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Abstract

Background: Dual-energy computed tomography (DECT) scan is a non-invasive method for the in vivo identification of renal stone
composition. However, DECT scanners have several demerits, including high cost, low accessibility, and high radiation dose to
patients.
Objectives: The present study aimed to investigate the efficacy of deep neural networks in the classification of renal stone types
using single-energy CT imaging. The Taguchi method was used for the optimization of hyperparameters.
Patients and Methods: A total of 146 pure renal stone samples were first surgically collected from the patients. The stones were
then inserted into a Rando phantom and scanned using a DECT scanner. An ultra-low-dose CT scan was acquired to determine the
stone position prior to the DECT scan. The result of chemical analysis was used as the gold standard for determining the stone
composition throughout the study. Several neural networks, including ResNet-50, ResNet-18, GoogLeNet, and VGG-19, were used to
classify the stone images into three composition groups, including uric acid, calcium oxalate, and cystine. Moreover, the Taguchi
method was employed to optimize the network hyperparameters. The signal-to-noise ratio (SNR) was also analyzed to determine
the optimal arrangement.
Results: In this study, CT scans of 53 uric acid, 55 calcium oxalate, and 38 cystine stones, with diameters of 1 - 3 mm, were acquired.
The deep learning findings showed that the ResNet-18 network had the highest accuracy for 120-kVp and 135-kVp CT scanning,
while ResNet-50 performed better in 80-kVp CT scanning. The ResNet-50 network showed the best performance of all networks
in predicting stone types in 80-kVp scanning, as indicated by its high sensitivity, specificity, and precision.
Conclusion: The present results indicated that our deep learning approach could be used for the in vivo determination of renal
stone types. Moreover, low-dose or ultra-low-dose single-energy CT scanning is more widely accessible and safer in terms of radiation
exposure.
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1. Background

With the increasing prevalence of kidney stones each
year, the need for urgent treatment of this condition and
its associated complications is strongly felt. It is estimated
that 900,000 people develop kidney stones in the United
States (1). Prevention and treatment of patients with
kidney stones mainly depend on the type of kidney stone
and its composition (2). The treatment of kidney stones
may involve adequate hydration and urine alkalization (3),

endoscopic methods, dietary modifications, or antibiotic
prescriptions, depending on the stone type (4).

Computed tomography (CT) scan has been accepted
as an accurate modality for the diagnosis of abdominal
diseases (5, 6). Non-contrast CT scan of the abdomen
and pelvic regions is considered the standard method
for diagnosis of ureterolithiasis, with high sensitivity and
specificity (7). Abdominal/pelvic single-energy CT scans
provide information on the size, location, and attenuation
values of urinary stones (8). However, dual-energy CT
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(DECT) scan has been proposed for the in vivo analysis of
the chemical composition of kidney stones. This technique
can differentiate between uric acid and non-uric acid
stones (9). Commonly, the biochemical analysis of kidney
stones is performed when the stones are removed from the
body; therefore, an accurate in vivo composition analysis
may prove effective for the treatment planning of patients.

Generally, DECT plays a significant role in identifying
the chemical composition of kidney stones in vivo and
therefore, selecting a more effective therapeutic plan
(medical and/or surgical). Despite these advantages, DECT
has some limitations, including hardware complexity,
high cost, low accessibility, and most importantly, high
radiation dose to patients (10). Several studies have shown
that the DECT technique increases the received patient
dose (11). Therefore, it seems necessary to develop an
accurate and rapid technique using ultra-low-dose (ULD)
CT or single-energy CT (SECT) for patient dose reduction.

In recent years, neural networks, also known as
deep learning (DL) algorithms, have gained considerable
attention in classification, segmentation, and image
generation tasks (12-16). Several studies have focused
on automated methods based on DL for identifying the
urinary stone composition ex vivo. Serrat et al. indicated
the role of kidney stone classification in reducing the
recurrence rate (17). They proposed an automated method
by evaluating 454 kidney stones and feature extraction.
Overall, 80% of the samples were classified in the correct
class, and an overall accuracy of 63% was achieved (17, 18).

Moreover, Black et al. assessed the application
of DL method to automatically identify 63 different
compositions of human kidney stones based on digital
images, using the pre-trained ResNet-101 convolutional
neural network (18). Additionally, Martinez et al. proposed
an effective supervised learning method to increase
the accuracy of kidney stone classification using a
ureteroscopic analysis (19). Lopez et al. also conducted a
study on kidney stone identification based on endoscopic
images using a deep neural network (20). They compared
five classification methods focusing on deep convolutional
neural networks (DCNNs), with 98% and 97% precision
and recall, respectively (20).

2. Objectives

In this study, we aimed to specify the kidney stone
composition on SECT or ULD CT scans using deep neural
networks. We proposed a DL-based classification method,
focusing on the use of CT images. Human kidney stones
were placed on an anthropomorphic phantom, and several
ULD CT and DECT images (a pair of SECTs) were acquired
to collect the input data. Human kidney stones were

categorized based on DECT and biochemical reports. Deep
neural networks were used to determine the stone type
based on SECT or ULD CT scans.

3. Patients and Methods

3.1. Stone Preparation

Several kidney stone samples were collected from 80
males and 66 females after removal by surgical procedures.
The mean age of the patients was 42.5 ± 16.3 years (range, 16
- 69 years). After obtaining approval from the Institutional
Research Ethics Committee, informed consent was
obtained from all individuals, whose samples were
used in this study. All the stones were sent to the chemical
laboratory for further analysis after being washed with
deionized water to remove debris. The samples were
analyzed using the manual method of Darman Faraz Kave
Company kit in Motahari Clinic Laboratory, Shiraz, Iran.
The stone types were first determined via biochemical
analysis in the pathology laboratory and then by DECT
scans (Section 2.2). Stone samples with similar laboratory
and DECT results were used in this study. A total of 146
pure samples of three different stone types were finally
selected (Figure 1).

The three kidney stone types can be described as
follows:

(1) Uric acid (C5H4N4O3) stones (5 - 10% of all kidney
stones) are more common in men and formed by uric acid
oversaturation in acidic urine (53 samples);

(2) Calcium stones (80% of all kidney stones) are the
most common type of kidney stones. They can be found
in two types: Calcium oxalate (CaC2O4.H2O-CaC2O4.2H2O)
and calcium phosphate (Ca10(PO4)6(OH2)) (55 samples);

(3) Cystine stones ((-SCH2CHNH2COOH)2) (< 1% of all
kidney stones) are a rare type of kidney stones that are
formed when there is a high amount of cystine in the urine
(38 samples).

3.2. CT Imaging Protocols

The kidney stones of known compositions were
inserted in the kidney position of an Alderson Rando
phantom, which is molded of tissue-equivalent materials
and designed for imaging and dosimetry research (21, 22)
(Figure 2). In the next step, spiral scanning was performed
by a single-source DECT scanner (Aquilion Prime One,
Toshiba, Japan).

For identification of the kidney stone type using a
DECT scanner, first, a large field-of-view ULD CT scan of the
abdomen was acquired to determine the location of renal
stones. Subsequently, DECT scan with a small field of view
was acquired from the kidney stone area. It should be
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Figure 1. Three groups of kidney stones: A, Uric acid; B, Calcium oxalate; and C, Cystine

Figure 2. A, Phantom preparation; and B, Phantom imaging

noted that DECT is not used for the entire abdomen and
does not expose patients to high doses. Therefore, two
scans were performed for each stone sample. In the first
scan, to determine the stone position in the phantom, ULD
CT scans (dose < 1.9 mSv) were acquired based on the SECT
protocol, using a 3D adaptive iterative dose reconstruction
(AIDR) technique with dose reduction features (23). The
scanning parameters were as follows: 120 kVp; 15 mA;
gantry rotation time, 0.5 sec; detector width, 0.4 mm; slice
interval, 0.5 mm; slice thickness, 5 mm; and dose-length
product (DLP), 4.90 mGy.cm.

The second scan was performed via single-source
DECT with rapid voltage switching technique switching,
focusing on the stone region. The acquisition parameters
were as follows: 135 kVp and 15 mAs; 80 kVp and 92 mAs;
and DLP, 48.40 mGy.cm. As can be seen, the DLP of 135-kVp
CT imaging was 10 times higher than that of ULD CT at 120
kVp.

3.3. Stone Classification Based on DL Frameworks

In this step, four pre-trained 2D CNN classification
networks were selected and trained in multiple training
settings, based on the Taguchi parametric optimization
method. The prepossessed stone images were inserted into
four different deep networks, i.e., ResNet-50, ResNet-18,
GoogLeNet, and VGG-19. Next, the classification efficiency
of the four networks was compared. The results of
biochemical analysis in the pathology laboratory and
DECT predictions were used as the gold standard in this
study. Pre-trained networks, which were trained in a
large dataset (ImageNet), showed reasonable responses in
previous research on classification tasks (24) The networks
were customized, and the last two layers were tuned to
update the net weights. Finally, optimization parameters,
obtained from the Taguchi method, were set for the best
of four pre-trained 2D CNN models to classify the stones
into three different groups. The stages of the study are
summarized in Figure 3.
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Figure 3. A schematic view of the study steps

3.3.1. Taguchi Method

The Taguchi method is a simple statistical approach,
consisting of multiple factors and levels to determine and
classify the optimized parameters. It uses orthogonal
array (OA) tables for the optimization process in
the experimental design (25, 26). In this study, the
Taguchi method was used to achieve optimal training
combinations of hyperparameters for the networks.
Six effective factors and three levels were considered
on the training part of the networks (Table 1). To
reduce the number of experiments, 27 experimental
tests generated by Minitab-19 were conducted for the
pre-trained ResNet-50, ResNet-18, GoogLeNet, and VGG-19
networks (Table 2).

Based on the Taguchi optimization technique, the
signal-to-noise ratio (SNR) was selected as the optimization
criterion according to Equation 1, and the “larger-is-better”
performance characteristics were preferred. The average
SNR for each factor was calculated for 27 experiments, and
the optimal levels of parameters were selected based on
the highest SNR (25, 27):

S

N
= −10log

(
1

n

∑n

i=1

1

yi2

)
where n is the total number of replications per test

Table 1. Levels of Solvers and Hyperparameters Designed by the Taguchi Method

Factors Level 1 Level 2 Level 3

Solver SGDM ADAM RMSPROP

Initial learning rate 0.001 0.0001 0.0005

Mini-batch 32 64 128

L2 regularization 0 0.05 0.0001

Drop factor 0 0.1 0.95

Drop period 10 30 50

Abbreviations: SGDM, Stochastic gradient descent with momentum; ADAM,
derivation of adaptive moment estimation; RMSPROP, root mean square
propagation.

run, and yi is the accuracy of 2D CNN in the replication
experiment.

3.3.2. Data Preparation and Pre-processing of CT Images

The CT images with a matrix size of 512 × 512 were
collected at three energy levels (80 and 135 kVp for DECT
scan and 120 kVp for ULD CT scan). To acquire raw CT data,
each time, a stone was placed in an empty hole, in the
kidney region of a Rando phantom, and the remaining
space was filled with water. The Digital Imaging and
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Table 2. The Taguchi L27 Orthogonal Array Parameter Setting in the Experiments

Experiment number

Factors

A B C D E F

Solver Initial learning rate Mini-batch L2 regularization Drop factor Drop period

1 SGDM 0.001 32 0 0 10

2 SGDM 0.001 32 0 0.1 30

3 SGDM 0.001 32 0 0.95 50

4 SGDM 0.0001 64 0.05 0 10

5 SGDM 0.0001 64 0.05 0.1 30

6 SGDM 0.0001 64 0.05 0.95 50

7 SGDM 0.0005 128 0.0001 0 10

8 SGDM 0.0005 128 0.0001 0.1 30

9 SGDM 0.0005 128 0.0001 0.95 50

10 ADAM 0.001 64 0.0001 0 30

11 ADAM 0.001 64 0.0001 0.1 50

12 ADAM 0.001 64 0.0001 0.95 10

13 ADAM 0.0001 128 0 0 30

14 ADAM 0.0001 128 0 0.1 50

15 ADAM 0.0001 128 0 0.95 10

16 ADAM 0.0005 32 0.05 0 30

17 ADAM 0.0005 32 0.05 0.1 50

18 ADAM 0.0005 32 0.05 0.95 10

19 RMSPROP 0.001 128 0.05 0 50

20 RMSPROP 0.001 128 0.05 0.1 10

21 RMSPROP 0.001 128 0.05 0.95 30

22 RMSPROP 0.0001 32 0.0001 0 50

23 RMSPROP 0.0001 32 0.0001 0.1 10

24 RMSPROP 0.0001 32 0.0001 0.95 30

25 RMSPROP 0.0005 64 0 0 50

26 RMSPROP 0.0005 64 0 0.1 10

27 RMSPROP 0.0005 64 0 0.95 30

Abbreviations: SGDM, Stochastic gradient descent with momentum; ADAM, derivation of adaptive moment estimation; RMSPROP, root mean square propagation.

Communications in Medicine (DICOM) slices were selected
from volume CT phantom images of the stones and saved
as 2D slices because of using 2D convolutional networks.
The slices were then converted to PNG format. Due to the
small size of the stones, some pre-processing procedures
were applied to the images.

The images were cropped using the nearest neighbor
method, and extra margins were removed with binary
masks. The pixel intensities of the stone region were
transferred to masked images via multiplication, and
the normalization intensity was in the range of 0 - 255.

Since the image size in all pre-trained networks was
224 × 224 × 3 pixels, all images obtained at each of
the three CT energy levels were first resized accordingly
before entering the networks. Bicubic interpolation was
used to increase the resolution of images before feeding
them into the networks. The images were then sorted
into three categories based on the stone type. A total
of 2200 slices from 146 CT scans were collected and
categorized to prepare the final dataset. Figure 4 shows
the dual CT images and stone locations, followed by the
Hounsfield unit (HU) graph at 80 and 135 kV, indicating
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the type of stones. Processing was performed using the
CT scan software. The preprocessing procedure for image
preparation is also described.

3.3.3. Network Architecture

The four pre-trained networks were run based on the
training setup, described in Table 2, in the DL toolbox
environment of MATLAB 2021. The training and validation
accuracy and losses of networks were analyzed, and the
results were inserted in Minitab software to select the
optimized parameters. The dataset was divided into three
sets (1600 images for training, 400 images for validation,
and 150 images for tests) to avoid overlaps. The training
and validation datasets were then augmented (random
reflection axis [x, y]; random rotation, 0° - 20°; and random
rescaling, 0.1 - 1) to improve the accuracy of the models. All
experiments were run for 10 epochs to obtain high training
and validation accuracies. Owing to the constant trends
of training and validation procedures after six epochs, 10
epochs appeared to be sufficient. Each experiment was
repeated five times to confirm the repeatability of the
results of the training process. The dropout layers in
each network helped prevent overfitting in the training
procedure. The ResNet CNN architecture (Figure 5) yielded
higher training and validation accuracies, besides fewer
losses.

3.4. Performance Evaluation and Statistical Analysis

This study was conducted using the Deep Learning
Toolbox of MATLAB 2021a on a system with the following
setup: operating system, Windows 10 (enterprise/home);
CPU, Intel® Core™ i7-10700 (3.5 GHz); GPU, NVIDIA GeForce
RTX 3080; and RAM, 32 GB. According to the test procedure
and estimation of the network performance, the confusion
matrix was estimated. Generally, a confusion matrix is a
table used to evaluate the performance of a classification
network. The sensitivity (i.e., true positive rate), positive
predictive value (ratio of true positive results to all positive
results), negative predictive value (ratio of true negative
results to all negative results), specificity (probability of a
negative test result in subjects without disease), F-score,
and accuracy were calculated based on the confusion
matrix (Equations 2 - 5).

Sensitivity =
TP

TP + FN

Positive predictive value (PPV ) =
TP

TP + FP

Negative predictive value (NPV ) =
TN

TN + FN

Specificity =
TN

TN + FP

F − Score = 2 × Precision × Recall

Precision + Recall

Accuracy =
TP + TN

TP + FP + FN + TN

where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false positive
results, and FN is the number of false negative results. The
receiver operator characteristic (ROC) curves were drawn
for different energy levels to evaluate the performance
of the networks. Generally, the ROCs plot sensitivity
versus 1-specificityon the X axis. This curve is used for the
evaluation of classifiers and shows the trade-off between
sensitivity and specificity. The further the curve comes to
the 45° diagonal of the X-Y coordinate, the more accurate
the network is.

To compare the performance of different networks, it
would be helpful to summarize and show the performance
of a predictive model with a single value. This single
value can be the area under the ROC curve (AUC), which
corresponds to the Wilcoxon rank-sum statistic. This
value is used as a general measure of predictive accuracy
(28). In other words, the ROC curve is a probability
curve, and the AUC represents the measure or degree of
separability. The AUC of the ROC curve is usually calculated
to determine and compare the performance of predictive
models. The AUC indicates how much the model can
distinguish between different classes. The higher the
AUC of the ROC curve is, the better the model performs
in classification. Finally, one-way analysis of variance
(ANOVA) was used for analyzing the results of stone type
classification for different X-ray energies.

4. Results

4.1. DL Results

The prepared datasets were inserted in four different
networks, and the training and validation accuracies
were surveyed for different hyperparameters (Table 3).
The results of the trained networks were evaluated,
and training and validation accuracies and losses were
compared. The GoogLeNet and VGG-19 networks were
overfitted; their maximum training and validation
accuracies did not exceed 70% and 60%, respectively.
The best results with the highest accuracy and lowest loss
values were attributed to the ResNet-18 and ResNet-50
networks for each energy. Table 3 shows the best results
for ResNet-18 and ResNet-50 networks among 27 training
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Figure 4. A, Phantom images acquired by 80-kV X-ray; B, 135-kV X-ray; C, Stone type determination using the scanner software algorithm; D, Stone region; and E, Preprocessing
for creating the stone dataset in deep networks

Figure 5. The ResNet CNN architecture

sets. As shown in Table 3, the ResNet-50 exhibited better
results at 80 kVp, while at 120 and 135 energies, ResNet-18
showed higher accuracy.

The most important factor in the Taguchi optimization
method is SNR, which was calculated based on the Taguchi
method (Figure 6). The effective parameters in the network
performance were scored from one to six, based on the SNR
(Table 4). According to the Taguchi method, the optimized

arrangement of training options to achieve acceptable
results was obtained.

4.2. Deep Neural Network Performance and Statistical Analysis

Figure 7 presents the results of confusion matrix and
the ROC curve for the optimized parameters at each energy
level in the performance evaluation of networks. Networks
with high accuracy and low loss values were tested with the

Iran J Radiol. 2023; 20(2):e134454. 7
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Figure 6. The signal-to-noise ratio (SNR) values of Taguchi method at different energy levels
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Table 3. The Best Results of ResNet-18 and ResNet-50 Networks Based on Hyperparameters Proposed in Taguchi Experiments

Energies and trained network parameters ResNet-18 Experiment number ResNet-50 Experiment number

80 kV 16 27

Training accuracy 93 94.7

Validation accuracy 92.7 94.6

Training loss 0.8 0.1

Validation loss 0.2 0.19

120 kV 15 27

Training accuracy 96 87

Validation accuracy 88.7 89.52

Training loss 0.1 0.33

Validation loss 0.5 0.4

135 kV 26 26

Training accuracy 93.75 84

Validation accuracy 84.12 76

Training loss 0.27 0.4

Validation loss 0.36 0.6

Table 4. Scoring of Effective Parameters at Each Energy Level Based on Taguchi
Method a

Parameters 80 kV
ResNet-50

120 kV
ResNet-18

135 kV
ResNet-18

Solver 6 2 1

Initial
learning rate

2 6 5

Mini-batch size 1 3 4

L2
regularization

3 4 2

Drop factor 5 5 6

Drop period 4 1 3

a 1, the most important parameter; 6, the least important parameter.

test dataset. The confusion matrix, F-score, and sensitivity
were determined for the selected networks. The test
accuracies were measured to be 92.7%, 89.5%, and 88.9% for
80, 120, and 135 kV energy levels, respectively. The AUCs
for the three stone classes, i.e., uric acid, calcium oxalate,
and cystine stones, at each energy level were estimated at
0.994, 0.997, and 0.940 at 80 kV; 0.938, 0.978, and 0.867 at
120 kV; and 0.958, 0.957, and 0.869 at 135 kV, respectively,
all of which were close to one; therefore, the classifier
networks used in this study were successful in stone type
classification.

Table 5 indicates the mean values of parameters, along
with 95% confidence intervals (CIs) for the networks.
Based on the results of one-way ANOVA, there was a

significant difference in the mean values of accuracy and
sensitivity of classification for the three energy levels. The
P-values for accuracy and sensitivity were 0.00002 and
0.003, respectively. No significant difference was observed
regarding other scoring parameters (P > 0.05). The 80-kVp
energy tests showed higher accuracy and sensitivity than
the other two energy levels. However, there was no
significant difference in the mean scores at 80, 120, and
135 kVp energy levels. Based on the results shown in Table
5, high evaluation scores for the three energy levels show
the high performance of deep neural networks in stone
composition identification at all three energy levels.

The results indicated that the deep networks could
predict the stone types based on the ULD CT images.
Although the networks showed the highest accuracy
and sensitivity at 80 kVp, ULD CT scan was preferred
at a higher energy level (120 kVp) and a lower tube
current (44 mA) with regard to the dose delivered to
patients. Finally, the results of biochemical laboratory
tests, network prediction, and DECT scanner output for
determination of stone type were compared for six of
the test samples (Table 6). The findings of the proposed
method were matched with the pathology reports as the
reference and confirmed the classification accuracy.

5. Discussion

Kidney stones, if left untreated, can lead to kidney
pyelonephritis or renal failure in more serious cases;

Iran J Radiol. 2023; 20(2):e134454. 9
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Figure 7. Confusion matrices and receiver operator characteristic (ROC) curves for A, 80 kVp; B, 120 kVp; and C, 135 kVp energy levels (class 1: uric acid stones, class 2: cystine
stones, class 3: calcium oxalate stones)

Table 5. The Evaluation Scores for Each Energy Level

Energy F1-score mean (95%
CI)

Sensitivity mean
(95% CI)

Specificity mean
(95% CI)

Positive predictive
value Mean (95% CI)

Negative predictive
value Mean (95% CI)

Accuracy mean (95%
CI)

80 kV 0.84 (0.8, 0.89) 0.8 (0.75, 0.85) 0.95 (0.92, 0.99) 0.94 (0.91, 0.96) 0.96 (0.95, 0.97) 0.90 (0.88, 0.92)

120 kV 0.75 (0.68, 0.81) 0.67 (0.62, 0.71) 0.90 (0.85, 0.95) 0.86 (0.75, 0.96) 0.94 (0.93, 0.95) 0.84 (0.81, 0.88)

135 kV 0.85 (0.81, 0.89) 0.70 (0.66, 0.73) 0.90 (0.86, 0.94) 0.89 (0.85, 0.93) 0.92 (0.88, 0.97) 0.84 (0.82, 0.92)

Abbreviation: CI, confidence interval.

consequently, they may significantly affect the patient’s
quality of life and also impose a major financial burden
on the healthcare system. Prevention and treatment of
patients with kidney stones mainly depend on the type
of kidney stone and its composition (29). Cystine stones,
despite being rare, are associated with genetic defects
causing cystinuria; consequently, treatment typically
involves adequate hydration and urine alkalization (3).
Endoscopic methods are usually selected for cystine stone
management, while uric acid stones may be prevented
and treated by dietary modifications. In contrast, struvite
stones are often associated with urinary tract infections,
which require antibiotic treatments (4); therefore, stone
type determination is very important.

There are various common methods for the ex vivo
analysis of kidney stones (30). The DECT method with
two different energy spectra can be used for in vivo
characterization of the chemical composition of renal
stones larger than 3 mm in size. Determination of
the chemical structure of stones helps physicians treat
them more effectively and facilitates the selection of
treatment planning strategies (pharmaceutical treatment
vs. surgery). However, DECT has some limitations,
including increased patient radiation dose and the need
for post-processing software systems of stone analysis (31).

In this study, a classification method with high
accuracy was proposed using a DL approach. The dataset
was collected using surgically collected human kidney
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Sheikhi M et al.

Table 6. Comparison of Pathology Test, CT Scan Output, and Network Prediction
Results

Number of
samples

Chemical
analysis as the
gold standard

response

DECT Scan
Results

ResNet-50
predictions at

80 kV

Sample 1 UA stone UA stone 100% UA

Sample 2 UA stone UA stone 99.9% UA

Sample 3 CaOx stone CaOx stone 99.1% CaOx

Sample 4 CaOx stone CaOx stone 93.3% CaOx

Sample 5 Cys stone Cys stone 99.6% Cys

Sample 6 Cys stone Cys stone 98.1% Cys

Abbreviations: UA, Uric acid; CaOx, calcium oxalate; Cys, cystine.

stones, which were analyzed using chemical procedures.
The imaging procedure was performed using DECT
and SECT modalities on a pseudo-human phantom.
Four pre-trained networks were selected according to
acceptable responses in medical experiments, and the
Taguchi optimization method was designed. Among
four networks, two networks, including GoogLeNet
and VGG-19, were excluded from our study owing to
their poor performance in 27 Taguchi tests. However,
ResNet-50 and ResNet-18 were used for optimization and
training of parameters based on their high accuracy and
low error rate. Overall, GoogLeNet has fewer trainable
parameters than ResNet-50 and ResNet-18; therefore, it
plays an effective role in training. On the other hand,
the performance of ResNet networks does not decrease
despite deepening of the architecture compared to other
architectural models. Also, computations become lighter,
and the network training ability is improved.

The ResNet-50 and ResNet-18 were trained using 27
proposed tests of Taguchi method for each of the three
energies. For 80 kVp, the highest training and validation
accuracies of the ResNet-50 network were 94.7% and
94.6%, respectively, while at 120 and 135 kVp, the ResNet-18
network showed better performance. The training and
validation accuracies of ResNet-18 at 120 kVp were 96% and
88.7%, respectively; the corresponding values were 93.75%
and 84.12% for ResNet-18 at 135 kVp, respectively.

Data analysis indicated interesting results. The highest
mean factor and SNR were obtained for the 15th, 26th,
and 27th experiment numbers of the Taguchi analysis
(Table 5). The ranked hyperparameters of various energies
indicated that the mini-batch is an effective parameter in
the ResNet-50 performance, whereas in the 120-kV drop
period at 135 kV, the type of solver plays a significant
role in the training and validation trends (Table 4). The
network response depends on image features, which vary

depending on their energy and HU properties. The
ResNet-18 showed high accuracies and low loss values in
the test and training procedures in ULD CT scan.

The SNR values of the Taguchi method are presented in
Figure 6. The optimized hyperparameters and the optimal
arrangement determined and then adjusted for training
nets, resulting the peak performance of networks at each
energy level. According to the confusion matrix, at 80
kVp, the accuracy and sensitivity of the networks were the
highest as compared to the other two energies evaluated.
However, based on the analysis of variance, no significant
difference was observed between other scores, including
PPV, NPV, specificity, and F1-score for the three energy levels.
Therefore, the results of this study clearly revealed that
the networks could identify the type of stone based on
single-energy images of the kidneys.

Generally, DECT is known as the gold standard for
in vivo determination of the kidney stone type. In this
modality, CT was performed using two different X-ray
energies after an ULD CT scan used for the determination
of stone location; consequently, high radiation doses were
imposed on the patients. The results of this study showed
that deep neural networks might be potentially beneficial
tools for urologists to identify the type of stones and
therefore, decide on the best possible therapeutic plan,
either when these networks are used in an ULD CT scan or
a conventional single-energy CT scan. The present results
are consistent with the findings of a study by Fitri et
al., who used a CNN network to classify urinary stones
and reported a test accuracy of 0.9995 (32). While their
study used micro-CT images to classify kidney stones in a
CNN network, we used CT images as inputs for our neural
network, which can be potentially used in an in vivo setting
in the future.

We were able to obtain a highly accurate automated
method based on DL compared to previous studies. This
study aimed to compare the efficacy of DECT and SECT
imaging in stone classification, to present an optimized
method for limiting the patient radiation dose, and to
facilitate accurate stone type detection. Despite all these
efforts, this study had some shortcomings. We did not
evaluate mixed-composition stones due to their variability
and small sample size, which was insufficient for proper
network training. In our future research, we plan to use
neural networks for urinary stone classification in real
images of patients rather than using phantoms.

In conclusion, in this study, the feasibility of using
artificial intelligence to identify the type and composition
of kidney stones via ULD CT scan was examined. Different
DL algorithms for the prediction of stone types were
compared, and the hyperparameters were optimized
to obtain high-performance networks. The results
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demonstrated the role of deep neural networks and the
Taguchi optimization method in obtaining an optimized
and accurate response. The high evaluation scores, shown
in Table 5, revealed that the DL-based algorithm could
perform stone type classification at three CT energy levels,
i.e., 80, 120, and 135 kVp. This automated method can be
used to detect stone types via single-energy CT imaging
or even ULD CT based on DL. It can be concluded that DL
methods can overcome the limitations of DECT and be
used for the analysis and classification of urinary stones
and resolving the risk of high-dose radiation.
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