained using five-fold cross-
validation, was also tested on the second private dataset,
containing 82 COVID-19 cases.

According to Table 2, the VGG16-UNet model demon-
strated superior performance to other architectures, with
a DSC of 56.61% + 1.48% on the (unseen) second private
dataset. The proposed model was also trained and tested
on 2 public datasets, that is, the COVID19-P20 dataset, fol-
lowed by a combination of COVID19-P20 and MosMedData
datasets. As shown in Table 2, the scores were consis-
tent with previous results, making VGG16-UNet the opti-
mal model in terms of performance, with DSCs of 60.10%
* 2.34% on the COVID-19-P20 dataset and 66.28% + 2.80%
on the combination of COVID-19-P20 and MosMedData
datasets.

Second, the effect of lung segmentation as a prepro-
cessing stage in training the COVID-19 lung lesion segmen-
tation network was evaluated. The results suggested that
having a lung segmentation preprocessing stage did not
lead to improved performance on both datasets. For this
purpose, a model proposed in a previous study (27), which
was also trained on COVID-19 images, was employed. Table
3 presents the results of the VGG16-UNet model in terms of
DSC. Considering the inferior performance of the model
when using a preprocessing stage, no lung segmentation
was performed for the following assessments.

Third, chest CT severity scores were calculated by divid-
ing the infected region by the overall region per lung seg-
mented using the model developed in the literature (27).
Appendix 3 presents the general procedure for calculating
the chest CT severity score for a single CT scan. Figure 4
shows the scatter plot for the severity prediction of the Al
model against a radiologist for both lungs and datasets.

Fourth, to reach a reasonable understanding of the
practicality of deep learning-based models in real-world

settings, the performance of the VGG16-UNet model was
compared against the inter-rater agreement between the
tworadiologists on the (unseen) second private dataset. Ta-
ble 4 compares the performance of the Al model against
the average DSC between the two radiologists for 67 COVID-
19 cases.

Finally, the generalizability of the trained model was
investigated by testing it on an unseen dataset. Next, a
simple calibration strategy was proposed by changing the
threshold value of the segmentation map for every new
dataset, using a very limited number of cases. Table 5
presents the performance of the model, with and without
calibration for the testing set of the second private dataset.

5. Discussion

5.1. Performance of Encoders

According to Table1and Table 2, in both U-Net and Link-
Net models, the application of VGG16 encoder yielded the
best performance. It can be concluded that the VGG16 en-
coder led to the extraction of richer features from the input
image and consequently, a higher DSC. Comparison of the
U-Net and Link-Net structures revealed the superior per-
formance of the U-Net model using all 4 encoders, which
could be explained by the greater number of parameters
in the decoder part of the U-Net model. The higher num-
ber of parameters could improve the recovery of the lost
spatial information in the encoder part.

5.2. Lung Segmentation as a Preprocessing Step

The impact of lung segmentation on the overall perfor-
mance of the model was analyzed in this study. As shown in
Table 3, the application of lung segmentation as a prepro-
cessing step decreased the performance of the VGG16-UNet
model. This could be attributed to the inaccurate segmen-
tation of the lungs, especially in the presence of a diseased
lung. Appendix 4 shows accurate and inaccurate lung seg-
mentations for a COVID-19 patient. The superior perfor-
mance of discarding lung segmentation also indicates that
the model could simultaneously learn the location of the
lungs and COVID-19 lesion patterns.

5.3. Comparison of the Model with the Radiologist’s Perfor-
mance

Validation of Al-based models in real-world settings
via comparison against clinical experts’ performance is of
monumental importance. In this study, a correlation anal-
ysis was conducted between the proposed model and a ra-
diologist in terms of chest CT severity scores. The results
showed a high correlation between the model and the ra-
diologist’s opinion for quantifying the chest CT severity
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Table 1. Model Specifications, Dice Similarity Coefficients in Percentage (mean + standard deviation), and Area Under the Receiver Operating Characteristic Curve for Private

Dataset #1
Model and encoder Number of parameters (million) Training time (s) DSC (%) AUC
U-Net
VGG16 23.75 62.10 84.23+ 1.73 0.9648
ResNet34 24.45 42.10 82.68 % 1.55 0.9458
DenseNet169 19.51 82.13 83.76 + 0.85 0.9615
EfficientNetB1 12.64 81.44 82.58+ 1.25 0.9531
Link-Net
VGG16 20.32 60.10 8217+ 1.91 0.9535
ResNet34 21.63 36.60 82.13+ 0.95 0.9341
DenseNet169 15.61 7713 7732+ 5.02 0.9525
EfficientNetB1 8.55 76.25 80.41+ 1.07 0.9319
Abbreviations: DSC, Dice similarity coefficient; AUC, area under the receiver operating characteristic curve.
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Figure 3. The receiver operating characteristic (ROC) curve and the corresponding area under the curves (AUCs) on the first private dataset (A) and its upsized version (B).

scores (0.89 and 0.85 on the first private dataset and 0.77
and 0.74 on the second private dataset for the right and left
lungs, respectively).

Additionally, the performance of the model was com-
pared against the average DSC between the two radiolo-
gists (i.e., inter-rater agreement), using 67 COVID-19 cases
from the second private dataset. Based on the compar-
ison of values presented in Table 4, the performance of
the Al-based model was close to the inter-rater agreement,
which demonstrated the accuracy of deep learning mod-
els in quantifying COVID-19 lung lesions on CT scans, even
when they were not solely trained on that specific dataset.

Comparison of the performance of the proposed archi-
tecture against the radiologists’ performance indicated
the advantage of time efficiency in Al-based models. While
a manual assessment of CT scan volume by radiologists
can take up to 15 minutes, our proposed model segmented
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each slice in 60 ms, resulting in COVID-19 segmentation in
less than a minute. Therefore, an Al-based image analysis
has the required speed to meet the high demand for image
assessment during the COVID-19 pandemic, while facilitat-
ing accurate diagnoses (29).

It is worth mentioning that in the present study, a
threshold of 0.5 was used to classify each pixel on the out-
put segmentation map into either a COVID-19 lesion (la-
beled as 1) or normal (labeled as 0); this threshold (0.5)
was selected, because it is the best threshold for the valida-
tion part of the first dataset (Figure 5A). However, it is not
certain if this finding applies to the unseen dataset (Fig-
ure 5B). The next section describes a simple calibration ap-
proach to improve performance on unseen datasets sim-
ply by changing the threshold of the segmentation map,
using a very limited number of cases.
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Table 2. The Dice Similarity Coefficients in Percentage (mean + standard deviation) for the Model Applications on the Private Dataset #2 and 2 Public Datasets (COVID19-P20
and COVID19-P20+MosMedData)

Model and encoder Private dataset #2 COVID19-P20 COVID19-P20+MosMedData
U-Net
VGG16 56.61+ 1.48 60.10 + 2.34 66.28 + 2.80
ResNet34 55.72 % 1.42 5335+ 2.25 57321 7.56
DenseNet169 55.09 £ 1.60 57.38 £ 3.04 65.08 % 3.95
EfficientNetB1 55.83+ 130 53.16 £ 2.04 62.43 £ 2.47
Link-Net
VGG16 54.46 % 3.08 54.14 * 4.05 61.82+ 1.69
ResNet34 5425+ 114 54.54+ 0.90 57.48 £ 3.03
DenseNet169 47.60 £ 10.56 54.22 1 1.04 64.10 + 5.08
EfficientNetB1 53.24  1.68 38.94 % 6.14 49.29 £ 5.05
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Figure 4. Scatter plots for the correlation of chest computed tomography (CT) severity score predictions by the artificial intelligence (Al) model and the radiologist for both
private datasets and lungs: A, The first dataset, the left lung; B, The first dataset, the right lung; C, The second dataset, the left lung; and D, The second dataset, the right lung.
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Figure 5. Analysis of the effect of threshold change in the segmentation map on the model performance suggests this effect on A, The validation set of the first private dataset;
and B, The second private dataset (unseen dataset). The plot illustrates that variability in scanners and imaging protocols can negatively affect the accuracy of deep learning-
based models. Therefore, use of a calibration procedure to determine the best threshold can improve performance.

Table 3. Evaluation of the Effect of Lung Segmentation on the Dice Similarity Coeffi-
cients in Percentage (mean + standard deviation) for Private Datasets #1and #2

Dice similarity coefficient (%)

VGG16-UNet model

Dataset #1 Dataset #2
Without segmentation 8423+ 1.73 56.61+ 1.48
With segmentation 8310+ 1.39 54.90 £ 112

Table 4. Performance Comparison of the Models and the Radiologists on the Private
Dataset #2 Based on the Dice Similarity Coefficients

Model Dice similarity coefficient (%)
VGG16-UNet (threshold: 0.5) 58.27%
VGG16-UNet (threshold: 0.15) 63.48%
Radiologist 64.01%

5.4. Generalization Analysis and Calibration

The CT scans can vary depending on differences in CT
scanners and imaging parameters. This variability mani-
fests as different spatial resolutions, image contrasts, and
noise levels, which can negatively impact the accuracy
and consistency of deep learning-based models. However,
there are several explanations for this performance de-
cline. First, the performance decline from 84.23% + 1.73%
on the first dataset to 56.61% + 1.48% on the second dataset
could be partly explained by the presence of healthy sub-
jects in the first (mixed) private dataset. The elimination
of healthy individuals from the testing set resulted in a
DSC of 74.35% * 1.57% for COVID-19 cases. Second, further
qualitative analysis of the second private dataset demon-
strated its complexity, especially due to the presence of
mild COVID-19 cases, leading to a significant decline in DSC
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when the model missed small lesions. The low inter-rater
agreement between the two radiologists (DSC of 64.01% for
67 COVID-19 cases from the second dataset) provided fur-
ther evidence of its complexity. Finally, domain shift is an-
other key factor in performance decline due to differences
in scanners and imaging protocols across different cen-
ters.

To minimize the performance decline, the effect of
change in the threshold of the output segmentation map
on both datasets was investigated. According to Figure 5,
use of the same threshold for the two datasets would not
necessarily lead to the best performance. Therefore, a cali-
bration procedure can be employed to determine the best
threshold for the unseen dataset. To demonstrate this pos-
sibility, we trained the best-performing model using the
first private dataset and calibrated the segmentation map
(output) of the model using data from the second private
dataset.

For calibration, 0% (no calibration) to 50% of the cases
from the second private dataset were used in 10% incre-
ments to study whether better calibration can be done
with a greater number of cases. The other 50% of the data
was fixed and set as the test set. For each experiment, out-
putsegmentation maps (of the model) were generated and
thresholded in the range of 0 and 1, in 0.05 increments.
Next, DSC was calculated and averaged across all training
cases, and the best threshold was selected to be used on
the test dataset. The DSCs reported in Table 5 are the aver-
age scores on the testing set. Theresults demonstrated that
a very limited number of cases in a dataset (10%) could be
used to calibrate the model when using an unseen dataset.

Other more advanced techniques that can mitigate
variations in CT vendors and acquisition protocols include
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Table 5. The Dice Similarity Coefficients in Percentage for 50% (testing set) of the Private Dataset #2

Percentage of training data used for calibration (threshold with the 0% (0.5) 10% (0.10)  20% (0.05) 30% (0.05) 40% (0.10)  50% (0.05)

highest Dice similarity coefficient)

Dice similarity coefficient (%) for the test set 61.16% 66.29% 64.88% 64.88% 66.29% 64.88%
CNN-based image normalization and generative adversar-  Footnotes

ial networks. One idea is to develop an adversarial neural
network similar to a model proposed in the literature (30)
as a harmonization block for transforming the CT data ac-
quired from different scanners with various imaging pro-
tocols into a reference standard. Accordingly, the main
network could conduct a more effective and uniform as-
sessment of COVID-19 lesion segmentation. This sugges-
tion could improve the performance of the main network
for the unseen dataset, regardless of the scanner specifica-
tions and without applying a calibration procedure.

In conclusion, this study presented a deep learning-
based approach to automatically detect and segment
COVID-19 lung lesions using chest CT scans. It was found
that a VGG16-UNet model performed better than other ar-
chitectures and achieved a DSC of 84.23% + 1.73% for a
mixed dataset of healthy and COVID-19 subjects and a DSC
of 56.61% + 1.48% for the unseen dataset of COVID-19 pa-
tients. The performance gap was attributed to (1) the pres-
ence of healthy subjects in the first dataset, increasing
the DSC from 74.35% + 1.57% to 84.23% * 1.73%; (2) com-
plexity of the second private dataset due to the presence
of mild COVID-19 cases; and (3) limited generalizability of
the model due to domain shift because of variations in
CT scanners and imaging protocols. The model was fur-
ther assessed on 2 public datasets and achieved DSCs of
60.10% * 2.34% and 66.28% * 2.80% for the COVID19-P20
dataset and the combination of COVID19-P20 and MosMed-
Data datasets. Moreover, the experiments suggested that
lung segmentation was an ineffective preprocessing strat-
egy for infection segmentation of COVID-19 cases. Also, the
deep learning-based model showed good agreement with
the radiologist’s performance. Finally, the generalizability
of the model was evaluated in this study, and a simple cali-
bration strategy was proposed, improving its performance
by more than 5% based on DSC. Future research can focus
on image harmonization techniques that can help miti-
gate unwanted variations in CT scans.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal web-
site and open PDF/HTML]|.
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