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Abstract

Background: Left ventricle segmentation plays an essential role in computation of cardiac functional parameters such as ventric-
ular end diastolic and end systolic volumes, ejection fraction, myocardial mass, and wall thickness and also wall motion analysis.
Manual segmentation is also time consuming and suffers from inter and intra observer variability. Several approaches have been
proposed that segment the left ventricle (LV) by automatic and semi-automatic methods, but the problem is still open due to the
huge shape variety of the left ventricle and motion artifact.
Materials and Methods: A robust semi-automatic approach is hereby presented for addressing the left ventricle segmentation
problem. The presented method combines region information of the left ventricle with gradient and edge information in a graph
framework. The LV region information is captured using our previously presented region growing method and is embedded into
livewire framework.
Results: The modified livewire that is presented here shows a great success in quantitative criteria over the publically available
MICCAI 2009 left ventricle segmentation challenge database that contains 45 normal and abnormal cases. We have computed dice
metric (DM) and average perpendicular distance (APD) for the proposed method and it outperformed the state of the art results
over all papers that used the same database. Validation metrics, dice metric and average perpendicular distance were computed as
0.95 mm and 1.48 mm versus those of 0.87 - 0.93 mm and 1.76 - 1.81 mm obtained by other methods, respectively.
Conclusion: Using semi-automatic approaches for cardiac segmentation yields satisfying results and this is because of incorporat-
ing radiologist’s experiences into the segmentation procedure. Maintaining image information to reduce user interaction is our
goal for further researches.
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1. Background

Cardiac magnetic resonance imaging (CMRI) is an ac-
curate and reproducible technique for the evaluation of
cardiac function. It is also the gold standard for ventricu-
lar volume measurements as documented by both ex vivo
and in vivo studies (1). Left ventricle volume measurement
needs segmentation of the left ventricle (LV), which is a dif-
ficult task because of its unclear borders and shape vari-
ety. The presence of papillary muscles in the ventricle cav-
ity, with gray level values similar to the surrounding my-
ocardium is considered as another problem. In summary,
the problem of left ventricle segmentation is still open due
to these issues; whereas, numerous methods have been
proposed (2, 3). The previous works may be categorized
into different groups: active contour (4-6), methods based

on computation of thresholding (7, 8), graph search al-
gorithms (9, 10), atlas based methods (11-14), and statisti-
cal shape models (active shape and appearance model) (15-
17). Among these methods, statistical shape models are the
most used approach in this field (2, 3). Atlas-based segmen-
tation uses labeled images, known as atlas, to describe di-
verse structures present in the intended image. Registra-
tion of atlases onto the image to be segmented is the key
point of this procedure (3). As literature shows (2, 3), the
main drawback of this method is the effect of the registra-
tion quality on the success of the approach. Active contour
is another approach of medical image segmentation that
has been widely used regarding their flexibility (18). Ac-
tive contours are iteratively deforming curves that mini-
mize an energy functional with their evolution, and mean-
while use information of object boundaries and smooth-
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ness of curve as separate terms (2). A number of methods
have been worked on using active contour model for left
ventricle segmentation. Grosgeorge et al. (5) utilized well-
known region based active contour approach, Chan-Vese
approach, for segmentation of both left and right ventri-
cle. Their results show a satisfying segmentation, but be-
cause of using region term solely, this method results good
only in homogenous regions with well-defined borders.
Graph based method is another approach used for right
and left ventricle segmentation. In graph-based meth-
ods, every image pixel is considered as node and edges be-
tween graph nodes are defined with similarity function.
Cut is a set of edges of graph that omitting them parti-
tions the graph into two disjoint sets. Global optimiza-
tion of cost function is the framework of this approach.
Graph theoretic techniques are not limited to graph cut
and generally are categorized into four groups (19): (1)
Graph cut: Cuts can be obtained using minimizing a pre-
defined cost function or on Markov random field mod-
els. (2) Minimum path based methods: These methods
are semi-automatic approaches that define the object fron-
tiers as minimum cost paths between each pairs of nodes.
(3) Methods based on minimal spanning tree: A minimum
spanning tree (MST) is a tree of a connected undirected
graph that connects all the vertices together with the min-
imal total weights for its edges. For segmentation by this
approach, edges from different sub-graphs are removed.
(4) Other methods: graph based segmentation methods
that are not part of any of the above categories (20). Among
these four approaches, minimum path based method is
considered as a semi-automatic technique. So, it is more
interesting in medical applications because incorporating
radiologist knowledge makes the segmentation process
more reliable and accurate. The most well-known algo-
rithm for solving “minimum path finding problem” is Dijk-
stra’s algorithm (21), which is also utilized in livewire (22).
2-D livewire method provides the possibility of selecting
an initial point on the boundary of the object to be seg-
mented. The next point is placed in a way such that the
lowest cost path between the initial point and the current
cursor position will find the object of interest interactively.
There are efforts for extending 2-D livewire to 3-D frame-
work (23-25) in various applications, especially medical ap-
plications. Another extended version of live wire is pro-
posed in a study conducted by Poon et al. (26), in which
the cost function is modified so it can segment vessel im-
ages more appropriately. They added vesselness filter, ves-
sel direction term and fitness of medial node term to the
livewire cost function. This idea actually works well in the
2-D segmentation context. Classical livewire hires image
features like edge and gradient information, while this in-
formation in the ventricle border is inaccessible more of-

ten due to ill-defined borders and partial volume effect.

2. Objectives

We have used a simple region-based shape prior term
for representation of the left ventricle. The shape prior,
which is named LVness (a term that represents the shape
of the LV), is based on a region growing algorithm that we
previously presented (27). LVness produces a primary seg-
mentation of the left ventricle according to region infor-
mation. The resulted border pixels have low intensity val-
ues and guide the minimum path search algorithm to the
predefined band. In the following, first we will describe
the livewire approach and LVness generation procedure.
The qualitative and quantitative results of applying pro-
posed method on 45 cases of MRI images of a publically
available dataset (MICCAI 2009 left ventricle segmentation
challenge) is presented in the next section. Finally, discus-
sion, conclusion and suggestions for future researches are
presented in the later section.

3. Materials and Methods

3.1. Livewire

Livewire algorithm is a semi-automatic tool for accu-
rate segmentation that gives the seed from user input. As
the user selects seed points, and moves the mouse, opti-
mal boundaries are computed and found. The classic 2-D
livewire uses the gradient magnitude fm(q) gradient direc-
tion fd(p,q), and canny operator fc(q) for creating cost func-
tion from pixel p to pixel q C(p,q) (24).

(1)C (p, q) = wMfM (q) + wDfD (p, q) + wCfC (q)

Where wM, wD and wC are gradient magnitude, gra-
dient direction, and edge detection weights respectively.
These weights provide the possibility of contribution to
the cost function with various rates for each cost term. The
gradient magnitude is defined as:

(2)fM (q) = 1−

√(
dq
dx

)2
+
(

dq
dy

)2
max (G)

In this equation, G refers to gradient magnitude in the
2D image and max (G) represents the largest gradient mag-
nitude. As it is clear, gradient magnitude has high value in
borders and low value in homogenous regions. As mouse
moves around the object, the border pixels should have
low costs so livewire algorithm can tend to the border. It’s
obvious that gradient magnitude must be inverted and
this provides low cost for strong edges. The gradient direc-
tion cost term pixel p going to pixel q is defined as:
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(3)fD (p, q) =

arccos

(
dp
dx

G(p)
×

dq
dx

G(q)
+

dp
dy

G(p)
×

dq
dy

G(q)

)
π

Where G(p) represents the gradient magnitude for
pixel p. Finally, fc(q) is the canny edge detector (28). Canny
edge detector results a binary image with white pixels (it
means 1) representing edges and black pixels (it means 0)
are background.

Classical livewire hires image features like edge and
gradient information, while this information in the left
ventricle border is inaccessible more often due to ill-
defined borders of LV in these images. Therefore, we used
a shape prior term to be added to the cost function of min-
imum path search algorithm.

3.2. LVness

Here, we have defined a new term to be added to the
cost function and incline the path toward the left ventricle.
The new cost function forms as follows:

C (p, q) = wMfM (q)+wDfD (p, q)+wCfC (q)+wLV fLV

(4)

Where wLV indicates the weight of LVness term on the
equation. For providing LVness by primary segmentation,
we have used our previously presented region-based seg-
mentation approach. First, the user selects a seed in the left
ventricle region manually and afterward gray space map is
formed.

3.3. Gray Space Map

Gray space map composition contains four major
steps:

1) The coordinates and gray level value (V) of a seed is
obtained by clicking on the left ventricle region.

2) Pixels that have the same gray level value as the seed
and are neighbors of the seed pixel are found.

3) At this step, we define a set of gray levels in the in-
terval [V - D, V + D], D ε {1, 2, … } and look forward pixels in
the neighborhood of the previous step and with gray level
value in this interval.

4) Every time D increases, corresponding pixels in gray
space map catch a lower label.

So, we have an image with the same size as the original
image and pixels that are close to the seed (in terms of spa-
tial and gray level value) are highlighted with higher val-
ues. Resulted gray space map is demonstrated in Figure 1.

3.4. LVness Generation

Regarding left ventricle prominence in gray space
map, which is because of the homogeneous region of the
left ventricle and inhomogeneity between LV cavity and
surrounding tissues, a robust method is needed to express
left ventricle edges as a weighted map like other terms of
classic livewire. We have used the antepenultimate (two
before the last) stage of canny edge detector (28), in which
the edges are described as a weight of edgeness. The canny
edge detector has five steps (28).

1) Image smoothing by applying Gaussian filter in or-
der to remove undesired noises. An example of a Gaussian
kernel of size = 5 and σ = 1.4 is represented in the follow-
ing Equation. The The asterisk denotes a convolution oper-
ation.

(5)B =
1

159



2 4 5 4 2

4 9 12 9 7

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2


∗A

2) Finding the intensity gradient of the image. The
canny algorithm first finds horizontal and vertical gradi-
ents (Gx and Gy, respectively) using first derivative opera-
tors like Sobel. From this the edge gradient and direction
can be determined according to the following Equation:

(6)
G =

√
G2

x +G2
y; θ

= arctan

(
Gy

Gx

)
3) Apply non-maximum suppression, which is an edge

thinning technique, to remove pixels that are not consid-
ered to be part of an edge. Hence, only thin lines (candidate
edges) will remain.

4) Exert double threshold to determine potential
edges. After application of non-maximum suppression,
there are still some edge pixels caused by noise and gray
level variation. In order to throw away these artifacts, it is
essential to filter out the edge pixel with the low gradient
value and preserve the edge with the high gradient value
(29).

5) Hysteresis: canny uses lower and upper thresholds
(T1 and T2, respectively):

- If: pixelGradient > T2

Then: the pixel is accepted as an edge.
- If: pixelGradient < T1

Then: the pixel is rejected.
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Figure 1. Gray space map with a seed pixel inside the left ventricle. A, The original image with the seed displayed by a cross mark; B, Resulted gray space map.

- If: T1 < pixelGradient < T2

Then: the pixel will be accepted only if it is connected
to a pixel that is above T2

In these steps, the third step (i.e. non-maximum sup-
pression) produces an image, in which pixels that have a
weight according to “being edge” rate and on the other
hand, undesirable noises are suppressed. If we stop canny
algorithm in this step and use weights of this image as a cri-
terion that represents LV border rate in the mouse-moving
path, this output can be our LVness.

There is only another step for preparing our LVness
and this would be complementing the resulted image. As
Figure 2 shows, result of non-maximum suppression al-
gorithm has higher values in more likely edge pixels and
lower values for rest of pixels. For being minimum fLV near
the left ventricle borders, it should be complemented as it
can be seen in Figure 2.

Like other terms in the classic livewire, this new term is
an image that has weights that are low values around the
borders and high in the rest of the image pixels. As math-
ematically described above, all terms of modified livewire
are images that would be minimum in the mouse-moving
path around the LV border. Non-maximum suppression
(NMS) has a derivative nature that arises from directional
first order derivatives (Gx and Gy), and these operators has

maximum in high variations (likes edges) according to fol-
lowing Equations:

(7)
∂f

∂x
= f (x+ 1)− f (x)

(8)
∂f

∂y
= f (x+ 1)− f (y)

(9)fLV = 1− fNMS

This shows that fLV, which is the complement of NMS,
is minimal near the borders.

3.5. Graph Searching Algorithm

Finding a low cost path in our directed graph is the
next task. Local costs are assigned to nodes in the graph
and then, expansion of a user-selected seed point is ac-
crued and it means that its local cost is added into its neigh-
boring nodes. The next pixel, which is expanded, is the
neighboring node with the minimum cumulative cost and
the process continues till a “wavefront” is produced that ex-
pands in order of minimum cumulative cost (22). Figure
3 illustrates the described algorithm. Figure 3A shows the
seed point with a circle around it and initial local cost map.

Figure 3B demonstrates a portion of the total cost after
the seed point is expanded. Note that diagonal costs have
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Figure 2. A, Result of third step (non maximal suppression: NMS) of canny edge detector algorithm. B, fLV is the complement of NMS.

been multiplied by Euclidean distance. Figure 3C indicates
two points expansion, and Figure 3D-3F show 5, 47 and com-
pleted expansion (22).

3.6. Ethical Approval

This article does not contain any studies with human
participants or animals performed by any of the authors.

3.7. Informed Consent

Informed consent was obtained from all individual
participants included in the study.

4. Results

To evaluate the performance of the proposed method,
we applied it to the MICCAI 2009 LV segmentation chal-
lenge dataset (3). The database is publicly available on-
line and contains 45 MRI datasets, grouped into three cat-
egories. Each category contains 15 cases of ischemic heart
failure cases, non-ischemic heart failure cases, LV hypertro-
phy cases and normal (SC-N) cases. Manual segmentation
of images by experts at the end diastole (ED) and the end
systole (ES) cardiac phases are available.

4.1. LVness Generation

LVness is built for ED and ES phases of cardiac cycle
separately. There are also six LVness models for ED phase
from base to apex and six for ES. Livewire cost function
terms have weights that are chosen empirically from train-
ing sets: WM = 0.3, WD = 0.39, WC = 0.17 and WLV = 0.14. These
weights are obtained empirically and WLV is set to 0.14 to
suppress the effect of LVness in case of possible leakage of
GSmap outward of the left ventricle. We have done sensi-
tivity analysis to determine the change in accuracy while
varying each weight value (30). We found that varying each
weight by±50% did not change the accuracy by more than
4.3% for our test images. For more certainty in this matter,
we performed a leave-one-out (LOO) strategy and in each it-
eration, one of the training, online and validation datasets
of the MICCAI 2009 LV segmentation challenge dataset was
considered as test group.

4.2. Quantitative and Qualitative Evaluation

Two well-known measures were used to analyze the
performance of our segmentation approach with other
methods that used dataset (3) dice metric (DM) and aver-
age perpendicular distance (APD).

The dice metric is a statistic that measures contour
overlap by intersecting automatically segmented area and
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Figure 3. Cost expansion. A, Local cost map. B, Seed point expanded. C, Two points
expanded. D, Five points expanded. E, 47 points expanded. F, Completed total cost
path/pointer map with optimal paths

manually segmented area , multiplyed by 2, and finally di-
vided by AA + AM (3).

(10)DM =
2
(
AA

⋂
Am

)
AA +AM

The dice metric is always between zero and one, and
higher DM shows better consistency between automated
and manual segmentations.

The average perpendicular distance measures the dis-
tance from the automatically segmented contour to the
corresponding manually drawn expert contour, averaged
over all contour points (3). A representation of APD can be
seen in Figure 4.

Figure 4. The average perpendicular distance APD between two contours (3)

We have performed our segmentation algorithm on
training, validation and online sets of dataset. The qualita-
tive and quantitative tests show promising results. In com-
parison with other automatic and semi-automatic meth-
ods, our proposed method yielded the best results in both
gice metric and APD and may be considered as state of
the art. Table 1 shows the average values ± the standard
deviation of the statistic measurements. Figure 5 illus-
trates the automatic and manual segmentation results of
the LV from the base to the apex and also in ED and ES
phases of the cardiac cycle. Segmentation of the left ven-
tricle has pre-mentioned difficulties and these difficulties
are boosted in mid and apex slices due to their low resolu-
tion and presence of papillary muscle. The ability of our
method in segmentation of the left ventricle in these cases
is presented in Figure 6.

Table 1. Evaluation Metrics of Our Proposed Method for Training, Validation and On-
line Sets of Left Ventricle Segmentation Challenge Database (3)a

Dataset DM APD

Training
ED 0.95 ± 0.26 1.48 ± 1.32

ES 0.89 ± 0.11 6.23 ± 4.33

Validation
ED 0.92 ± 0.19 4.11 ± 1.19

ES 0.90 ± 0.12 4.77 ± 0.12

Online
ED 0.88 ± 0.34 3.45 ± 0.79

ES 0.86 ± 0.29 5.83 ± 2.35

Abbreviations: APD, average perpendicular distance; DM, dice metric; ED, end
diastole; ES, end systole.
aValues are expressed as mean ± standard deviation.

We have used MATLAB 2015-b with License-number:

6 Iran J Radiol. 2017; 14(2):e42272.
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Figure 5. Manual (red) and proposed approach (green) segmentation of the left ventricle from base to apex for an instance case of MICCAI 2009 challenge database (3). A, End
diastole; B, End systole.

838860 in a Pentium-4 system with Intel(R) Core(TM) 2 Dou
CPU 2.80 GHz 8 GB RAM, 64-bit Windows 7.

5. Discussion

In this study, we developed and validated a new semi-
automatic approach for left ventricle segmentation based
on 2-D livewire. As classic livewire uses image features like
gradient and edge information, and this information is
not sufficient or inaccessible in some cases, we used our
previously presented region growing algorithm to gener-
ate a primary segmentation that could be added as a new
term to the livewire equation. Ideally, incorporating all
regions, shape and edge information of the left ventricle
may produce a fully promising result in left ventricle seg-

mentation. However, incorporating all of these informa-
tion needs a huge dataset that can capture all the shape
varieties in the left ventricle. Computed metrics in Table 1
showed that our approach results provided contours simi-
lar to the ground truth by a rate of 93% and improvements
in other metrics. Table 2 revealed that our method out-
performed the state-of-the-art methods that used the same
dataset (3). In Table 2, a comparison of results between
our method and the state-of-the-art methods that used the
same database is presented. The results show a significant
improvement in both dice metric and average perpendic-
ular distance by our proposed method. Figure 5 shows a
greet agreement between our proposed method segmen-
tation results and manual segmentation as ground truth.
Figure 6 illustrates the ability of proposed method in seg-
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Figure 6. A, Manual (red) and proposed approach (green) segmentation of the left ventricle in some challenging slices containing presence of papillary muscles; B, Apical
slices; C, Unclear borders. Top row: original image and bottom row: segmentation result.

mentation of the left ventricle along with whole slices of
end diastolic and end systolic phases of the cardiac cycle.
In this figure, manual segmentation is declared by red con-
tours and livewire segmentation by green contours. The
conformity of manual and livewire segmentation can ob-
viously be seen in all frames.

The most challenging slices for cardiac MRI segmenta-
tion could be divided in three groups:

1) Apical slices,
2) Slices with strong papillary muscles
3) Slices with an unclear border.
Figure 6 shows the robustness of the proposed method

in segmentation of these challenging slices.
Figures 7 and 8 illustrate the correlation graphs using

online data set between our approach and manual results
for end diastolic and end systolic volumes, respectively. A
correlation with manual segmentation of 0.997 and 0.997
for end-diastolic volume (EDV) and end-systolic volume
(ESV) was calculated. The correlation test is obtained us-
ing “Pearsons test” to obtain the slope, intercept and the R-
values. This high correlation proves the accuracy and clin-
ical applicability for evaluation of LV function.

We used a 2-D approach for segmentation of the left
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Figure 7. Correlation graph for end-diastolic volume (EDV)
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Table 2. Comparison of Segmentation Performance Between Proposed Method and
State-Of-The-Art Techniques Using Left Ventricle Segmentation Challenge Database
(3) and Other Methods That Used the Same Databasea

Method DM APD

Proposed method 0.95 ± 0.26 1.48 ± 1.32

Classic livewire (22) 0. 88 ± 0.22 8.13 ± 3.87

Oghli et al. 2013 (31) 0.79 ± 0.33 9.12 ± 1.23

Oghli et al. 2012 (32) 0.73 ± 0.56 9.58 ± 2.19

(Queiros et al. 2014) (33) 92.7 ± 0.23 10.51 ± 9.17

(Ngo and Carneiro, 2014) (34) 93.23 ± 0.34 22.20 ± 21.74

(Hu et al. 2013) (35) 0.61 ± 0.29 15.08 ± 8.91

(Constantinides et al. 2012) (36) 0.80 ± 0.19 9.79 ± 5.38

(Jolly et al. 2009) (37) 0.88 ± 0.04 2.97 ± 0.38

(Liu et al. 2012) (38) 0.78 ± 0.20 9.26 ± 4.93

(Huang et al. 2011) (39) 0.81 ± 0.16 7.28 ± 3.58

(Schaerer et al. 2010) (40) 0.77 ± 0.16 9.64 ± 4.15

Abbreviations: APD, average perpendicular distance; DM, dice metric.
aValues are expressed as mean ± standard deviation.

ventricle; whereas, 3D methods are becoming the state-of-
the-art in medical applications, and this is because of two
reasons:

1) The large gap between slices in short axis and other
views (about 7 mm) and impossibility of the pixel intensity
value estimation in the gaps (2, 3).

2) Misalignment between slices due to motion artifacts
in cardiac MRI (25). This means that the cavity center is not
at the same position in different slices.

Among various methods that are used for left ventricle
segmentation in the literatures, active contour methods
(especially level set based method) and active shape and
appearance methods (active shape model (ASM) and active
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Figure 8. Correlation graph for end-systolic volume (ESV)

appearance model (AAM) are the mostly used approaches.
Level set based methods uses an initial contour and aggre-
gate edge information (and in some cases like Chan-Vese
region information) to minimize a function that leads to
evolve a curve to fit on object boundaries. Besides their sig-
nificant advantages, these methods have the following lim-
itations:

1) The main disadvantage of this approach is the depen-
dence of segmentation result to precision of initial con-
tour selection. Although this weakness is mostly resolved,
the problem is still open.

2) They can often get stuck in local minimal states;
this may be overcome by using simulated annealing tech-
niques, which is the cause of computational complexity.

3) Accuracy is governed by the convergence criteria,
which is used in the energy minimization technique.
Higher accuracy require tighter convergence criteria and
hence, longer computation times.

4) Another issue that makes the use of level set meth-
ods for LV segmentation inappropriate is the presence of
papillary muscles with gray levels similar to surrounding
myocardium. These little circle shaped muscles (which
are obvious in Figure 5A) create local minima for evolving
curve because of edges that are between them and LV cav-
ity.

It is notable that although the proposed method (base
on livewire framework) is a semi-automatic approach as
level set method, there are some differences between
user interaction in the proposed method and level set ap-
proach. The main difference is that in livewire method,
user selects the seeds exactly on the left ventricle border
and since the operators are expert (or at least semi-expert)
they recognize ventricle positions and user interaction will
not result in miss-segmentation or user faults. On the
other hand, the shortest path between two seeds is recog-
nized based on livewire algorithm and is confirmed by se-
lecting the next seed by the user. While, in the level set
method user selects an initial contour and the contour
evolves based on an energy minimization algorithm. This
fact limits the supervision of the user and may lead to miss-
segmentation in some cases.

Active shape and appearance methods hire a point
correspondence based method [point distribution model
(PDM)] for representation of left or right ventricle shape.
ASM captures shape variations, constructs a model and
aims to match the model to a new image. On the other
hand, AAM works with shape and appearance of object
simultaneously based on correspondent points (15). The
main drawback of these techniques is the dependence of
the result of segmentation on the similarity of shapes to
the training set.

Iran J Radiol. 2017; 14(2):e42272. 9
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5.1. Conclusions

In summary, a combined semi-automatic approach for
segmentation of the left ventricle is proposed in this pa-
per, which incorporates region information with a region-
growing algorithm into the livewire framework. In con-
trast to automatic manners, semi-automatic approaches
in image segmentation has the advantage of using knowl-
edge and experience of a radiologist. This superiority is
more essential in cardiac MRI image analysis, which has a
lot of ambiguities in interpretation of the image. On the
other hand, the time spent for segmentation of a single
slice is very lower than manual segmentation.
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