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Abstract

Background: Gastrointestinal stromal tumors (GISTs), which are the most common mesenchymal tumors of the digestive system,
are classified as very low, low, intermediate and high risk. The treatment and prognosis of GISTs vary according to the grade.
Objectives: To investigate the capability of computed tomography (CT)-based texture analysis for predicting the grade of GISTs,and
compare the findings with a combination model consisting of CT signs and texture parameters.

Patients and Methods: For this retrospective study, a total of 168 patients (training group: n = 117; validation group: n = 51) with
pathologically proven GISTs were analyzed. Patients were randomly divided into the potential malignant and malignant group.
Radiomics signature based on texture features and the combination model consisting of selected CT signs and texture parameters
were developed with the least absolute shrinkage and selection operator (Lasso) regression. The prediction performance of models
was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). Calibration was evaluated with the Hosmer-
Lemeshow goodness-of-fit test.

Results: Totally, 29 texture features and seven CT signs were extracted. Texture features of sphericity, compacity, contrast, and dis-
similarity, and CT signs of size, and location were selected to develop the predictive models. The rad- and pre-scores were calculated
for the radiomics signature and combination model based on the validation group. Both two models hold great prediction perfor-
mance with AUCs of 0.897 and 0.959 (P < 0.05), sensitivities of 76.20% and 90.50%, specificities of 90.0% and 93.30%, accuracies of
84.30% and 90.20%, respectively. The combination model performed better. Calibration curves showed no statistically significant
differences between the two models (P> 0.05).

Conclusion: The prediction models were validated to be valuable for risk grade of GISTs and may provide non-invasive and practical
biomarkers for optimizing the treatment strategy and improving the prognosis. In addition, the combination model had more
advantages than texture analysis alone.
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1. Background operation might cause tumor rupture and hemorrhage, in-

. . . creasing the risk of tumor dissemination (4). Thus, it is
Gastrointestinal stromal tumors (GISTs), which are the

most common mesenchymal tumors of the digestive sys-
tem with malignant potential (1), are classified as very low,
low, intermediate and high risk according to the 2008 Na-
tional Institutes of Health (NIH) criteria (2). Asian Consen-

clinically important and necessary to explore noninvasive,
reliable and practical markers for preoperatively predict-
ing the grade in patients with GISTs.

Currently, at least three imaging methods are used for

sus Guidelines suggest that very low- and low-risk GISTs
should be treated as benign tumors under strict monitor-
ing, while patients with intermediate- and high-risk GISTs
are required to take imatinib mesylate in addition to the
operation to prevent metastasis or postoperative recur-
rence (3). Needle biopsy for immunological analysis is
commonly used in clinical practice. However, improper

GIST patients. Although positron emission tomography-
computed tomography (PET/CT) is the most sensitive and
accurate method, it is not recommended as a routine ex-
amination because of the high cost (5). Magnetic reso-
nance imaging (MRI) may be another method that could
provide functional quantitative indicators but its clini-
cal significance in this context requires further study (6).
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Computed tomography (CT) is widely recognized as the
main imaging method due to its moderate price and con-
venient operation. CT images can show the location and
size of masses, as well as the presence of cystic necrosis and
distant metastases (7). However, these signs are assessed
based on experience, which are greatly influenced by sub-
jective factors, and cannot directly predict the grade in pa-
tients with GISTs.

Texture analysis as a quantitative imaging technique
could better avoid diagnostic errors caused by human fac-
tors compared to conventional CT examination (8), and it
could objectively reflect the potential biological character-
istics and heterogeneity of tumors (9). Texture analysis
based on CT, MRI and PET/CT scan has achieved preliminary
results for grade in the head and neck, and rectal cancer
(10,11). Recentreports have shown that texture analysis was
of certain value in the diagnosis and differentiation of gas-
tric tumors (12, 13).

2. Objectives

The purpose of this study was to investigate the capa-
bility of CT-based texture analysis for predicting the grade
of GISTs and compare the findings with those of a combina-
tion model consisting of CT signs and texture parameters.

3. Patients and Methods

3.1. Patients

The medical ethics committee of our institution ap-
proved this study. For this retrospective study, the require-
ment for informed consent was waived. A total of 873 pa-
tients with pathologically confirmed GISTs from January
2011 to September 2017 in Fudan University Shanghai Can-
cer Center, Shanghai, China were selected for this study.
The patient recruitment process is presented in Figure 1. Fi-
nally, 168 patients (88 females and 80 males) were included
in the final analysis. The median age was 57 years with a
range of 22 to 93 years. Patients were divided into training
group (n = 117) and validation group (n = 51) after simple
randomization at a ratio of 7 to 3.

3.2. Pathological Characteristics

All tumors were evaluated for histological character-
istics and the expression of CD117 and CD34. The tumors
were divided into the potential malignancy group (very
low and low risk) and the malignancy group (intermediate
and high risk).

3.3. CTImage Acquisition and Analysis

Patients generally underwent contrast-enhanced CT
scans less than 10 days before treatment on the 32- or 64-
slice Siemens Sensation system, and the scan range in-
cluded all lesion areas. The CT parameters were as follows
and used with a standard reconstruction algorithm: tube
voltage, 120 kVp; tube current, 250 - 300 mA,; slice thick-
ness and interval, 1.0 mm. A total of 80 -120 mL (1.5 mL/kg)
of iodinated contrast material was injected at a flow rate
of 3 mL/s into the antecubital vein. Considering that the
masses in this study were distributed in different segments
of the digestive tract, and were observed more clearly in
the portal venous phase, the texture features extraction
were only performed on portal venous phase CT images in
this study. There was no universally accepted criterion for
the selection of scanning phase for texture analysis, but
majority of the reports nevertheless selected portal venous
phase CT images (12, 14, 15). The portal venous phase CT
images were performed at 60 s after injection of contrast
medium.

Two radiologists with 3 and 13 years of experience in CT
diagnosis assessed the following image signs of each mass
without knowing the pathology determined by consensus:
tumor location (gastric and nongastric), size (the maximal
diameter of the largest cross section < 5 cm, 5 - 10 cm or
> 10 cm), growth pattern (inter-intestinal, extra-intestinal
or cross-intestinal), shape (regular or irregular), boundary
(clear or unclear), calcification and cystic necrosis (present
or absent) (16).

3.4. Texture Feature Extraction and Analysis

Feature extraction was performed using the LIFEx
(LIFEx3.40, CEA-SHF], Orsay, France) package. The above two
radiologists selected the largest slice of the tumor to delin-
eate the region of interest (ROI) on the transverse section
by consensus (Figure 2), and the coronal and sagittal posi-
tions of the ROI were obtained automatically. The ROI se-
lection included all tumors and avoided blood vessels, cal-
cification and gas. A total of 29 features were extracted au-
tomatically including: (a) two shape parameters, (b) four
histogram parameters, (c) four conventional parameters,
(d) six gray-level co-occurrence matrix (GLCM) parameters,
(e) 11 grey level run length matrix (GLRLM) parameters, (f)
two neighborhood gray-level different matrix (NGLDM) pa-
rameters. A list of the corresponding features is provided
in Table 1, while a detailed description of all features have
been mentioned in a study by Orlhac et al. (17).
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Inclusion criteria:

1) patients who underwent surgery for
GISTs with curative intent;

2) information of postoperative
pathologically comfirmed GISTs risk
grading available;

3) standard contrast-enhanced CT less
than 10 days before treatment.

Exclusion criteria:

1) previous history of GISTs or other
cancers;

2) preoperative

therap y(radiotherapy, chemotherapy or
chemoradiotherapy);

3) poor image quality affects lesion
segmentation.

Archive data of patients with histologically confirmed
GISTs who underwent surgery from January 2011 to
September 2017
n=_873

The risk grading of GISTs confirmed by postoperative
pathology avaliable
n =673

Preoperative standard contrast-enhanced CT avaliable
n=396

Previous history of GISTs or other cancers avoid
n=311

Preoperative therapy avoid
n =201

Poor image quality avoid
n=168

Randomly assigned according
to the ratio of 7:3

Training group
n=117

Validation group
n=>51

Figure 1. Patient recruitment process

3.5. Statistical Analysis

Statistical analysis was performed in R (version 3.4.3,
http://www. r-project. org) and SPSS 23.0 (IBM, Armonk, NY,
USA). A two-tailed P value of < 0.05 was used as the crite-
rion to indicate a statistically significant difference. The
Mann-Whitney U test was used to assess differences in pa-
tient age, whereas the x? test was used to assess differences
in sex.

3.6. Feature Selection and Prediction Model Establishment

The radiomics signature and combination model were
established in the training group. Univariate analysis was
applied to the CT and texture features to identify the most
relevant predictors of the grade of GISTs using Pearson’s

Iran ] Radiol. 2019; 16(4):e85703.

correlation test. Multivariate analysis was performed by
least absolute shrinkage and selection operator (LASSO) re-
gression to address multiple cross-related covariates and
reduce the risk of overfitting of the data (18). The method of
lambda selection was ten-fold cross-validation. The predic-
tion models were developed by the linear fusion of selected
features weighted by their coefficients, with a radiomics
score (rad-score) and a prediction score (pre-score) calcu-
lated for each patient based on validation group.

3.7. Prediction Performance

The prediction performance of the models was evalu-
ated by the area under the receiver operating characteris-
tic (ROC) curve (AUC). The AUCs, sensitivity, specificity and
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Table 1. Specific Categories of Texture Parameters

Type Definition Feature name Description
(symbol/abbreviation)
. Sphericity (-) Measures how spherical a volume of interest is.
The shape parameters reflect the sphericity Shericity is equal to 1 for a perfect sphere.
Shape and compacity of the volume of interest in
voxels. Compacity (-) Measures how compact the volume of interest is.
SkewnessHisto (-) Measures the asymmetry of the gray-level distribution
in the histogram.
To build a histogram, it is necessary to Kurtosis (-) Measures whether the gray-level distribution is peaked
determine a bin width (“bin” parameter). or flat relative to a normal distribution.
Histogram - . . . T
The indices derived from the histogram will Entropy (Entropy H) Measures the randomness of the distribution.
depend on this bin width parameter.
p p Energy (Energy H) Measures the uniformity of the distribution.
In LIFEX, with the relative model the Minvalue (-) Measures the minimum in the volume of interest.
histogram is built only with “number of
grey level” fields of the resampling menu Meanvalue (-) Measures the average in the volume of interest.
Conventional .
that entered by the user and min., mean, Stdvalue (-) Measures the standard deviation in the volume of
standard deviation and max. are extracted interest.
f I. - - -
values of each RO Maxvalue (-) Measures the maximum in the volume of interest.
The GLCM takes into account the Homogeneity (-) Measures the homogeneity of gray-level voxel pairs.
arrangements of pairs of voxels to calculate | gpergy (.) Also called Uniformity or Second Angular Moment,
GLCM (Gray-level textural indices. The GLCM is calculated measures the uniformity of gray- level voxel pairs.
from 13 different directions in 3D with a
co-occurrence S-voxel distance relationship between Contrast (-) Also called Variance or Inertia, measures the local
matrix) neighbored voxels. The index value is the variations in the GLCM.
average of the index over the 13 directions Correlation (-) Measures the linear dependency of gray-levels in GLCM.
in space (X, Y,Z). -
pace(X,%,2) Entropy (-) Measures the randomness of gray-level voxel pairs.
Dissimilarity (-) Measures the variation of gray-level voxel pairs.
Short-run emphasis (SRE) SRE and LRE measure the distribution of the short or
Long-run emphasis (LRE) the long homogeneous runs in an image respectively.
Low gray-level run emphasis
The GLRLM gives the size of homogeneous (LGRE) LGRE and HGRE measure the distribution of the low or
runs for each grey level. This matrix is High gray-level run emphasis high gray-level runs respectively.
f 13 diff irections i
GLRLM (Grey level computed for the 13 different directions in (HGRE)

run length matrix)

3D (4 in 2D) and for each of the 11 texture
indices derived from this matrix, the 3D
value is the average over the 13 directions in
3D (4in2D).

Short-run low gray-level
emphasis (SRLGE)

Short-run high gray-level
emphasis (SRHGE)

SRLGE and SRHGE measure the distribution of the
short homogenous runs with low or high gray-levels
respectively.

Long-run low gray-level
emphasis (LRLGE)

Long-run high gray-level
emphasis (LRHGE)

LRLGE and LRHGE measure the distribution of the long
homogeneous runs with low or high gray-levels
respectively.

Gray-level non-uniformity for
run (GLNUr)

Run length non-uniformity
(RLNU)

GLNUr and RLNU measure the non-uniformity of the
gray-levels or the length of the homogeneous runs
respectively.

Run percentage (RP)

Measures the homogeneity of the homogeneous runs.

NGLDM
(Neighborhood
gray-level different
matrix)

The NGLDM corresponds to the difference
of grey-levels between one voxel and its 26
neighbors in 3 dimensions (8 in 2D).

Coarseness (-)

Measures the level of spatial rate of change in intensity.

Contrast (-)

Measures the intensity difference between
neighboring regions.

accuracy with 95 % confidence intervals (CIs) were calcu-
lated for each model. Calibration was evaluated with the

Hosmer-Lemeshow goodness-of-fit test, which reflects the

consistency of the model forecast risk and the actual risk; P

4. Results

> 0.05 indicated insignificant deviance from the theoreti-

cal perfect calibration. Intra- and interclass correlation co-

efficients (ICCs) were used to evaluate the consistency and

reproducibility of the intra- and inter-observer agreement

of the CT signs assessment and radiomics features extrac-
tion. An ICC greater than 0.75 indicated good consistency.

4.1. Patient Characteristics

A total of 168 patients were enrolled in this study. The

patient characteristics are summarized and compared in

Iran ] Radiol. 2019; 16(4):e85703.
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Figure 2. Abdominal portal venous-phase CT images of a 33-year-old man. Texture features were extracted from the primary tumor area (green overlay). A, Transverse section;

B, Coronal section; C, Median sagittal section; D, Graylevel histogram.

Table 2. There were no significant differences in gender or
age between the potential malignant group and the malig-
nant group (P> 0.05), consistent with the report (19).

4.2. Establishment of the Radiomics Signature and Combina-

tion Model

Atotal of 29 texture features and seven CT parameters
were extracted from the 168 patients’ CT portal-phase im-
ages, and the agreement between the two radiologists was

Iran ] Radiol. 2019; 16(4):e85703.

excellent for those features (all ICCs > 0.85) (P < 0.05).
Thus, the mean measurement values of the two radiolo-
gists were used for further analysis. The cross-correlation
matrixes (Figure 3A and B) showed that there were multi-
ple complex cross-correlations among the 36 parameters.
The selection of covariates with non-zero coefficients by
Lasso regression to establish the two models was depicted
in Figure 4A and B. The texture features of sphericity, com-
pacity, contrast, dissimilarity and CT imaging features of
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Table 2. Demographic Characteristics of Patients

Variable Potential malignant group (n=66) Malignant group (n=102) Pvalue
Gender 0.839%
Female 37 51
Male 29 51
Age (mean + SD) 58.8 £ 9.61 5711+10.35 0.701°

2pvalues were the results of x test.
bp values were the results of Mann-Whitney U test.

size, and location were selected to develop the predictive
models. The rad- and pre-scores were calculated for each
patient. Patients in the malignant group generally had
higher rad-scores and pre-scores than patients in the po-
tential malignant group (Table 3).

4.3. Assessment and Comparison of the Prediction Models

Both the radiomics signature and combination model
were significantly associated with GIST grade. Regard-
ing prediction performance, the combination model per-
formed better than the radiomics signature (Table 4).

4.4. Validation of the Prediction Models

The Hosmer-Lemeshow goodness-of-fit test showed no
statistically significant differences between the predic-
tions and observations of the two models (P > 0.05). The
calibration curves of the two models in the validation
group are shown in Figure 5.

5. Discussion

In this study, the value of conventional CT combined
with texture analysis in grade of GISTs was discussed for
the first time. A radiomic signature based on texture fea-
tures and a combination model consisting of CT and tex-
ture parameters were established and used to identify pre-
dictive markers discriminating patients with potentially
malignant and malignant GISTs. The combination model
was shown to be more advantageous in this prediction.

The results of this study showed higher rad-scores and
its compositions in patients with malignant GISTs. The
sphericity is the maximum value 1 for a perfectly round
ROI. When the ROI is another shape, the sphericity is less
than 1 and not affected by regional translation, rotation
and scale changes (17). The author considered this prin-
ciple to explain the result that the sphericity was not sig-
nificantly different between the two groups of patients.
Contrast and dissimilarity are two parameters of GLCM.

Greater contrast and dissimilarity indicates a deeper tex-
ture groove, a larger image texture variation in different
regions, and a more uneven local texture (20). Compared
with the potential malignant GISTs, the compacity, con-
trast and dissimilarity of malignant GISTs were higher. We
speculated that the results may be related to a higher de-
gree of cell proliferation and higher blood supply compro-
mise in the tumoral tissue. Those showed more mixed,
compact and irregular texture associated with greater het-
erogeneity of the tumor region. Previous studies have
confirmed that the texture features of human body could
change due to pathological changes, and the above three
parameters have been used to distinguish between benign
or malignant lesions in patients with other tumors (21-23),
suggesting that the texture of tumors with increased het-
erogeneity was more uneven.

This study also explored whether the prediction per-
formance based on texture analysis could be improved
by combination with conventional CT. The combination
model was composed of the size and location of CT signs
and the compacity of texture parameters, and this model
was more advantageous than radiomics signature. The
specificity and accuracy of the combination model were
also superior. Tumor size and location have been con-
firmed in many reports to be closely related to the degree
of malignancy (24, 25): larger primary masses not in the
stomach usually exhibit a higher degree of malignancy
than smaller ones in the stomach. The results of this study
confirm the hypothesis.

Liuetal. found that entropy based on venous-phase im-
ages can be used to distinguish between very low- and low-
risk GISTs (AUC = 0.684) (26). Nevertheless, no significant
differences were detected in parameters other than those
mentioned above between GISTs patients in this study. This
discrepancy may be related to the selection of more di-
mensions and a wider range of texture parameters, lead-
ing to the parameters reduced and selected by LASSO being
more representative. In addition, three-dimensional spa-
tial analysis of the tumor ROI texture features could more

Iran ] Radiol. 2019; 16(4):e85703.
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Figure 3. The cross-correlation matrix for covariates used to establish the radiomics signature (A) and combination model (B). The depth of color indicates the intensity of
the correlation between covariates. The darker the color, the higher the correlation. The lighter the color, the lower the correlation. Blue represents positive correlation, and
red represents negative correlation.
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Table 3. Rad-and Pre-Scores and Compositions of Potential Malignant and Malignant Patients in the Training Groupa'b

Models Training group Zvalue Pvalue
Potential malignant group (n = 45) Malignant group (n=72)
Sphericity 0.914 (0.888, 0.977) 0.916 (0.905, 0.961) 1333 0.182
Compacity 6.899 (4.239,9.488) 15324 (9.631,20.715) -6.734 < 0.001
Contrast 10.229 (6.725,13.696) 15.203 (7.194,19.213) -2.095 0.036
Dissimilarity 2.362 (1.947, 2.853) 2.729 (2.729, 3.415) -2.280 0.023
Rad-score -1.606 (-1.900,-0.682) 0.388 (-0.418,1.971) -7.238 < 0.001
Pre-score -1.571(-1.577,-0.460) 0312 (0.021,1.049) -7.939 < 0.001

*Values are expressed as median (interquartile range [IQR]).
b7 and P values are the results of Mann-Whitney test.
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Figure 4. Feature selections for the radiomics signature (A) and combination model (B). Tuning parameter (A) selection in the lasso model used ten-fold cross-validation. The
two vertical dashed lines represent one standard deviation on each side of the minimum value, corresponding to the chosen variables that better fit the models.

Table 4. Prediction Performance of the Radiomics Signature and Combination Model in the Validation Group®

Models AUC, 95% CI Sensitivity, % Specificity, % Accuracy, % Zvalue Pvalue
Radiomics signature 0.897(0.811- 0.983) 76.20 90.00 84.30 1.85 0.06
Combination model 0.959 (0.905-1.000) 90.50 93.30 90.20

Abbreviations: AUC, area under the receiver operating characteristics curve; CI, confidence interval.

7 and P values are the results of Mann-Whitney test.

accurately reflect the overall heterogeneity of the ROI (27).

The present study had several limitations. First, the
sample size of this single-center retrospective study was
relatively small, and the results need to be confirmed by
further prospective and multicentric studies with larger
sample sizes. Second, the features extracted in this
study were only based on portal venous phase CT images.

Whether the use of other periods or some combination will
increase the diagnostic efficiency requires further study.
In conclusion, the prediction models established in
this study were validated to be valuable for grade evalua-
tion in patients with GISTs and may represent non-invasive
and practical biomarkers for optimizing the treatment
strategy and improving the prognosis of GISTs. In addition,
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Figure 5. Calibration curves of the two models in the validation group. Calibration curves depict the calibration of the two prediction models in terms of agreement between
the predicted probability of the gastrointestinal stromal tumor (GIST) grade and observed rate of grade.

the combination model had more advantages than texture
analysis alone.
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