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Abstract

Background: Non-invasive monitoring of human epidermal growth factor receptor 2 (HER2) status in malignant lesions of breast
cancer patients has been established in clinical positron emission computed tomography (PET).
Objectives: In this study, we try to evaluate the feasibility of 99mTc-labeled affibody in monitoring HER2 expression for breast cancer
patients using single-photon emission computed tomography (SPECT) apparatus fused with a conventional CT scanner (SPECT/CT).
Patients and Methods: HER2 affibody with endogenous chelating site was recombinantly expressed and purified. 99mTc was added
to HER2 affibody at carboxyl-terminal cystein site specifically. Breast cancer patients were enrolled for whole-body SPECT/CT imaging
following intravenous administration of 99mTc-labeled HER2 affibody. Regions of interest were drawn manually over tumor sites and
the normal surrounding muscle. The HER2 status of breast cancer lesions was determined by post-surgical immunohistochemistry,
and correlated with the uptake of 99mTc-labeled affibody as measured by SPECT.
Results: Administration of 99mTc-labeled HER2 affibody was well tolerated by all patients without noticeable adverse side effects.
99mTc-labeled affibody SPECT imaging clearly visualized HER2 positive breast cancer lesions at approximately 1.5 and 4.5 hours after
affibody treatment. The tumor to background (T/B) ratios of locally hot breast cancer lesions by HER2 imaging were closely related
to post-surgical HER2 expression levels of cancer tissues by immunohistochemistry. When the tumor:muscle ratio exceeded 2.4
(cutoff value) in transverse imaging, the tumor lesion was considered to be HER2-positive arbitrarily. The diagnostic sensitivity of
99mTc-labeled affibody SPECT/CT in identifying HER2 positive breast cancer was 80 percent (12/15), while the specificity and accuracy
of 99mTc-labeled affibody SPECT/CT were 60 percent (9/15) and 70 percent (21/30) respectively. In tumors with a diameter greater than
12 mm, the sensitivity of 99mTc-labeled affibody SPECT/CT was 100 percent (12/12).
Conclusion: 99mTc-labeled affibody SPECT/CT may find utility in evaluating HER2 expression in breast cancer patients, and may pro-
vide new modality for guiding HER2 targeted therapy complementary to biopsy in breast cancer.
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1. Background

Breast cancer (BC) is the most common malignant tu-
mor, leading to one fourth of cancer population in women
among all presenting types of cancer (1). Human epider-
mal growth factor receptor type 2 (HER2) is frequently over-
expressed in breast cancer (2), and is crucial in predicting
survival and the effectiveness of HER2-targeted therapy (3-
10). The level of HER2 expression could be determined by
immunohistochemistry (IHC) and fluorescence in situ hy-
bridization (FISH) of tumor samples (11, 12). However, previ-
ous data has demonstrated a discordance of about 20% be-
tween HER2 protein expression in primary tumors and tu-
mors that have metastasized to the local lymph nodes (13-

15) as determined by IHC or FISH. Thus, there is an urgent
need to develop non-invasive imaging of HER2 status in
both primary and synchronous axillary lymph node metas-
tasis for accurate HER2 diagnosis.

Single-photon emission computed tomography
(SPECT) was used to profile and delineate the radioactivity
distributions within the body to probe its physiological
and chemical processes. Radiolabeled antibodies, anti-
body fragments, affibodies and peptides have been used
to design reliable and quantitative radiotracers to target
HER2 for nuclear imaging (16-24). Although monoclonal
antibodies have been traditionally used as tracing agents
for HER2 in preclinical tests, the slow uptake in tumors
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and sustained retention in the circulation make it prob-
lematic for prompt localization of the target when they
are conjugated with radio-isotopes as SPECT tracers (16). In
contrast, HER2 affibodies can efficiently penetrate tumors,
following which, they are rapidly cleared from the blood
(25).

An affibody is a molecule that is structurally based on
a non-immunoglobulin scaffold from the Z domain of pro-
tein A, which is a surface protein of the bacterium Staphylo-
coccus aureus (26). In terms of its binding features, an affi-
body mimics a monoclonal antibody and can bind to HER2
with high affinity and specificity. In terms of size, an affi-
body only has a molecular weight of 6 kDa, which is far less
than a monoclonal antibody of a molecular weight of 150
kDa. In terms of its stability, an affibody can withstand a va-
riety of conjugation conditions, including extreme ranges
of pH and elevated temperatures (27).

The technological approach of radiolabeled affibody
has been used to detect HER2-positive cancer using the
SPECT and positron emission computed tomography (PET)
(18-24), which permits HER2 imaging in animal models and
human subjects using Indium-111 (111In) for SPECT and 68Ga
, 18F for PET within 24 hours of administering the radio-
labeled probe (28-32). Although 99mTc is the most widely
used nuclide for SPECT imaging that displays both an ideal
gamma energy (140 KeV) and commercial availability (25),
there are no clinical reports that have described the use
of 99mTc labeled HER2 affibody in the current literature at
this time. Zhang et al. labeled HER2 affibody with a 99mTc
and tested its imaging properties in a HER2-expressing
SKOV-3 xenografted murine model (25). Wallberg et al. se-
lected a HER2 affibody that incorporated the C-terminal
GGGC chelator for 99mTc labeling after evaluating several
alternative HER2 affibody variants that incorporated the
C-terminal GGSC, GGEC, GGKC or GSEC chelators. This op-
timal variant provided the lowest radioactive retention
across all normal/unaffected organs and tissues including
the kidneys in SKOV-3 xenografted mice (33).

2. Objectives

In the current study, HER2 affibody with endogenous
chelating site was recombinantly expressed and purified.
99mTc was added to HER2 affibody at carboxyl-terminal
cystein site-specifically. We tested the feasibility of this
99mTc-labeled HER2-specific affibody construct to image
HER2-positive breast cancer in patients by the SPECT-CT ap-
proach. After SPECT imaging, the status of HER2 expression
in breast cancer lesions was quantified by HER2 immuno-
histochemical staining during surgery. In addition, HER2
expression levels were correlated with the uptake of 99mTc-
labeled affibody as measured by SPECT.

3. Patients and Methods

This study was performed according to the declaration
of Helsinki ethical standards for experiments with humans
and approved by Peking Union Medical College Hospital
Ethical Committee of the Chinese Academy of Medical Sci-
ences (protocol number JS-893). The protocol is also reg-
istered at: www.ClinicalTrials.gov (NCT 03546478). In ad-
dition, written and informed consent was obtained from
each patient.

3.1. HER2 Affibody Recombinant Expression and Purification
The HER2 affibody had an amino acid sequence of

EHEHEAENKFNKEMRNAYWEIALLPNLTNQQKRAFIRSLYDDP-
SQSANLLAEAKKLNDAQGGGC and was used for endogenous
labeling with 99mTc (27). The modified HER2 affibody gene
was cloned into the pET22b (+) plasmid and transformed
into competent BL21 (DE3) bacteria for recombinant
DNA expression. The affibody was further purified using
nickel affinity chromatography and identified by sodium
dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) (27, 34).

3.2. Preparation of 99mTc-labeled HER2 Affibody
The 99mTc-labeled HER2 affibody was synthesized in a

sterile hot chamber. Briefly, the affibody was diluted in
phosphate buffered saline (PBS) to a concentration of 0.8
mg/mL and stored at -20°C before use. Fresh 99mTc was
eluted into a sterile vacuum bottle from the 99Mo/99mTc
generator using 5 mL of sterile saline. Two hundred mi-
croliters of 99mTcO4

- (1.11 - 1.85 gigabecquerel [GBq]) was
drawn for labeling from the bottle. Fifty microliter of the
affibody was added to 200 µL of the degassed buffer (pH
6.6) containing 20 mmol/L sodium glucoheptonate and
10 mmol/L 4-(2-hydroxyethyl)-1-piperazineethane sulfonic
acid (HEPES) in a 1.5 mL microtube, following which, 50
µg Tin (II) chloride (SnCl2) in 1 µL of 10% hydrochloric acid
(HCl) and 99mTc were added. The mixture was kept at room
temperature for an additional 10 minutes, and then fur-
ther purified by NAP-5 gravity flow column (GE healthcare,
USA). A 0.22 µm sterile ultrafine filter was then used for
sterility purification.

3.3. Quality Control of 99mTc-labeled HER2 Affibody
Instant thin-layer chromatography (ITLC) (Bioscan

2000, USA) was used to test radio-chemical purity (RCP)
and 99mTc-radiocolloid, and ITLC-silics gel (SG) strips (Gel-
man, USA) were used as the solid phase support (33). For
RCP determination, PBS (10 mM) was used as the develop-
ing solution, the retention factor (Rf) value of the 99mTc la-
beled affibody was 0, and that of pertechnetate and gluco-
heptonate complexes of 99mTc was 1. For radiocolloid deter-
mination, a solution of 53% pyridine and 32% acetic acid
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was used as the developing solution, the Rf value of any
technetium colloid was 0 and that of the 99mTc labeled affi-
body, pertechnetate or other complexes of 99mTc was 1. For
clinical use, the RCP of the 99mTc-labeled HER2 affibody was
always greater than 95 percent and the technetium colloid
was usually below 0.5 percent.

3.4. In Vitro Characterization of 99mTc-labeled HER2 Affibody

For in vitro characterization, MDA-MB-361 breast can-
cer cells (HER2 positive) were cultured with L15 medium
containing fetal bovine serum (20%), penicillin (100 U/mL)
and streptomycin (100µg/mL). The day before the binding
test, one million MDA-MB-361 breast cancer cells that were
suspended in two milliliters of L15 medium were dropped
into each well of a six-well plate. The next day, the 99mTc-
labeled HER2 affibody (19.2 GBq/µmol) was added to the
wells with different final concentrations of 0.0004, 0.0021,
0,011, 0.054, 0.260, 1.310, 6.7, and 33 nmol/L in triplicate.
The blocking wells were occupied with a 50-fold concen-
tration of “cold” HER2 affibody and the 99mTc-labeled HER2
affibody. All radioactive wells were incubated at 4°C for 2
hours for cell binding, then washed with ice-cold PBS three
times and detached with trysin buffer. The radioactivity of
the 99mTc-labeled HER2 affibody that was bound to the cells
was measured by a gamma counter.

3.5. In Vivo Characterization of 99mTc-labeled HER2 Affibody in
Breast Cancer Models

For in vivo characterization, ten BALB/c nude mice were
used for xenograft cancer modeling. Ten million MDA-MB-
361 breast cancer cells in 50 µL of culture medium were
mixed with the same volume of Matrigel (BD Sci., USA) and
simultaneously seeded into each mouse axilla. When the
diameter of the tumor was 5 mm, the 99mTc-labeled HER2
affibody was prepared as described above, and adminis-
tered into the mouse tail vein with a single dose of 37 MBq
(~ 0.36 nmol) in 0.2 mL of saline. Whole-body imaging of
99mTc-labeled HER2 affibody in breast cancer models was
obtained at 1.0 and 4.5 hours post-injection for 20 min-
utes with the NanoSPECT/CT apparatus (Mediso, Hungary)
under 10 percent chloral hydrate anesthesia (4µL/g body
weight) given intraperitoneally. The in vivo specific bind-
ing of the 99mTc-labeled HER2 affibody was further con-
firmed by pre-injection of 200 µg of “cold” HER2 affibody
and 37 MBq of 99mTc-labeled HER2 affibody two days later
using the same mouse models and the same acquisition
methods. CT was used to locate the tumor, and the heart,
liver, lung, muscle, humeral bone and the brain. The In
Vivo Scope Browser software was used to analyze focal ra-
dioactivity by manual drawing transversely for calculation
of the target to non-target (T/NT) ratio.

3.6. Patient Enrollment

To study the diagnostic value of 99mTc-labeled HER2
affibody SPECT/CT, female patients were continuously en-
rolled from July 10 through November 20, 2015. The inclu-
sion criteria included the following: an age of 28 years or
older, suspected diagnosis of HER2-positive breast cancer,
being able to provide specific disease information, and un-
derstanding the nature and importance of informed con-
sent. The exclusion criteria included the following con-
siderations: pregnancy, lactation, kidney failure, liver dys-
function, claustrophobia, and post mastectomy.

3.7. 99mTc-labeled HER2 Affibody Imaging in Breast Cancer Pa-
tients

Each patient was injected with 5.6 ± 0.8 MBq of
the 99mTc-labeled HER2 affibody per kilogram (which was
equivalent to approximately 50 µg) via the left basilic vein
at the cubital fossa. Following intravenous injection of
the 99mTc-labeled HER2 affibody, anterior and posterior
SPECT scans of the whole body were acquired at 1.5 and 4.5
hours time-points for 20 minutes with a scanner equipped
with dual-headγ-cameras and high-resolution collimators
for low-energy gamma rays detection (Precedence, ADAC
laboratories of Philips, USA). The SPECT scans were fused
to CT scans for accurate localizing anatomical structure.
All digital imaging data of breast cancer patients were
transferred to a center workstation for detailed reading
and analysis. In a fraction of the studied patients, 18F-
fluorodeoxyglucose (18F-FDG) PET was undertaken as a con-
trol.

3.8. HER2 Immunohistochemical Staining

Lumpectomy was done under general anesthesia.
Briefly, an incision was made to the breast with the inten-
tion of removing the tumor, along with a small rim of nor-
mal tissue that was located about the site of the tumor,
in addition to lymph nodes in the underarm area. Rep-
resentative tumor and lymph node samples that were ob-
tained during surgery were fixed with neutral formalin for
2 days, then dehydrated with serial concentrations of al-
cohol, xylene and finally embedded tissues with paraffin
wax (56 - 58°C) in blocks. Five-micrometer (µm) thick tis-
sue sections were cut and mounted on glass slides. The
endogenous peroxidase in sections were blocked with 3%
H2O2 for 10 minutes and washed with PBS containing 1%
bovine serum albumin (BSA) for three times. The blocked
tissues were added with a mouse monoclonal antibody
(Clone UMAB36, Origene, USA) that was raised against HER2
(1:200) and incubated at 37°C for 2 hours. After wash-
ing with PBS, the sections were incubated with secondary
antibody (horseradish peroxidase [HRP]-conjugated, goat
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anti-mouse IgG) at room temperature for 30 minutes. Af-
ter thorough washing, the tissues were added with 3% di-
aminobenzidine and 0.3% H2O2 for color development.
Light microscopy was used to observe stained tissues and
six fields of each section were randomly chosen for analysis
by the same pathologist with a track-record of more than
15 years of experience.

3.9. Data Analysis

SPECT images were analyzed by two experienced re-
searchers. The sources of SPECT and CT images were
masked to these researchers. In visual characterization,
the different organ images, number of lesions, and imag-
ing time-points were documented. The number of lesions
included primary lesions and lymph node metastases. For
quantitative determination, the 4.5 h images were adopted
for analysis because these images were better than 1.5 h
images. The radioactivity of the 99mTc-labeled affibody up-
take in breast cancer lesions and the surrounding muscle
were measured and the tumor-to-background (T/B) ratios
of SPECT images at the 4.5 h time-point were calculated by
the same researchers.

3.10. Statistical Analysis

The dissociation constant (Kd) was calculated by spe-
cific binding of 99mTc-labeled HER2 affibody to HER2 posi-
tive cells (total binding minus nonspecific binding) with
GraphPad Prism 5 software (CA, USA). The sensitivity, speci-
ficity, and accuracy values (%) of 99mTc-labeled affibody in
diagnosing HER2 positive breast cancer were also calcu-
lated with GraphPad Prism 5 software. Uni-variate analy-
sis enabled correlating SPECT imaging of the T/B ratios and
HER2 IHC grades.

4. Results

4.1. In Vitro Characterization of the 99mTc-labeled HER2 Affibody

The 99mTc-labeled HER2 affibody bound to MDA-MB-361
breast cancer cells specifically with a Kd value of 1.7 nmol/L.
The final purified mass concentration was 0.5 mg/mL. The
synthesis time of the 99mTc-labeled HER2 affibody was usu-
ally less than 20 minutes. The labeling yield and final RCP
were 99.5±0.3 percent. The RCP of 99mTc-labeled HER2 affi-
body were 98.4±0.2 percent and 96.3±0.7 percent respec-
tively after 3 hours incubation at 37°C with PBS and serum,
and were 98.1 ± 0.6 percent and 95.0 ± 1.0 percent respec-
tively after 6 hours incubation at 37°C with PBS and serum,
which indicate 99mTc- affibody was stable both in PBS and
serum.

4.2. In Vivo Characterization of the 99mTc-labeled HER2 Affibody

The MDA-MB-361 mouse model of a breast cancer
xenograft was clearly visualized by the NanoSPECT/CT at 1.0
hours and 4.5 hours after 99mTc- labeled HER2 affibody in-
jection (Figure 1A and B). The radioactivity in the thyroid
gland was negligible. By contrast, the radioactivity in the
kidney and urinary bladder was prominent, which indi-
cated that the urinary tract served as the main excretion
pathway for 99mTc- labeled HER2 affibody. In the blocking
group with “cold” HER2 affibody, the MDA-MB-361 breast
cancer xenograft was not clearly visualized at both 1.0 hrs
and 4.5 hrs after 99mTc- labeled HER2 affibody injection (Fig-
ure 1C and D). The T/NT ratios of the cancer to the heart,
liver, lung, muscle, bone and brain were 7.61 ± 0.56, 1.81
± 0.60, 8.95 ± 1.13, 10.62 ± 1.78, 11.42 ± 2.07, and 20.08 ±
6.12, respectively. In the blocking group, the T/NT ratios of
the cancer to the heart, liver, lung, muscle, bone and brain
were decreased to 2.42 ± 1.02, 0.60 ± 0.23, 3.05 ± 1.38, 8.16
± 2.66, 2.76 ± 0.48, and 5.24 ± 2.17, respectively (F = 29.38;
P < 0.05).

4.3. Evaluation of Patients with Suspected Breast Cancer

Information regarding a detailed pathological diagno-
sis of all patients following SPECT/CT imaging is described
in Table 1. For SPECT/CT imaging, 30 female patients (aged
29 - 76 years; mean, 48.2 ± 11.1 years) with suspected HER2-
positive breast cancer were enrolled into the study. In pa-
tient No. 1, primary lesions and lymph node metastases
could be clearly seen by 99mTc-labeled affibody SPECT/CT
imaging (Figure 2A and B). Positive primary tumor foci
could be clearly observed between 1.5 to 4.5 hours after in-
travenous injection of the 99mTc-labeled affibody. At the 4.5
hours time-point, a HER2 positive lesion was optimally vis-
ible by maximum intensity projection (MIP) imaging than
at the 1.5 hours time-point (T/B: 6.0 ± 5.6 vs. 4.6 ± 4.1, P
< 0.05). 99mTc-labeled affibody accumulated in primary le-
sions with a very high T/B ratio (23.8±2.9), while the lymph
node metastases were also HER2 positive. The T/B ratios of
the axillary lymph nodes and supraclavicular lymph nodes
were high (i.e., 6.5± 1.4 and 6.1± 1.3 respectively; Figure 2C -
E). MIP images (Figure 2A and B) showed that breast cancer
cells migrated from the right breast duct to the axillary and
supraclavicular lymph nodes. HER2-positive lesions were
clearly located when the SPECT images fused with the tradi-
tional CT images. In the transverse plane, the radioactivity
that was measured in the breast cancer lesion was higher
than that quantified in the heart (T/B ratio = 1.5 ± 0.9) and
normal breast tissues (T/B ratio = 1.0 ± 0.2) (Figure 2C),
which indicated that the 99mTc-labeled affibody was specif-
ically bound to the HER2 target in the circulation. In the
coronal plane, the radioactivity in the liver (T/B ratio = 21.9
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Figure 1. Single-photon emission computed tomography (SPECT)/CT imaging of 99mTc-labeled human epidermal growth factor receptor 2 (HER2) affibody in human HER2-
positive breast carcinoma in xenografted mice (left: coronal plane; right: transverse plane). A and B, Images of 99mTc-ABH2 at 1h (A) and 4.5h (B), white arrows point radioactivity
accumulated MDA-MB-361 breast carcinoma. C and D, Blocking images of 99mTc-ABH2 at 1h (C) and 4.5h (D), radioactivity was not accumulated in MDA-MB-361 breast carcinoma.

± 3.5) was comparable with that found in the breast lesion.
By contrast, the radioactivity measured in the kidneys (57.3
± 14.6) was much higher than that measured in the breast
lesions (Figure 2F). In the sagittal plane, uptake of radioac-
tivity by the breast cancer lesion was prominent (Figure
2G). The primary lesion and lymph node metastases were
surgically resected and histologically evaluated and diag-
nosed as invasive ductal carcinoma. IHC results indicated
that the primary lesion and lymph node metastases were
all HER2 3+ (Figure 2H and I).

In contrast, some of the HER2 negative primary breast
cancers with/without lymph node metastases did not re-
tain the 99mTc-labeled affibody when analyzed by SPECT/CT
imaging. The 99mTc-labeled affibody SPECT/CT imaging in
patient No. 22 showed that uptake of radioactivity in the
left breast nodule was very low (T/B ratio = 0.8 ± 0.1), and
was comparable to that found in the muscle (T/B ratio =
0.9 ± 0.2) and lung (T/B ratio = 0.7 ± 0.1) (Figure 3A). Post-
surgical IHC staining indicated that this invasive ductal
carcinoma was HER2 negative (Figure 3B). In addition, the
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Figure 2. Maximum-intensity-projection (MIP) images obtained from patient No. 1 (i.e., at 60 years of age, and body weight (BW) of 70 kg) at 1.5 h (A), and 4.5 h (B) following
administration of 370 MBq (50 µg) of 99mTc-labeled affibody. The breast cancer lesion (C), axillary lymph node (D) and supraclavicular lymph node (E) were clearly visible by
transverse plane sectioning. Uptake of non-specific radioactivity by the liver and intestine were noted by coronal plane image analysis (F). The breast cancer lesion displaying
human epidermal growth factor receptor 2 (HER2) overexpression was prominent in the sagittal plane (G). All lesions were surgically removed and histologically diagnosed as
invasive ductal carcinoma (H). Analysis of HER2 immuno-histochemical staining of the primary tumor (I) and lymph node (J) of patient No. 1, showing (3+) staining intensity.

accumulation of the 99mTc-labeled affibody in patient No. 8
was also negligible (T/B ratio = 0.3±0.0) (Figure 3A and C).
Follow-up staining by IHC with the HER2-specific antibody
confirmed that this invasive lobular carcinoma was nega-
tive (Figure 3D).

In Patient No. 26, both 99mTc-labeled affibody SPECT
and 18F-FDG PET were undertaken. Bilateral HER2 affibody
uptake was visualized (Figure 4A and B); however, only a
right faint 18F-FDG uptake was seen in bilateral breast can-
cer patients when screened by ultrasound. However, the
liver lesions that were identified by 18F-FDG PET could not
be characterized by 99mTc-labeled affibody SPECT (Figure 4A

and C).

In the quantitative analysis, a breast lesion with 99mTc-
labeled affibody uptake that was shown to be 2.4-fold
higher than the surrounding muscle (T/B ≥ 2.4) was ar-
bitrarily considered positive. By contrast, a lesion with a
T/B < 2.4 was arbitrarily considered negative. The choice
of the threshold was dependent on data listed in Table 2.
The nonspecific retention of 99mTc-labeled affibody in the
liver, spleen and heart limited the application of the tracer
in tracing metastasis to these organs, while low accumu-
lation of 99mTc-labeled affibody in the muscle and bone
would be helpful in identifying metastasis to these tissues
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Figure 3. Negative image (A) in SPECT with 99mTc-labeled affibody in breast cancer lesion of an invasive ductal carcinoma (IDC) (white arrow) patient (No. 22) showed negative
pattern of staining in human epidermal growth factor receptor 2 (HER2) immunohistochemistry (B); A patient (No. 8) diagnosed as invasive lobular carcinoma (ILC) also
displayed negative uptake with 99mTc-labeled affibody (white arrow) (C) and matched negative HER2 expression (D).

Table 1. Patient Information and Diagnosis

Demographic information and diagnosis Values (n = 30)

Age, y

Range 29 - 76

Mean ± SD 48.2 ± 11.1

Diagnosis, %

Invasive ductal carcinoma (IDC) 83.33

Ductal carcinoma in situ (DCIS) 6.67

Metaplastic breast cancer (MBC) 3.33

Invasive lobular carcinoma (ILC) 3.33

DCIS + IDC 3.33

Abbreviation: SD, standard deviation.

(Figure 5).

4.4. The Correlation Between HER2 Imaging and HER2 IHC

Totally, thirty patients were submitted to 99mTc-labeled
affibody SPECT/CT imaging, surgery and HER2 IHC staining,
and all were included in the correlation analysis. In the IHC

group, 22 patients were HER2 positive, and included the fol-
lowing: 11 patients were scored as HER2 3+, eight patients
were scored as HER2 2+ including four FISH positive pa-
tients and four FISH negative patients, and three patients
were scored as HER2 1+. Additionally, eight patients were
found to be HER2 negative (Table 2).

In the HER2 imaging group, 18 patients were identi-
fied as HER2 positive and 12 patients were identified as
HER2 negative. Six patients that were originally classified
as HER2 IHC negative were re-classified as HER2 imaging
positive, while three patients that were originally classified
as HER2 imaging negative were re-classified as HER2 IHC
positive. The HER2 status of the remaining 21 patients was
consistent when contrasting HER2 imaging and HER2 IHC
(i.e., 12 were true positive and nine were true negative) (Ta-
bles 2 and 3). False negativity of HER2 imaging might be
related to the tumor size since the diameter of all lesions
in three cases was less than 12 mm (i.e., two cases were 10
mm and one case was 11 mm). No false negatives were seen
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Figure 4. Patient No. 26 (invasive ductal carcinoma [IDC]) showed bilateral human epidermal growth factor receptor 2 (HER2) affibody uptake (white arrow) (A, B) and only
faint 18F-fluorodeoxyglucose (18F-FDG) uptake was shown on the right (C) by bilateral HER2 positive breast cancer lesions.

25

20

15

10

5

0
Breast Liver Heart Spleen Muscle Bone

Figure 5. The bio-distribution of 99mTc-labeled human epidermal growth factor re-
ceptor 2 (HER2) affibody in normal tissues (Y axis: organ or tissue to breast ratio)

when the diameter of the breast cancer lesion was greater
than 12 mm, and even a lesion with a size of 13 mm could be
accurately stratified -as was the case with patient No.15.

The overall sensitivity, specificity and accuracy were re-
spectively 80 percent (12/15), 60 percent (9/15), and 70 per-
cent (21/30) when the tumor diameter threshold was not
set (Table 3). The sensitivity increased to 100 percent (18/18),
and the accuracy increased to 84.0 percent (21/25) in exam-
ined tumors when the tumor diameter threshold was set
as 12 mm.

5. Discussion

In our prior studies, HER2 affibody contained an en-
dogenous GGGC chelating sequence that was expressed
at the carboxyl-terminus, which was also labeled with
technetium-99m giving an RCP that exceeded 95 percent.
This was a prerequisite for the current clinical investiga-
tion.

In this study, in vivo imaging of this type of 99mTc-
labeled affibody in breast cancer patients that was exam-
ined by SPECT/CT, indicated the feasibility of attempting to
clinically translate the endogenously chelating HER2 affi-
body. The diagnostic sensitivity of 99mTc-labeled affibody
could be improved under conditions where tumor size
was included during the time of patient enrollment to the
study.

However, non-specific retention of 99mTc-labeled affi-
body in the liver was relatively high, and was secondary
to that of the kidneys. The radioactivity in the liver, and
kidneys were not ideally cleared from 1.5 to 4.5 hours after
99mTc-labeled affibody administration, which might limit
the characterization of HER2 expression following abdom-
inal metastasis of breast cancer (Figure 1A and B). A higher
dose might provide improved results and reduced hepatic
uptake, which suggested that the dose used in this study
needed to be optimized (21).

In the presence of N-terminal HEHEHE modification,
the chelator specificity of affibody labeling with 99mTc is
partially lost (27). Elevated hepatic uptake as well as uptake
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Table 2. Patient Diagnosis with HER2 Imaging and Pathological Analysis

PN CL LN H Pathology (IHC, FISH) SPECT SPECT vs. IHC Size (mm) T/B

1 R M IDC +(3+) + TP 41 23.8

2 L M DCIS +(3+) - FN 10 1.8

3 L IDC +(3+) + TP 26 5.7

4 R IDC -(1+) + FP 30 4.4

5 L, R IDC +(3+) - FN 10 1.2

6 R IDC -(2+,-) - TN 19 2.1

7 R M DCIS +(2+,+) + TP 31 4.3

8 R ILC -(-) - TN 11 0.3

9 R IDC -(-) - TN 33 2.1

10 R IDC -(2+,-) + FP 16 12.9

11 L MBC -(-) + FP 38 5.8

12 R M IDC +(2+,+) + TP 27 4.2

13 R IDC -(2+,-) + FP 14 4.3

14 R IDC +(3+) + TP 27 3.6

15 L IDC +(3+) + TP 13 3.9

16 R M IDC +(3+) + TP 31 3.5

17 L IDC -(-) - TN 22 2.2

18 R M IDC +(3+) + TP 20 4.2

19 L, R IDC -(-) + FP 15 4.3

20 L, R IDC -(-) - TN 16 2.0

21 L M DCIS (30% IDC) -(1+) + FP 40 8.6

22 L IDC -(-) - TN 13 0.8

23 L IDC +(3+) + TP 50 4.8

24 L M IDC -(1+) - TN 27 2.3

25 L, R IDC -(-) - TN 17 2.1

26 L, R IDC +(3+) + TP 32 4.9

27 R IDC +(3+) + TP 24 4.4

28 L, R IDC +(2+,+) + TP 21 4.7

29 L IDC +(2+,+) - FN 11 1.9

30 L IDC -(2+,-) - TN 11 1.4

Abbreviations: CL, cancer location; DCIS, ductal carcinoma in situ; FISH, fluorescence in situ hybridization; FN, false-negative; FP, false-positive; H, histology; HER2, human
epidermal growth factor receptor 2; IDC, invasive ductal carcinoma; IHC, immunohistochemistry; ILC, invasive lobular carcinoma; L, left breast; LN, lymph node; M,
lymph node metastasis; MBC, metaplastic breast cancer; NA, not applicable; ND, not done; PN, patient number; R, right breast; SPECT, single-photon emission computed
tomography; T/B, tumor to background ratio; TN, true negative; TP, true-positive.

in the thyroid might be explained by a suboptimal format
of the affibody molecule. The labeling conditions should
be optimized in follow-up studies with the intention of re-
ducing the issue of non-specific radioactivity in the liver.
We found that renal uptake of 99mTc-labeled affibody was
the highest, and concordant with similar findings from an-
imal models (35).

From the MIP imaging analysis of the patient, we recog-

nized that the 99mTc-labeled affibody was predominantly
cleared from the renal - urinary tract, and was secondarily
cleared from the hepatic - biliary - gastrointestinal system.
The kidneys, urinary bladder, liver, spleen, and intestinal
tract all significantly retained the 99mTc-labeled affibody.
The oral and nasal cavity, salivary glands and thyroid, also
showed measurable radioactivity, and the thyroid gland
was clearly visible. In addition, the strong digestive uptake
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Table 3. Quadruple Tabular Form of HER2 Imaging and Pathological Diagnosisa

Gold standard
Total

IHC positive IHC negative

Test standard

SPECT positive 12 6 18

SPECT negative 3 9 12

Total 15 15 n = 30

Abbreviations: HER2, human epidermal growth factor receptor 2; IHC, im-
munohistochemistry; SPECT, single-photon emission computed tomography.
aSensitivity = 80.0%; Specificity = 60%; Accuracy = 70.0%.

of the radioactivity indicated that the free 99mTc should be
removed completely from the labeling mixture before in-
travenously administering the construct in future investi-
gations. Moreover, the possible instability of 99mTc-labeled
affibody could not be ruled out in this study. In this single-
center prospective clinical trial, the size of the enrolled
and studied patient population was comparatively small.
Moreover, follow-up therapy and survival time were not in-
cluded in this study.

Overall, the low radioactive background in the breast
tissue regions allowed detection of HER2 breast cancer le-
sions with a high target-to-background ratio. In the cur-
rent study, 99mTc-labeled affibody showed improved clin-
ical convenience as defined by ease of labeling, extended
biological half-life, and wider availability (36).

Additionally, 99mTc-labeled HER2 affibody SPECT/CT
imaging of HER2-positive breast cancer might prove use-
ful in the setting of patient stratification for targeted ther-
apy, although we recognize that this approach might ex-
hibit a lower sensitivity for lesion detection as compared
with the HER2 affibody PET/CT approach. In addition, we
recognize that 99mTc-labeled HER2 affibody SPECT/CT imag-
ing of HER2-positive breast cancer performs comparatively
poorly in detecting small-sized lesions, hence the use of
this approach is not recommended in patients that present
with small volume disease.

In a previously published report, the 99mTc-labeled
tracer showed fewer lesions by SPECT/CT imaging under
conditions where the tumor diameter was less than 10
mm (37). The correlation between T/B ratio and HER-2
expression in tissues was not statistically significant (P
= 0.231). This indicated that 99mTc-labeled HER2 affibody
SPECT imaging was an independent mode of assessment
from that provided by HER2 immunohistochemical analy-
sis. The four false positives (out of 30 patients) might mean
that IHC missed 13% (4/30) HER2+ breast cancer.

In conclusion, the 99mTc labeled HER2 affibody ap-
proach was first used to image patients with HER2- posi-
tive breast cancer lesions. This approach might also pro-
vide imaging guidance for HER2 targeted therapy in breast
cancer patients. The non-specific uptake of this radiotracer

in the liver might hamper the detection of HER2 positive
liver metastasis in breast cancer. The format of this HER2
affibody molecule, the dose of 99mTc-labeled HER2 affibody
and the labeling conditions for SPECT/CT imaging in hu-
mans should be optimized for future clinical applications.
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